1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
|
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/kconfig-language.txt.
#
mainmenu "Linux Kernel Configuration"
config X86_32
bool
default y
help
This is Linux's home port. Linux was originally native to the Intel
386, and runs on all the later x86 processors including the Intel
486, 586, Pentiums, and various instruction-set-compatible chips by
AMD, Cyrix, and others.
config GENERIC_TIME
bool
default y
config GENERIC_CMOS_UPDATE
bool
default y
config CLOCKSOURCE_WATCHDOG
bool
default y
config GENERIC_CLOCKEVENTS
bool
default y
config GENERIC_CLOCKEVENTS_BROADCAST
bool
default y
depends on X86_LOCAL_APIC
config LOCKDEP_SUPPORT
bool
default y
config STACKTRACE_SUPPORT
bool
default y
config SEMAPHORE_SLEEPERS
bool
default y
config X86
bool
default y
config MMU
bool
default y
config ZONE_DMA
bool
default y
config QUICKLIST
bool
default y
config SBUS
bool
config GENERIC_ISA_DMA
bool
default y
config GENERIC_IOMAP
bool
default y
config GENERIC_BUG
bool
default y
depends on BUG
config GENERIC_HWEIGHT
bool
default y
config ARCH_MAY_HAVE_PC_FDC
bool
default y
config DMI
bool
default y
source "init/Kconfig"
menu "Processor type and features"
source "kernel/time/Kconfig"
config SMP
bool "Symmetric multi-processing support"
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
Note that if you say Y here and choose architecture "586" or
"Pentium" under "Processor family", the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the "PPro"
architecture may not work on all Pentium based boards.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
Management" code will be disabled if you say Y here.
See also the <file:Documentation/smp.txt>,
<file:Documentation/i386/IO-APIC.txt>,
<file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
<http://www.tldp.org/docs.html#howto>.
If you don't know what to do here, say N.
choice
prompt "Subarchitecture Type"
default X86_PC
config X86_PC
bool "PC-compatible"
help
Choose this option if your computer is a standard PC or compatible.
config X86_ELAN
bool "AMD Elan"
help
Select this for an AMD Elan processor.
Do not use this option for K6/Athlon/Opteron processors!
If unsure, choose "PC-compatible" instead.
config X86_VOYAGER
bool "Voyager (NCR)"
select SMP if !BROKEN
help
Voyager is an MCA-based 32-way capable SMP architecture proprietary
to NCR Corp. Machine classes 345x/35xx/4100/51xx are Voyager-based.
*** WARNING ***
If you do not specifically know you have a Voyager based machine,
say N here, otherwise the kernel you build will not be bootable.
config X86_NUMAQ
bool "NUMAQ (IBM/Sequent)"
select SMP
select NUMA
help
This option is used for getting Linux to run on a (IBM/Sequent) NUMA
multiquad box. This changes the way that processors are bootstrapped,
and uses Clustered Logical APIC addressing mode instead of Flat Logical.
You will need a new lynxer.elf file to flash your firmware with - send
email to <Martin.Bligh@us.ibm.com>.
config X86_SUMMIT
bool "Summit/EXA (IBM x440)"
depends on SMP
help
This option is needed for IBM systems that use the Summit/EXA chipset.
In particular, it is needed for the x440.
If you don't have one of these computers, you should say N here.
If you want to build a NUMA kernel, you must select ACPI.
config X86_BIGSMP
bool "Support for other sub-arch SMP systems with more than 8 CPUs"
depends on SMP
help
This option is needed for the systems that have more than 8 CPUs
and if the system is not of any sub-arch type above.
If you don't have such a system, you should say N here.
config X86_VISWS
bool "SGI 320/540 (Visual Workstation)"
help
The SGI Visual Workstation series is an IA32-based workstation
based on SGI systems chips with some legacy PC hardware attached.
Say Y here to create a kernel to run on the SGI 320 or 540.
A kernel compiled for the Visual Workstation will not run on PCs
and vice versa. See <file:Documentation/sgi-visws.txt> for details.
config X86_GENERICARCH
bool "Generic architecture (Summit, bigsmp, ES7000, default)"
help
This option compiles in the Summit, bigsmp, ES7000, default subarchitectures.
It is intended for a generic binary kernel.
If you want a NUMA kernel, select ACPI. We need SRAT for NUMA.
config X86_ES7000
bool "Support for Unisys ES7000 IA32 series"
depends on SMP
help
Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
supposed to run on an IA32-based Unisys ES7000 system.
Only choose this option if you have such a system, otherwise you
should say N here.
endchoice
config SCHED_NO_NO_OMIT_FRAME_POINTER
bool "Single-depth WCHAN output"
default y
help
Calculate simpler /proc/<PID>/wchan values. If this option
is disabled then wchan values will recurse back to the
caller function. This provides more accurate wchan values,
at the expense of slightly more scheduling overhead.
If in doubt, say "Y".
config PARAVIRT
bool "Paravirtualization support (EXPERIMENTAL)"
depends on EXPERIMENTAL
depends on !(X86_VISWS || X86_VOYAGER)
help
Paravirtualization is a way of running multiple instances of
Linux on the same machine, under a hypervisor. This option
changes the kernel so it can modify itself when it is run
under a hypervisor, improving performance significantly.
However, when run without a hypervisor the kernel is
theoretically slower. If in doubt, say N.
source "arch/x86/xen/Kconfig"
config VMI
bool "VMI Paravirt-ops support"
depends on PARAVIRT
help
VMI provides a paravirtualized interface to the VMware ESX server
(it could be used by other hypervisors in theory too, but is not
at the moment), by linking the kernel to a GPL-ed ROM module
provided by the hypervisor.
config ACPI_SRAT
bool
default y
depends on ACPI && NUMA && (X86_SUMMIT || X86_GENERICARCH)
select ACPI_NUMA
config HAVE_ARCH_PARSE_SRAT
bool
default y
depends on ACPI_SRAT
config X86_SUMMIT_NUMA
bool
default y
depends on NUMA && (X86_SUMMIT || X86_GENERICARCH)
config X86_CYCLONE_TIMER
bool
default y
depends on X86_SUMMIT || X86_GENERICARCH
config ES7000_CLUSTERED_APIC
bool
default y
depends on SMP && X86_ES7000 && MPENTIUMIII
source "arch/i386/Kconfig.cpu"
config HPET_TIMER
bool "HPET Timer Support"
help
This enables the use of the HPET for the kernel's internal timer.
HPET is the next generation timer replacing legacy 8254s.
You can safely choose Y here. However, HPET will only be
activated if the platform and the BIOS support this feature.
Otherwise the 8254 will be used for timing services.
Choose N to continue using the legacy 8254 timer.
config HPET_EMULATE_RTC
bool
depends on HPET_TIMER && RTC=y
default y
config NR_CPUS
int "Maximum number of CPUs (2-255)"
range 2 255
depends on SMP
default "32" if X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000
default "8"
help
This allows you to specify the maximum number of CPUs which this
kernel will support. The maximum supported value is 255 and the
minimum value which makes sense is 2.
This is purely to save memory - each supported CPU adds
approximately eight kilobytes to the kernel image.
config SCHED_SMT
bool "SMT (Hyperthreading) scheduler support"
depends on X86_HT
help
SMT scheduler support improves the CPU scheduler's decision making
when dealing with Intel Pentium 4 chips with HyperThreading at a
cost of slightly increased overhead in some places. If unsure say
N here.
config SCHED_MC
bool "Multi-core scheduler support"
depends on X86_HT
default y
help
Multi-core scheduler support improves the CPU scheduler's decision
making when dealing with multi-core CPU chips at a cost of slightly
increased overhead in some places. If unsure say N here.
source "kernel/Kconfig.preempt"
config X86_UP_APIC
bool "Local APIC support on uniprocessors"
depends on !SMP && !(X86_VISWS || X86_VOYAGER || X86_GENERICARCH)
help
A local APIC (Advanced Programmable Interrupt Controller) is an
integrated interrupt controller in the CPU. If you have a single-CPU
system which has a processor with a local APIC, you can say Y here to
enable and use it. If you say Y here even though your machine doesn't
have a local APIC, then the kernel will still run with no slowdown at
all. The local APIC supports CPU-generated self-interrupts (timer,
performance counters), and the NMI watchdog which detects hard
lockups.
config X86_UP_IOAPIC
bool "IO-APIC support on uniprocessors"
depends on X86_UP_APIC
help
An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
SMP-capable replacement for PC-style interrupt controllers. Most
SMP systems and many recent uniprocessor systems have one.
If you have a single-CPU system with an IO-APIC, you can say Y here
to use it. If you say Y here even though your machine doesn't have
an IO-APIC, then the kernel will still run with no slowdown at all.
config X86_LOCAL_APIC
bool
depends on X86_UP_APIC || ((X86_VISWS || SMP) && !X86_VOYAGER) || X86_GENERICARCH
default y
config X86_IO_APIC
bool
depends on X86_UP_IOAPIC || (SMP && !(X86_VISWS || X86_VOYAGER)) || X86_GENERICARCH
default y
config X86_VISWS_APIC
bool
depends on X86_VISWS
default y
config X86_MCE
bool "Machine Check Exception"
depends on !X86_VOYAGER
---help---
Machine Check Exception support allows the processor to notify the
kernel if it detects a problem (e.g. overheating, component failure).
The action the kernel takes depends on the severity of the problem,
ranging from a warning message on the console, to halting the machine.
Your processor must be a Pentium or newer to support this - check the
flags in /proc/cpuinfo for mce. Note that some older Pentium systems
have a design flaw which leads to false MCE events - hence MCE is
disabled on all P5 processors, unless explicitly enabled with "mce"
as a boot argument. Similarly, if MCE is built in and creates a
problem on some new non-standard machine, you can boot with "nomce"
to disable it. MCE support simply ignores non-MCE processors like
the 386 and 486, so nearly everyone can say Y here.
config X86_MCE_NONFATAL
tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4"
depends on X86_MCE
help
Enabling this feature starts a timer that triggers every 5 seconds which
will look at the machine check registers to see if anything happened.
Non-fatal problems automatically get corrected (but still logged).
Disable this if you don't want to see these messages.
Seeing the messages this option prints out may be indicative of dying hardware,
or out-of-spec (ie, overclocked) hardware.
This option only does something on certain CPUs.
(AMD Athlon/Duron and Intel Pentium 4)
config X86_MCE_P4THERMAL
bool "check for P4 thermal throttling interrupt."
depends on X86_MCE && (X86_UP_APIC || SMP) && !X86_VISWS
help
Enabling this feature will cause a message to be printed when the P4
enters thermal throttling.
config VM86
default y
bool "Enable VM86 support" if EMBEDDED
help
This option is required by programs like DOSEMU to run 16-bit legacy
code on X86 processors. It also may be needed by software like
XFree86 to initialize some video cards via BIOS. Disabling this
option saves about 6k.
config TOSHIBA
tristate "Toshiba Laptop support"
---help---
This adds a driver to safely access the System Management Mode of
the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
not work on models with a Phoenix BIOS. The System Management Mode
is used to set the BIOS and power saving options on Toshiba portables.
For information on utilities to make use of this driver see the
Toshiba Linux utilities web site at:
<http://www.buzzard.org.uk/toshiba/>.
Say Y if you intend to run this kernel on a Toshiba portable.
Say N otherwise.
config I8K
tristate "Dell laptop support"
---help---
This adds a driver to safely access the System Management Mode
of the CPU on the Dell Inspiron 8000. The System Management Mode
is used to read cpu temperature and cooling fan status and to
control the fans on the I8K portables.
This driver has been tested only on the Inspiron 8000 but it may
also work with other Dell laptops. You can force loading on other
models by passing the parameter `force=1' to the module. Use at
your own risk.
For information on utilities to make use of this driver see the
I8K Linux utilities web site at:
<http://people.debian.org/~dz/i8k/>
Say Y if you intend to run this kernel on a Dell Inspiron 8000.
Say N otherwise.
config X86_REBOOTFIXUPS
bool "Enable X86 board specific fixups for reboot"
depends on X86
default n
---help---
This enables chipset and/or board specific fixups to be done
in order to get reboot to work correctly. This is only needed on
some combinations of hardware and BIOS. The symptom, for which
this config is intended, is when reboot ends with a stalled/hung
system.
Currently, the only fixup is for the Geode machines using
CS5530A and CS5536 chipsets.
Say Y if you want to enable the fixup. Currently, it's safe to
enable this option even if you don't need it.
Say N otherwise.
config MICROCODE
tristate "/dev/cpu/microcode - Intel IA32 CPU microcode support"
select FW_LOADER
---help---
If you say Y here, you will be able to update the microcode on
Intel processors in the IA32 family, e.g. Pentium Pro, Pentium II,
Pentium III, Pentium 4, Xeon etc. You will obviously need the
actual microcode binary data itself which is not shipped with the
Linux kernel.
For latest news and information on obtaining all the required
ingredients for this driver, check:
<http://www.urbanmyth.org/microcode/>.
To compile this driver as a module, choose M here: the
module will be called microcode.
config MICROCODE_OLD_INTERFACE
bool
depends on MICROCODE
default y
config X86_MSR
tristate "/dev/cpu/*/msr - Model-specific register support"
help
This device gives privileged processes access to the x86
Model-Specific Registers (MSRs). It is a character device with
major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
MSR accesses are directed to a specific CPU on multi-processor
systems.
config X86_CPUID
tristate "/dev/cpu/*/cpuid - CPU information support"
help
This device gives processes access to the x86 CPUID instruction to
be executed on a specific processor. It is a character device
with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
/dev/cpu/31/cpuid.
source "drivers/firmware/Kconfig"
choice
prompt "High Memory Support"
default HIGHMEM4G if !X86_NUMAQ
default HIGHMEM64G if X86_NUMAQ
config NOHIGHMEM
bool "off"
depends on !X86_NUMAQ
---help---
Linux can use up to 64 Gigabytes of physical memory on x86 systems.
However, the address space of 32-bit x86 processors is only 4
Gigabytes large. That means that, if you have a large amount of
physical memory, not all of it can be "permanently mapped" by the
kernel. The physical memory that's not permanently mapped is called
"high memory".
If you are compiling a kernel which will never run on a machine with
more than 1 Gigabyte total physical RAM, answer "off" here (default
choice and suitable for most users). This will result in a "3GB/1GB"
split: 3GB are mapped so that each process sees a 3GB virtual memory
space and the remaining part of the 4GB virtual memory space is used
by the kernel to permanently map as much physical memory as
possible.
If the machine has between 1 and 4 Gigabytes physical RAM, then
answer "4GB" here.
If more than 4 Gigabytes is used then answer "64GB" here. This
selection turns Intel PAE (Physical Address Extension) mode on.
PAE implements 3-level paging on IA32 processors. PAE is fully
supported by Linux, PAE mode is implemented on all recent Intel
processors (Pentium Pro and better). NOTE: If you say "64GB" here,
then the kernel will not boot on CPUs that don't support PAE!
The actual amount of total physical memory will either be
auto detected or can be forced by using a kernel command line option
such as "mem=256M". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If unsure, say "off".
config HIGHMEM4G
bool "4GB"
depends on !X86_NUMAQ
help
Select this if you have a 32-bit processor and between 1 and 4
gigabytes of physical RAM.
config HIGHMEM64G
bool "64GB"
depends on !M386 && !M486
select X86_PAE
help
Select this if you have a 32-bit processor and more than 4
gigabytes of physical RAM.
endchoice
choice
depends on EXPERIMENTAL
prompt "Memory split" if EMBEDDED
default VMSPLIT_3G
help
Select the desired split between kernel and user memory.
If the address range available to the kernel is less than the
physical memory installed, the remaining memory will be available
as "high memory". Accessing high memory is a little more costly
than low memory, as it needs to be mapped into the kernel first.
Note that increasing the kernel address space limits the range
available to user programs, making the address space there
tighter. Selecting anything other than the default 3G/1G split
will also likely make your kernel incompatible with binary-only
kernel modules.
If you are not absolutely sure what you are doing, leave this
option alone!
config VMSPLIT_3G
bool "3G/1G user/kernel split"
config VMSPLIT_3G_OPT
depends on !X86_PAE
bool "3G/1G user/kernel split (for full 1G low memory)"
config VMSPLIT_2G
bool "2G/2G user/kernel split"
config VMSPLIT_2G_OPT
depends on !X86_PAE
bool "2G/2G user/kernel split (for full 2G low memory)"
config VMSPLIT_1G
bool "1G/3G user/kernel split"
endchoice
config PAGE_OFFSET
hex
default 0xB0000000 if VMSPLIT_3G_OPT
default 0x80000000 if VMSPLIT_2G
default 0x78000000 if VMSPLIT_2G_OPT
default 0x40000000 if VMSPLIT_1G
default 0xC0000000
config HIGHMEM
bool
depends on HIGHMEM64G || HIGHMEM4G
default y
config X86_PAE
bool "PAE (Physical Address Extension) Support"
default n
depends on !HIGHMEM4G
select RESOURCES_64BIT
help
PAE is required for NX support, and furthermore enables
larger swapspace support for non-overcommit purposes. It
has the cost of more pagetable lookup overhead, and also
consumes more pagetable space per process.
# Common NUMA Features
config NUMA
bool "Numa Memory Allocation and Scheduler Support (EXPERIMENTAL)"
depends on SMP && HIGHMEM64G && (X86_NUMAQ || (X86_SUMMIT || X86_GENERICARCH) && ACPI) && EXPERIMENTAL
default n if X86_PC
default y if (X86_NUMAQ || X86_SUMMIT)
help
NUMA support for i386. This is currently high experimental
and should be only used for kernel development. It might also
cause boot failures.
comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
depends on X86_SUMMIT && (!HIGHMEM64G || !ACPI)
config NODES_SHIFT
int
default "4" if X86_NUMAQ
default "3"
depends on NEED_MULTIPLE_NODES
config HAVE_ARCH_BOOTMEM_NODE
bool
depends on NUMA
default y
config ARCH_HAVE_MEMORY_PRESENT
bool
depends on DISCONTIGMEM
default y
config NEED_NODE_MEMMAP_SIZE
bool
depends on DISCONTIGMEM || SPARSEMEM
default y
config HAVE_ARCH_ALLOC_REMAP
bool
depends on NUMA
default y
config ARCH_FLATMEM_ENABLE
def_bool y
depends on (ARCH_SELECT_MEMORY_MODEL && X86_PC)
config ARCH_DISCONTIGMEM_ENABLE
def_bool y
depends on NUMA
config ARCH_DISCONTIGMEM_DEFAULT
def_bool y
depends on NUMA
config ARCH_SPARSEMEM_ENABLE
def_bool y
depends on (NUMA || (X86_PC && EXPERIMENTAL))
select SPARSEMEM_STATIC
config ARCH_SELECT_MEMORY_MODEL
def_bool y
depends on ARCH_SPARSEMEM_ENABLE
config ARCH_POPULATES_NODE_MAP
def_bool y
source "mm/Kconfig"
config HIGHPTE
bool "Allocate 3rd-level pagetables from highmem"
depends on HIGHMEM4G || HIGHMEM64G
help
The VM uses one page table entry for each page of physical memory.
For systems with a lot of RAM, this can be wasteful of precious
low memory. Setting this option will put user-space page table
entries in high memory.
config MATH_EMULATION
bool "Math emulation"
---help---
Linux can emulate a math coprocessor (used for floating point
operations) if you don't have one. 486DX and Pentium processors have
a math coprocessor built in, 486SX and 386 do not, unless you added
a 487DX or 387, respectively. (The messages during boot time can
give you some hints here ["man dmesg"].) Everyone needs either a
coprocessor or this emulation.
If you don't have a math coprocessor, you need to say Y here; if you
say Y here even though you have a coprocessor, the coprocessor will
be used nevertheless. (This behavior can be changed with the kernel
command line option "no387", which comes handy if your coprocessor
is broken. Try "man bootparam" or see the documentation of your boot
loader (lilo or loadlin) about how to pass options to the kernel at
boot time.) This means that it is a good idea to say Y here if you
intend to use this kernel on different machines.
More information about the internals of the Linux math coprocessor
emulation can be found in <file:arch/x86/math-emu/README>.
If you are not sure, say Y; apart from resulting in a 66 KB bigger
kernel, it won't hurt.
config MTRR
bool "MTRR (Memory Type Range Register) support"
---help---
On Intel P6 family processors (Pentium Pro, Pentium II and later)
the Memory Type Range Registers (MTRRs) may be used to control
processor access to memory ranges. This is most useful if you have
a video (VGA) card on a PCI or AGP bus. Enabling write-combining
allows bus write transfers to be combined into a larger transfer
before bursting over the PCI/AGP bus. This can increase performance
of image write operations 2.5 times or more. Saying Y here creates a
/proc/mtrr file which may be used to manipulate your processor's
MTRRs. Typically the X server should use this.
This code has a reasonably generic interface so that similar
control registers on other processors can be easily supported
as well:
The Cyrix 6x86, 6x86MX and M II processors have Address Range
Registers (ARRs) which provide a similar functionality to MTRRs. For
these, the ARRs are used to emulate the MTRRs.
The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
write-combining. All of these processors are supported by this code
and it makes sense to say Y here if you have one of them.
Saying Y here also fixes a problem with buggy SMP BIOSes which only
set the MTRRs for the boot CPU and not for the secondary CPUs. This
can lead to all sorts of problems, so it's good to say Y here.
You can safely say Y even if your machine doesn't have MTRRs, you'll
just add about 9 KB to your kernel.
See <file:Documentation/mtrr.txt> for more information.
config EFI
bool "Boot from EFI support"
depends on ACPI
default n
---help---
This enables the kernel to boot on EFI platforms using
system configuration information passed to it from the firmware.
This also enables the kernel to use any EFI runtime services that are
available (such as the EFI variable services).
This option is only useful on systems that have EFI firmware
and will result in a kernel image that is ~8k larger. In addition,
you must use the latest ELILO loader available at
<http://elilo.sourceforge.net> in order to take advantage of
kernel initialization using EFI information (neither GRUB nor LILO know
anything about EFI). However, even with this option, the resultant
kernel should continue to boot on existing non-EFI platforms.
config IRQBALANCE
bool "Enable kernel irq balancing"
depends on SMP && X86_IO_APIC
default y
help
The default yes will allow the kernel to do irq load balancing.
Saying no will keep the kernel from doing irq load balancing.
# turning this on wastes a bunch of space.
# Summit needs it only when NUMA is on
config BOOT_IOREMAP
bool
depends on (((X86_SUMMIT || X86_GENERICARCH) && NUMA) || (X86 && EFI))
default y
config SECCOMP
bool "Enable seccomp to safely compute untrusted bytecode"
depends on PROC_FS
default y
help
This kernel feature is useful for number crunching applications
that may need to compute untrusted bytecode during their
execution. By using pipes or other transports made available to
the process as file descriptors supporting the read/write
syscalls, it's possible to isolate those applications in
their own address space using seccomp. Once seccomp is
enabled via /proc/<pid>/seccomp, it cannot be disabled
and the task is only allowed to execute a few safe syscalls
defined by each seccomp mode.
If unsure, say Y. Only embedded should say N here.
source kernel/Kconfig.hz
config KEXEC
bool "kexec system call"
help
kexec is a system call that implements the ability to shutdown your
current kernel, and to start another kernel. It is like a reboot
but it is independent of the system firmware. And like a reboot
you can start any kernel with it, not just Linux.
The name comes from the similarity to the exec system call.
It is an ongoing process to be certain the hardware in a machine
is properly shutdown, so do not be surprised if this code does not
initially work for you. It may help to enable device hotplugging
support. As of this writing the exact hardware interface is
strongly in flux, so no good recommendation can be made.
config CRASH_DUMP
bool "kernel crash dumps (EXPERIMENTAL)"
depends on EXPERIMENTAL
depends on HIGHMEM
help
Generate crash dump after being started by kexec.
This should be normally only set in special crash dump kernels
which are loaded in the main kernel with kexec-tools into
a specially reserved region and then later executed after
a crash by kdump/kexec. The crash dump kernel must be compiled
to a memory address not used by the main kernel or BIOS using
PHYSICAL_START, or it must be built as a relocatable image
(CONFIG_RELOCATABLE=y).
For more details see Documentation/kdump/kdump.txt
config PHYSICAL_START
hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)
default "0x1000000" if X86_NUMAQ
default "0x100000"
help
This gives the physical address where the kernel is loaded.
If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
bzImage will decompress itself to above physical address and
run from there. Otherwise, bzImage will run from the address where
it has been loaded by the boot loader and will ignore above physical
address.
In normal kdump cases one does not have to set/change this option
as now bzImage can be compiled as a completely relocatable image
(CONFIG_RELOCATABLE=y) and be used to load and run from a different
address. This option is mainly useful for the folks who don't want
to use a bzImage for capturing the crash dump and want to use a
vmlinux instead. vmlinux is not relocatable hence a kernel needs
to be specifically compiled to run from a specific memory area
(normally a reserved region) and this option comes handy.
So if you are using bzImage for capturing the crash dump, leave
the value here unchanged to 0x100000 and set CONFIG_RELOCATABLE=y.
Otherwise if you plan to use vmlinux for capturing the crash dump
change this value to start of the reserved region (Typically 16MB
0x1000000). In other words, it can be set based on the "X" value as
specified in the "crashkernel=YM@XM" command line boot parameter
passed to the panic-ed kernel. Typically this parameter is set as
crashkernel=64M@16M. Please take a look at
Documentation/kdump/kdump.txt for more details about crash dumps.
Usage of bzImage for capturing the crash dump is recommended as
one does not have to build two kernels. Same kernel can be used
as production kernel and capture kernel. Above option should have
gone away after relocatable bzImage support is introduced. But it
is present because there are users out there who continue to use
vmlinux for dump capture. This option should go away down the
line.
Don't change this unless you know what you are doing.
config RELOCATABLE
bool "Build a relocatable kernel (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This builds a kernel image that retains relocation information
so it can be loaded someplace besides the default 1MB.
The relocations tend to make the kernel binary about 10% larger,
but are discarded at runtime.
One use is for the kexec on panic case where the recovery kernel
must live at a different physical address than the primary
kernel.
config PHYSICAL_ALIGN
hex "Alignment value to which kernel should be aligned"
default "0x100000"
range 0x2000 0x400000
help
This value puts the alignment restrictions on physical address
where kernel is loaded and run from. Kernel is compiled for an
address which meets above alignment restriction.
If bootloader loads the kernel at a non-aligned address and
CONFIG_RELOCATABLE is set, kernel will move itself to nearest
address aligned to above value and run from there.
If bootloader loads the kernel at a non-aligned address and
CONFIG_RELOCATABLE is not set, kernel will ignore the run time
load address and decompress itself to the address it has been
compiled for and run from there. The address for which kernel is
compiled already meets above alignment restrictions. Hence the
end result is that kernel runs from a physical address meeting
above alignment restrictions.
Don't change this unless you know what you are doing.
config HOTPLUG_CPU
bool "Support for suspend on SMP and hot-pluggable CPUs (EXPERIMENTAL)"
depends on SMP && HOTPLUG && EXPERIMENTAL && !X86_VOYAGER
---help---
Say Y here to experiment with turning CPUs off and on, and to
enable suspend on SMP systems. CPUs can be controlled through
/sys/devices/system/cpu.
config COMPAT_VDSO
bool "Compat VDSO support"
default y
help
Map the VDSO to the predictable old-style address too.
---help---
Say N here if you are running a sufficiently recent glibc
version (2.3.3 or later), to remove the high-mapped
VDSO mapping and to exclusively use the randomized VDSO.
If unsure, say Y.
endmenu
config ARCH_ENABLE_MEMORY_HOTPLUG
def_bool y
depends on HIGHMEM
menu "Power management options (ACPI, APM)"
depends on !X86_VOYAGER
source kernel/power/Kconfig
source "drivers/acpi/Kconfig"
menuconfig APM
tristate "APM (Advanced Power Management) BIOS support"
depends on PM_SLEEP && !X86_VISWS
---help---
APM is a BIOS specification for saving power using several different
techniques. This is mostly useful for battery powered laptops with
APM compliant BIOSes. If you say Y here, the system time will be
reset after a RESUME operation, the /proc/apm device will provide
battery status information, and user-space programs will receive
notification of APM "events" (e.g. battery status change).
If you select "Y" here, you can disable actual use of the APM
BIOS by passing the "apm=off" option to the kernel at boot time.
Note that the APM support is almost completely disabled for
machines with more than one CPU.
In order to use APM, you will need supporting software. For location
and more information, read <file:Documentation/pm.txt> and the
Battery Powered Linux mini-HOWTO, available from
<http://www.tldp.org/docs.html#howto>.
This driver does not spin down disk drives (see the hdparm(8)
manpage ("man 8 hdparm") for that), and it doesn't turn off
VESA-compliant "green" monitors.
This driver does not support the TI 4000M TravelMate and the ACER
486/DX4/75 because they don't have compliant BIOSes. Many "green"
desktop machines also don't have compliant BIOSes, and this driver
may cause those machines to panic during the boot phase.
Generally, if you don't have a battery in your machine, there isn't
much point in using this driver and you should say N. If you get
random kernel OOPSes or reboots that don't seem to be related to
anything, try disabling/enabling this option (or disabling/enabling
APM in your BIOS).
Some other things you should try when experiencing seemingly random,
"weird" problems:
1) make sure that you have enough swap space and that it is
enabled.
2) pass the "no-hlt" option to the kernel
3) switch on floating point emulation in the kernel and pass
the "no387" option to the kernel
4) pass the "floppy=nodma" option to the kernel
5) pass the "mem=4M" option to the kernel (thereby disabling
all but the first 4 MB of RAM)
6) make sure that the CPU is not over clocked.
7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
8) disable the cache from your BIOS settings
9) install a fan for the video card or exchange video RAM
10) install a better fan for the CPU
11) exchange RAM chips
12) exchange the motherboard.
To compile this driver as a module, choose M here: the
module will be called apm.
if APM
config APM_IGNORE_USER_SUSPEND
bool "Ignore USER SUSPEND"
help
This option will ignore USER SUSPEND requests. On machines with a
compliant APM BIOS, you want to say N. However, on the NEC Versa M
series notebooks, it is necessary to say Y because of a BIOS bug.
config APM_DO_ENABLE
bool "Enable PM at boot time"
---help---
Enable APM features at boot time. From page 36 of the APM BIOS
specification: "When disabled, the APM BIOS does not automatically
power manage devices, enter the Standby State, enter the Suspend
State, or take power saving steps in response to CPU Idle calls."
This driver will make CPU Idle calls when Linux is idle (unless this
feature is turned off -- see "Do CPU IDLE calls", below). This
should always save battery power, but more complicated APM features
will be dependent on your BIOS implementation. You may need to turn
this option off if your computer hangs at boot time when using APM
support, or if it beeps continuously instead of suspending. Turn
this off if you have a NEC UltraLite Versa 33/C or a Toshiba
T400CDT. This is off by default since most machines do fine without
this feature.
config APM_CPU_IDLE
bool "Make CPU Idle calls when idle"
help
Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
On some machines, this can activate improved power savings, such as
a slowed CPU clock rate, when the machine is idle. These idle calls
are made after the idle loop has run for some length of time (e.g.,
333 mS). On some machines, this will cause a hang at boot time or
whenever the CPU becomes idle. (On machines with more than one CPU,
this option does nothing.)
config APM_DISPLAY_BLANK
bool "Enable console blanking using APM"
help
Enable console blanking using the APM. Some laptops can use this to
turn off the LCD backlight when the screen blanker of the Linux
virtual console blanks the screen. Note that this is only used by
the virtual console screen blanker, and won't turn off the backlight
when using the X Window system. This also doesn't have anything to
do with your VESA-compliant power-saving monitor. Further, this
option doesn't work for all laptops -- it might not turn off your
backlight at all, or it might print a lot of errors to the console,
especially if you are using gpm.
config APM_ALLOW_INTS
bool "Allow interrupts during APM BIOS calls"
help
Normally we disable external interrupts while we are making calls to
the APM BIOS as a measure to lessen the effects of a badly behaving
BIOS implementation. The BIOS should reenable interrupts if it
needs to. Unfortunately, some BIOSes do not -- especially those in
many of the newer IBM Thinkpads. If you experience hangs when you
suspend, try setting this to Y. Otherwise, say N.
config APM_REAL_MODE_POWER_OFF
bool "Use real mode APM BIOS call to power off"
help
Use real mode APM BIOS calls to switch off the computer. This is
a work-around for a number of buggy BIOSes. Switch this option on if
your computer crashes instead of powering off properly.
endif # APM
source "arch/x86/kernel/cpu/cpufreq/Kconfig_32"
endmenu
menu "Bus options (PCI, PCMCIA, EISA, MCA, ISA)"
config PCI
bool "PCI support" if !X86_VISWS
depends on !X86_VOYAGER
default y if X86_VISWS
select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.tldp.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
choice
prompt "PCI access mode"
depends on PCI && !X86_VISWS
default PCI_GOANY
---help---
On PCI systems, the BIOS can be used to detect the PCI devices and
determine their configuration. However, some old PCI motherboards
have BIOS bugs and may crash if this is done. Also, some embedded
PCI-based systems don't have any BIOS at all. Linux can also try to
detect the PCI hardware directly without using the BIOS.
With this option, you can specify how Linux should detect the
PCI devices. If you choose "BIOS", the BIOS will be used,
if you choose "Direct", the BIOS won't be used, and if you
choose "MMConfig", then PCI Express MMCONFIG will be used.
If you choose "Any", the kernel will try MMCONFIG, then the
direct access method and falls back to the BIOS if that doesn't
work. If unsure, go with the default, which is "Any".
config PCI_GOBIOS
bool "BIOS"
config PCI_GOMMCONFIG
bool "MMConfig"
config PCI_GODIRECT
bool "Direct"
config PCI_GOANY
bool "Any"
endchoice
config PCI_BIOS
bool
depends on !X86_VISWS && PCI && (PCI_GOBIOS || PCI_GOANY)
default y
config PCI_DIRECT
bool
depends on PCI && ((PCI_GODIRECT || PCI_GOANY) || X86_VISWS)
default y
config PCI_MMCONFIG
bool
depends on PCI && ACPI && (PCI_GOMMCONFIG || PCI_GOANY)
default y
config PCI_DOMAINS
bool
depends on PCI
default y
source "drivers/pci/pcie/Kconfig"
source "drivers/pci/Kconfig"
config ISA_DMA_API
bool
default y
config ISA
bool "ISA support"
depends on !(X86_VOYAGER || X86_VISWS)
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config EISA
bool "EISA support"
depends on ISA
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
source "drivers/eisa/Kconfig"
config MCA
bool "MCA support" if !(X86_VISWS || X86_VOYAGER)
default y if X86_VOYAGER
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
source "drivers/mca/Kconfig"
config SCx200
tristate "NatSemi SCx200 support"
depends on !X86_VOYAGER
help
This provides basic support for National Semiconductor's
(now AMD's) Geode processors. The driver probes for the
PCI-IDs of several on-chip devices, so its a good dependency
for other scx200_* drivers.
If compiled as a module, the driver is named scx200.
config SCx200HR_TIMER
tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
depends on SCx200 && GENERIC_TIME
default y
help
This driver provides a clocksource built upon the on-chip
27MHz high-resolution timer. Its also a workaround for
NSC Geode SC-1100's buggy TSC, which loses time when the
processor goes idle (as is done by the scheduler). The
other workaround is idle=poll boot option.
config GEODE_MFGPT_TIMER
bool "Geode Multi-Function General Purpose Timer (MFGPT) events"
depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS
default y
help
This driver provides a clock event source based on the MFGPT
timer(s) in the CS5535 and CS5536 companion chip for the geode.
MFGPTs have a better resolution and max interval than the
generic PIT, and are suitable for use as high-res timers.
config K8_NB
def_bool y
depends on AGP_AMD64
source "drivers/pcmcia/Kconfig"
source "drivers/pci/hotplug/Kconfig"
endmenu
menu "Executable file formats"
source "fs/Kconfig.binfmt"
endmenu
source "net/Kconfig"
source "drivers/Kconfig"
source "fs/Kconfig"
menuconfig INSTRUMENTATION
bool "Instrumentation Support"
default y
---help---
Say Y here to get to see options related to performance measurement,
debugging, and testing. This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and disabled.
if INSTRUMENTATION
source "arch/x86/oprofile/Kconfig"
config KPROBES
bool "Kprobes"
depends on KALLSYMS && MODULES
help
Kprobes allows you to trap at almost any kernel address and
execute a callback function. register_kprobe() establishes
a probepoint and specifies the callback. Kprobes is useful
for kernel debugging, non-intrusive instrumentation and testing.
If in doubt, say "N".
endif # INSTRUMENTATION
source "arch/i386/Kconfig.debug"
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
#
# Use the generic interrupt handling code in kernel/irq/:
#
config GENERIC_HARDIRQS
bool
default y
config GENERIC_IRQ_PROBE
bool
default y
config GENERIC_PENDING_IRQ
bool
depends on GENERIC_HARDIRQS && SMP
default y
config X86_SMP
bool
depends on SMP && !X86_VOYAGER
default y
config X86_HT
bool
depends on SMP && !(X86_VISWS || X86_VOYAGER)
default y
config X86_BIOS_REBOOT
bool
depends on !(X86_VISWS || X86_VOYAGER)
default y
config X86_TRAMPOLINE
bool
depends on X86_SMP || (X86_VOYAGER && SMP)
default y
config KTIME_SCALAR
bool
default y
|