/************************************************************************** * * Copyright (c) 2006-2007 Tungsten Graphics, Inc., Cedar Park, TX., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellström */ #include "drmP.h" #if defined( CONFIG_X86 ) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24)) static void drm_clflush_page(struct page *page) { uint8_t *page_virtual; unsigned int i; if (unlikely(page == NULL)) return; page_virtual = kmap_atomic(page, KM_USER0); for (i=0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size) clflush(page_virtual + i); kunmap_atomic(page_virtual, KM_USER0); } static void drm_ttm_cache_flush_clflush(struct page *pages[], unsigned long num_pages) { unsigned long i; mb(); for (i=0; i < num_pages; ++i) drm_clflush_page(*pages++); mb(); } #endif static void drm_ttm_ipi_handler(void *null) { flush_agp_cache(); } void drm_ttm_cache_flush(struct page *pages[], unsigned long num_pages) { #if defined( CONFIG_X86 ) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24)) if (cpu_has_clflush) { drm_ttm_cache_flush_clflush(pages, num_pages); return; } #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27)) if (on_each_cpu(drm_ttm_ipi_handler, NULL, 1)) #else if (on_each_cpu(drm_ttm_ipi_handler, NULL, 1, 1) != 0) #endif DRM_ERROR("Timed out waiting for drm cache flush.\n"); } EXPORT_SYMBOL(drm_ttm_cache_flush); /** * Allocates storage for pointers to the pages that back the ttm. * * Uses kmalloc if possible. Otherwise falls back to vmalloc. */ static void drm_ttm_alloc_page_directory(struct drm_ttm *ttm) { unsigned long size = ttm->num_pages * sizeof(*ttm->pages); ttm->pages = NULL; if (drm_alloc_memctl(size)) return; if (size <= PAGE_SIZE) ttm->pages = drm_calloc(1, size, DRM_MEM_TTM); if (!ttm->pages) { ttm->pages = vmalloc_user(size); if (ttm->pages) ttm->page_flags |= DRM_TTM_PAGEDIR_VMALLOC; } if (!ttm->pages) drm_free_memctl(size); } static void drm_ttm_free_page_directory(struct drm_ttm *ttm) { unsigned long size = ttm->num_pages * sizeof(*ttm->pages); if (ttm->page_flags & DRM_TTM_PAGEDIR_VMALLOC) { vfree(ttm->pages); ttm->page_flags &= ~DRM_TTM_PAGEDIR_VMALLOC; } else { drm_free(ttm->pages, size, DRM_MEM_TTM); } drm_free_memctl(size); ttm->pages = NULL; } static struct page *drm_ttm_alloc_page(void) { struct page *page; if (drm_alloc_memctl(PAGE_SIZE)) return NULL; page = alloc_page(GFP_KERNEL | __GFP_ZERO | GFP_DMA32); if (!page) { drm_free_memctl(PAGE_SIZE); return NULL; } #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)) SetPageReserved(page); #endif return page; } /* * Change caching policy for the linear kernel map * for range of pages in a ttm. */ static int drm_ttm_set_caching(struct drm_ttm *ttm, int noncached) { int i; struct page **cur_page; int do_tlbflush = 0; if ((ttm->page_flags & DRM_TTM_PAGE_UNCACHED) == noncached) return 0; if (noncached) drm_ttm_cache_flush(ttm->pages, ttm->num_pages); for (i = 0; i < ttm->num_pages; ++i) { cur_page = ttm->pages + i; if (*cur_page) { if (!PageHighMem(*cur_page)) { if (noncached) { map_page_into_agp(*cur_page); } else { unmap_page_from_agp(*cur_page); } do_tlbflush = 1; } } } if (do_tlbflush) flush_agp_mappings(); DRM_FLAG_MASKED(ttm->page_flags, noncached, DRM_TTM_PAGE_UNCACHED); return 0; } static void drm_ttm_free_user_pages(struct drm_ttm *ttm) { int write; int dirty; struct page *page; int i; BUG_ON(!(ttm->page_flags & DRM_TTM_PAGE_USER)); write = ((ttm->page_flags & DRM_TTM_PAGE_WRITE) != 0); dirty = ((ttm->page_flags & DRM_TTM_PAGE_USER_DIRTY) != 0); for (i = 0; i < ttm->num_pages; ++i) { page = ttm->pages[i]; if (page == NULL) continue; if (page == ttm->dummy_read_page) { BUG_ON(write); continue; } if (write && dirty && !PageReserved(page)) set_page_dirty_lock(page); ttm->pages[i] = NULL; put_page(page); } } static void drm_ttm_free_alloced_pages(struct drm_ttm *ttm) { int i; struct drm_buffer_manager *bm = &ttm->dev->bm; struct page **cur_page; for (i = 0; i < ttm->num_pages; ++i) { cur_page = ttm->pages + i; if (*cur_page) { #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)) ClearPageReserved(*cur_page); #endif if (page_count(*cur_page) != 1) DRM_ERROR("Erroneous page count. Leaking pages.\n"); if (page_mapped(*cur_page)) DRM_ERROR("Erroneous map count. Leaking page mappings.\n"); __free_page(*cur_page); drm_free_memctl(PAGE_SIZE); --bm->cur_pages; } } } /* * Free all resources associated with a ttm. */ int drm_ttm_destroy(struct drm_ttm *ttm) { struct drm_ttm_backend *be; if (!ttm) return 0; be = ttm->be; if (be) { be->func->destroy(be); ttm->be = NULL; } if (ttm->pages) { if (ttm->page_flags & DRM_TTM_PAGE_UNCACHED) drm_ttm_set_caching(ttm, 0); if (ttm->page_flags & DRM_TTM_PAGE_USER) drm_ttm_free_user_pages(ttm); else drm_ttm_free_alloced_pages(ttm); drm_ttm_free_page_directory(ttm); } drm_ctl_free(ttm, sizeof(*ttm), DRM_MEM_TTM); return 0; } struct page *drm_ttm_get_page(struct drm_ttm *ttm, int index) { struct page *p; struct drm_buffer_manager *bm = &ttm->dev->bm; while(NULL == (p = ttm->pages[index])) { p = drm_ttm_alloc_page(); if (!p) return NULL; if (PageHighMem(p)) ttm->pages[--ttm->first_himem_page] = p; else ttm->pages[++ttm->last_lomem_page] = p; ++bm->cur_pages; } return p; } EXPORT_SYMBOL(drm_ttm_get_page); /** * drm_ttm_set_user: * * @ttm: the ttm to map pages to. This must always be * a freshly created ttm. * * @tsk: a pointer to the address space from which to map * pages. * * @write: a boolean indicating that write access is desired * * start: the starting address * * Map a range of user addresses to a new ttm object. This * provides access to user memory from the graphics device. */ int drm_ttm_set_user(struct drm_ttm *ttm, struct task_struct *tsk, unsigned long start, unsigned long num_pages) { struct mm_struct *mm = tsk->mm; int ret; int write = (ttm->page_flags & DRM_TTM_PAGE_WRITE) != 0; BUG_ON(num_pages != ttm->num_pages); BUG_ON((ttm->page_flags & DRM_TTM_PAGE_USER) == 0); down_read(&mm->mmap_sem); ret = get_user_pages(tsk, mm, start, num_pages, write, 0, ttm->pages, NULL); up_read(&mm->mmap_sem); if (ret != num_pages && write) { drm_ttm_free_user_pages(ttm); return -ENOMEM; } return 0; } /** * drm_ttm_populate: * * @ttm: the object to allocate pages for * * Allocate pages for all unset page entries, then * call the backend to create the hardware mappings */ int drm_ttm_populate(struct drm_ttm *ttm) { struct page *page; unsigned long i; struct drm_ttm_backend *be; if (ttm->state != ttm_unpopulated) return 0; be = ttm->be; for (i = 0; i < ttm->num_pages; ++i) { page = drm_ttm_get_page(ttm, i); if (!page) return -ENOMEM; } be->func->populate(be, ttm->num_pages, ttm->pages, ttm->dummy_read_page); ttm->state = ttm_unbound; return 0; } /** * drm_ttm_create: * * @dev: the drm_device * * @size: The size (in bytes) of the desired object * * @page_flags: various DRM_TTM_PAGE_* flags. See drm_object.h. * * Allocate and initialize a ttm, leaving it unpopulated at this time */ struct drm_ttm *drm_ttm_create(struct drm_device *dev, unsigned long size, uint32_t page_flags, struct page *dummy_read_page) { struct drm_bo_driver *bo_driver = dev->driver->bo_driver; struct drm_ttm *ttm; if (!bo_driver) return NULL; ttm = drm_ctl_calloc(1, sizeof(*ttm), DRM_MEM_TTM); if (!ttm) return NULL; ttm->dev = dev; atomic_set(&ttm->vma_count, 0); ttm->destroy = 0; ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; ttm->first_himem_page = ttm->num_pages; ttm->last_lomem_page = -1; ttm->page_flags = page_flags; ttm->dummy_read_page = dummy_read_page; /* * Account also for AGP module memory usage. */ drm_ttm_alloc_page_directory(ttm); if (!ttm->pages) { drm_ttm_destroy(ttm); DRM_ERROR("Failed allocating page table\n"); return NULL; } ttm->be = bo_driver->create_ttm_backend_entry(dev); if (!ttm->be) { drm_ttm_destroy(ttm); DRM_ERROR("Failed creating ttm backend entry\n"); return NULL; } ttm->state = ttm_unpopulated; return ttm; } /** * drm_ttm_evict: * * @ttm: the object to be unbound from the aperture. * * Transition a ttm from bound to evicted, where it * isn't present in the aperture, but various caches may * not be consistent. */ void drm_ttm_evict(struct drm_ttm *ttm) { struct drm_ttm_backend *be = ttm->be; int ret; if (ttm->state == ttm_bound) { ret = be->func->unbind(be); BUG_ON(ret); } ttm->state = ttm_evicted; } /** * drm_ttm_fixup_caching: * * @ttm: the object to set unbound * * XXX this function is misnamed. Transition a ttm from evicted to * unbound, flushing caches as appropriate. */ void drm_ttm_fixup_caching(struct drm_ttm *ttm) { if (ttm->state == ttm_evicted) { struct drm_ttm_backend *be = ttm->be; if (be->func->needs_ub_cache_adjust(be)) drm_ttm_set_caching(ttm, 0); ttm->state = ttm_unbound; } } /** * drm_ttm_unbind: * * @ttm: the object to unbind from the graphics device * * Unbind an object from the aperture. This removes the mappings * from the graphics device and flushes caches if necessary. */ void drm_ttm_unbind(struct drm_ttm *ttm) { if (ttm->state == ttm_bound) drm_ttm_evict(ttm); drm_ttm_fixup_caching(ttm); } /** * drm_ttm_bind: * * @ttm: the ttm object to bind to the graphics device * * @bo_mem: the aperture memory region which will hold the object * * Bind a ttm object to the aperture. This ensures that the necessary * pages are allocated, flushes CPU caches as needed and marks the * ttm as DRM_TTM_PAGE_USER_DIRTY to indicate that it may have been * modified by the GPU */ int drm_ttm_bind(struct drm_ttm *ttm, struct drm_bo_mem_reg *bo_mem) { struct drm_bo_driver *bo_driver = ttm->dev->driver->bo_driver; int ret = 0; struct drm_ttm_backend *be; if (!ttm) return -EINVAL; if (ttm->state == ttm_bound) return 0; be = ttm->be; ret = drm_ttm_populate(ttm); if (ret) return ret; if (ttm->state == ttm_unbound && !(bo_mem->flags & DRM_BO_FLAG_CACHED)) drm_ttm_set_caching(ttm, DRM_TTM_PAGE_UNCACHED); else if ((bo_mem->flags & DRM_BO_FLAG_CACHED_MAPPED) && bo_driver->ttm_cache_flush) bo_driver->ttm_cache_flush(ttm); ret = be->func->bind(be, bo_mem); if (ret) { ttm->state = ttm_evicted; DRM_ERROR("Couldn't bind backend.\n"); return ret; } ttm->state = ttm_bound; if (ttm->page_flags & DRM_TTM_PAGE_USER) ttm->page_flags |= DRM_TTM_PAGE_USER_DIRTY; return 0; } EXPORT_SYMBOL(drm_ttm_bind);