/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * Copyright 2008 VMware, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * Texture sampling * * Authors: * Brian Paul * Keith Whitwell */ #include "sp_context.h" #include "sp_quad.h" #include "sp_surface.h" #include "sp_texture.h" #include "sp_tex_sample.h" #include "sp_tile_cache.h" #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_shader_tokens.h" #include "util/u_math.h" #include "util/u_memory.h" /* * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes * see 1-pixel bands of improperly weighted linear-filtered textures. * The tests/texwrap.c demo is a good test. * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). */ #define FRAC(f) ((f) - util_ifloor(f)) /** * Linear interpolation macro */ static INLINE float lerp(float a, float v0, float v1) { return v0 + a * (v1 - v0); } /** * Do 2D/biliner interpolation of float values. * v00, v10, v01 and v11 are typically four texture samples in a square/box. * a and b are the horizontal and vertical interpolants. * It's important that this function is inlined when compiled with * optimization! If we find that's not true on some systems, convert * to a macro. */ static INLINE float lerp_2d(float a, float b, float v00, float v10, float v01, float v11) { const float temp0 = lerp(a, v00, v10); const float temp1 = lerp(a, v01, v11); return lerp(b, temp0, temp1); } /** * As above, but 3D interpolation of 8 values. */ static INLINE float lerp_3d(float a, float b, float c, float v000, float v100, float v010, float v110, float v001, float v101, float v011, float v111) { const float temp0 = lerp_2d(a, b, v000, v100, v010, v110); const float temp1 = lerp_2d(a, b, v001, v101, v011, v111); return lerp(c, temp0, temp1); } /** * If A is a signed integer, A % B doesn't give the right value for A < 0 * (in terms of texture repeat). Just casting to unsigned fixes that. */ #define REMAINDER(A, B) ((unsigned) (A) % (unsigned) (B)) /** * Apply texture coord wrapping mode and return integer texture indexes * for a vector of four texcoords (S or T or P). * \param wrapMode PIPE_TEX_WRAP_x * \param s the incoming texcoords * \param size the texture image size * \param icoord returns the integer texcoords * \return integer texture index */ static void wrap_nearest_repeat(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [0,1) */ /* i limited to [0,size-1] */ for (ch = 0; ch < 4; ch++) { int i = util_ifloor(s[ch] * size); icoord[ch] = REMAINDER(i, size); } } static void wrap_nearest_clamp(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [0,1] */ /* i limited to [0,size-1] */ for (ch = 0; ch < 4; ch++) { if (s[ch] <= 0.0F) icoord[ch] = 0; else if (s[ch] >= 1.0F) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(s[ch] * size); } } static void wrap_nearest_clamp_to_edge(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = 1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { if (s[ch] < min) icoord[ch] = 0; else if (s[ch] > max) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(s[ch] * size); } } static void wrap_nearest_clamp_to_border(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [-1, size] */ const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { if (s[ch] <= min) icoord[ch] = -1; else if (s[ch] >= max) icoord[ch] = size; else icoord[ch] = util_ifloor(s[ch] * size); } } static void wrap_nearest_mirror_repeat(const float s[4], unsigned size, int icoord[4]) { uint ch; const float min = 1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { const int flr = util_ifloor(s[ch]); float u; if (flr & 1) u = 1.0F - (s[ch] - (float) flr); else u = s[ch] - (float) flr; if (u < min) icoord[ch] = 0; else if (u > max) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(u * size); } } static void wrap_nearest_mirror_clamp(const float s[4], unsigned size, int icoord[4]) { uint ch; for (ch = 0; ch < 4; ch++) { /* s limited to [0,1] */ /* i limited to [0,size-1] */ const float u = fabsf(s[ch]); if (u <= 0.0F) icoord[ch] = 0; else if (u >= 1.0F) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(u * size); } } static void wrap_nearest_mirror_clamp_to_edge(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = 1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { const float u = fabsf(s[ch]); if (u < min) icoord[ch] = 0; else if (u > max) icoord[ch] = size - 1; else icoord[ch] = util_ifloor(u * size); } } static void wrap_nearest_mirror_clamp_to_border(const float s[4], unsigned size, int icoord[4]) { uint ch; /* s limited to [min,max] */ /* i limited to [0, size-1] */ const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; for (ch = 0; ch < 4; ch++) { const float u = fabsf(s[ch]); if (u < min) icoord[ch] = -1; else if (u > max) icoord[ch] = size; else icoord[ch] = util_ifloor(u * size); } } /** * Used to compute texel locations for linear sampling for four texcoords. * \param wrapMode PIPE_TEX_WRAP_x * \param s the texcoords * \param size the texture image size * \param icoord0 returns first texture indexes * \param icoord1 returns second texture indexes (usually icoord0 + 1) * \param w returns blend factor/weight between texture indexes * \param icoord returns the computed integer texture coords */ static void wrap_linear_repeat(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = s[ch] * size - 0.5F; icoord0[ch] = REMAINDER(util_ifloor(u), size); icoord1[ch] = REMAINDER(icoord0[ch] + 1, size); w[ch] = FRAC(u); } } static void wrap_linear_clamp(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], 0.0F, 1.0F); u = u * size - 0.5f; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = FRAC(u); } } static void wrap_linear_clamp_to_edge(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], 0.0F, 1.0F); u = u * size - 0.5f; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord0[ch] < 0) icoord0[ch] = 0; if (icoord1[ch] >= (int) size) icoord1[ch] = size - 1; w[ch] = FRAC(u); } } static void wrap_linear_clamp_to_border(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], min, max); u = u * size - 0.5f; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = FRAC(u); } } static void wrap_linear_mirror_repeat(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { const int flr = util_ifloor(s[ch]); float u; if (flr & 1) u = 1.0F - (s[ch] - (float) flr); else u = s[ch] - (float) flr; u = u * size - 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord0[ch] < 0) icoord0[ch] = 0; if (icoord1[ch] >= (int) size) icoord1[ch] = size - 1; w[ch] = FRAC(u); } } static void wrap_linear_mirror_clamp(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = fabsf(s[ch]); if (u >= 1.0F) u = (float) size; else u *= size; u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = FRAC(u); } } static void wrap_linear_mirror_clamp_to_edge(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = fabsf(s[ch]); if (u >= 1.0F) u = (float) size; else u *= size; u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord0[ch] < 0) icoord0[ch] = 0; if (icoord1[ch] >= (int) size) icoord1[ch] = size - 1; w[ch] = FRAC(u); } } static void wrap_linear_mirror_clamp_to_border(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { const float min = -1.0F / (2.0F * size); const float max = 1.0F - min; uint ch; for (ch = 0; ch < 4; ch++) { float u = fabsf(s[ch]); if (u <= min) u = min * size; else if (u >= max) u = max * size; else u *= size; u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = FRAC(u); } } /** * For RECT textures / unnormalized texcoords * Only a subset of wrap modes supported. */ static void wrap_nearest_unorm_clamp(const float s[4], unsigned size, int icoord[4]) { uint ch; for (ch = 0; ch < 4; ch++) { int i = util_ifloor(s[ch]); icoord[ch]= CLAMP(i, 0, (int) size-1); } } /* Handles clamp_to_edge and clamp_to_border: */ static void wrap_nearest_unorm_clamp_to_border(const float s[4], unsigned size, int icoord[4]) { uint ch; for (ch = 0; ch < 4; ch++) { icoord[ch]= util_ifloor( CLAMP(s[ch], 0.5F, (float) size - 0.5F) ); } } /** * For RECT textures / unnormalized texcoords. * Only a subset of wrap modes supported. */ static void wrap_linear_unorm_clamp(const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { /* Not exactly what the spec says, but it matches NVIDIA output */ float u = CLAMP(s[ch] - 0.5F, 0.0f, (float) size - 1.0f); icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; w[ch] = FRAC(u); } } static void wrap_linear_unorm_clamp_to_border( const float s[4], unsigned size, int icoord0[4], int icoord1[4], float w[4]) { uint ch; for (ch = 0; ch < 4; ch++) { float u = CLAMP(s[ch], 0.5F, (float) size - 0.5F); u -= 0.5F; icoord0[ch] = util_ifloor(u); icoord1[ch] = icoord0[ch] + 1; if (icoord1[ch] > (int) size - 1) icoord1[ch] = size - 1; w[ch] = FRAC(u); } } /** * Examine the quad's texture coordinates to compute the partial * derivatives w.r.t X and Y, then compute lambda (level of detail). */ static float compute_lambda_1d(const struct sp_sampler_varient *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias) { const struct pipe_texture *texture = samp->texture; const struct pipe_sampler_state *sampler = samp->sampler; float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]); float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]); float rho = MAX2(dsdx, dsdy) * texture->width[0]; float lambda; lambda = util_fast_log2(rho); lambda += lodbias + sampler->lod_bias; lambda = CLAMP(lambda, sampler->min_lod, sampler->max_lod); return lambda; } static float compute_lambda_2d(const struct sp_sampler_varient *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias) { const struct pipe_texture *texture = samp->texture; const struct pipe_sampler_state *sampler = samp->sampler; float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]); float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]); float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]); float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]); float maxx = MAX2(dsdx, dsdy) * texture->width[0]; float maxy = MAX2(dtdx, dtdy) * texture->height[0]; float rho = MAX2(maxx, maxy); float lambda; lambda = util_fast_log2(rho); lambda += lodbias + sampler->lod_bias; lambda = CLAMP(lambda, sampler->min_lod, sampler->max_lod); return lambda; } static float compute_lambda_3d(const struct sp_sampler_varient *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias) { const struct pipe_texture *texture = samp->texture; const struct pipe_sampler_state *sampler = samp->sampler; float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]); float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]); float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]); float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]); float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]); float dpdy = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]); float maxx = MAX2(dsdx, dsdy) * texture->width[0]; float maxy = MAX2(dtdx, dtdy) * texture->height[0]; float maxz = MAX2(dpdx, dpdy) * texture->depth[0]; float rho, lambda; rho = MAX2(maxx, maxy); rho = MAX2(rho, maxz); lambda = util_fast_log2(rho); lambda += lodbias + sampler->lod_bias; lambda = CLAMP(lambda, sampler->min_lod, sampler->max_lod); return lambda; } static float compute_lambda_vert(const struct sp_sampler_varient *samp, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias) { return lodbias; } /** * Get a texel from a texture, using the texture tile cache. * * \param face the cube face in 0..5 * \param level the mipmap level * \param x the x coord of texel within 2D image * \param y the y coord of texel within 2D image * \param z which slice of a 3D texture * \param rgba the quad to put the texel/color into * \param j which element of the rgba quad to write to * * XXX maybe move this into sp_tile_cache.c and merge with the * sp_get_cached_tile_tex() function. Also, get 4 texels instead of 1... */ static INLINE void get_texel_quad_2d(const struct tgsi_sampler *tgsi_sampler, unsigned face, unsigned level, int x, int y, const float *out[4]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct softpipe_cached_tile *tile = sp_get_cached_tile_tex(samp->cache, tile_address(x, y, 0, face, level)); y %= TILE_SIZE; x %= TILE_SIZE; out[0] = &tile->data.color[y ][x ][0]; out[1] = &tile->data.color[y ][x+1][0]; out[2] = &tile->data.color[y+1][x ][0]; out[3] = &tile->data.color[y+1][x+1][0]; } static INLINE const float * get_texel_2d_ptr(const struct tgsi_sampler *tgsi_sampler, unsigned face, unsigned level, int x, int y) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct softpipe_cached_tile *tile = sp_get_cached_tile_tex(samp->cache, tile_address(x, y, 0, face, level)); y %= TILE_SIZE; x %= TILE_SIZE; return &tile->data.color[y][x][0]; } static INLINE void get_texel_quad_2d_mt(const struct tgsi_sampler *tgsi_sampler, unsigned face, unsigned level, int x0, int y0, int x1, int y1, const float *out[4]) { unsigned i; for (i = 0; i < 4; i++) { unsigned tx = (i & 1) ? x1 : x0; unsigned ty = (i >> 1) ? y1 : y0; out[i] = get_texel_2d_ptr( tgsi_sampler, face, level, tx, ty ); } } static INLINE void get_texel(const struct tgsi_sampler *tgsi_sampler, unsigned face, unsigned level, int x, int y, int z, float rgba[NUM_CHANNELS][QUAD_SIZE], unsigned j) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; const struct pipe_sampler_state *sampler = samp->sampler; if (x < 0 || x >= (int) texture->width[level] || y < 0 || y >= (int) texture->height[level] || z < 0 || z >= (int) texture->depth[level]) { rgba[0][j] = sampler->border_color[0]; rgba[1][j] = sampler->border_color[1]; rgba[2][j] = sampler->border_color[2]; rgba[3][j] = sampler->border_color[3]; } else { const unsigned tx = x % TILE_SIZE; const unsigned ty = y % TILE_SIZE; const struct softpipe_cached_tile *tile; tile = sp_get_cached_tile_tex(samp->cache, tile_address(x, y, z, face, level)); rgba[0][j] = tile->data.color[ty][tx][0]; rgba[1][j] = tile->data.color[ty][tx][1]; rgba[2][j] = tile->data.color[ty][tx][2]; rgba[3][j] = tile->data.color[ty][tx][3]; if (0) { debug_printf("Get texel %f %f %f %f from %s\n", rgba[0][j], rgba[1][j], rgba[2][j], rgba[3][j], pf_name(texture->format)); } } } static INLINE void img_filter_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); unsigned j; unsigned level = samp->level; unsigned xpot = 1 << (samp->xpot - level); unsigned ypot = 1 << (samp->ypot - level); unsigned xmax = (xpot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, xpot) - 1; */ unsigned ymax = (ypot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, ypot) - 1; */ for (j = 0; j < QUAD_SIZE; j++) { int c; float u = s[j] * xpot - 0.5F; float v = t[j] * ypot - 0.5F; int uflr = util_ifloor(u); int vflr = util_ifloor(v); float xw = u - (float)uflr; float yw = v - (float)vflr; int x0 = uflr & (xpot - 1); int y0 = vflr & (ypot - 1); const float *tx[4]; /* Can we fetch all four at once: */ if (x0 < xmax && y0 < ymax) { get_texel_quad_2d(tgsi_sampler, 0, level, x0, y0, tx); } else { unsigned x1 = (x0 + 1) & (xpot - 1); unsigned y1 = (y0 + 1) & (ypot - 1); get_texel_quad_2d_mt(tgsi_sampler, 0, level, x0, y0, x1, y1, tx); } /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_2d(xw, yw, tx[0][c], tx[1][c], tx[2][c], tx[3][c]); } } } static INLINE void img_filter_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); unsigned j; unsigned level = samp->level; unsigned xpot = 1 << (samp->xpot - level); unsigned ypot = 1 << (samp->ypot - level); for (j = 0; j < QUAD_SIZE; j++) { int c; float u = s[j] * xpot; float v = t[j] * ypot; int uflr = util_ifloor(u); int vflr = util_ifloor(v); int x0 = uflr & (xpot - 1); int y0 = vflr & (ypot - 1); const float *out = get_texel_2d_ptr(tgsi_sampler, 0, level, x0, y0); for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } } static INLINE void img_filter_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); unsigned j; unsigned level = samp->level; unsigned xpot = 1 << (samp->xpot - level); unsigned ypot = 1 << (samp->ypot - level); for (j = 0; j < QUAD_SIZE; j++) { int c; float u = s[j] * xpot; float v = t[j] * ypot; int x0, y0; const float *out; x0 = util_ifloor(u); if (x0 < 0) x0 = 0; else if (x0 > xpot - 1) x0 = xpot - 1; y0 = util_ifloor(v); if (y0 < 0) y0 = 0; else if (y0 > ypot - 1) y0 = ypot - 1; out = get_texel_2d_ptr(tgsi_sampler, 0, level, x0, y0); for (c = 0; c < 4; c++) { rgba[c][j] = out[c]; } } } static void img_filter_1d_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; unsigned level0, j; int width; int x[4]; level0 = samp->level; width = texture->width[level0]; assert(width > 0); samp->nearest_texcoord_s(s, width, x); for (j = 0; j < QUAD_SIZE; j++) { get_texel(tgsi_sampler, 0, level0, x[j], 0, 0, rgba, j); } } static void img_filter_2d_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; const unsigned *faces = samp->faces; /* zero when not cube-mapping */ unsigned level0, j; int width, height; int x[4], y[4]; level0 = samp->level; width = texture->width[level0]; height = texture->height[level0]; assert(width > 0); samp->nearest_texcoord_s(s, width, x); samp->nearest_texcoord_t(t, height, y); for (j = 0; j < QUAD_SIZE; j++) { get_texel(tgsi_sampler, faces[j], level0, x[j], y[j], 0, rgba, j); } } static void img_filter_3d_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; unsigned level0, j; int width, height, depth; int x[4], y[4], z[4]; level0 = samp->level; width = texture->width[level0]; height = texture->height[level0]; depth = texture->depth[level0]; assert(width > 0); assert(height > 0); assert(depth > 0); samp->nearest_texcoord_s(s, width, x); samp->nearest_texcoord_t(t, height, y); samp->nearest_texcoord_p(p, depth, z); for (j = 0; j < QUAD_SIZE; j++) { get_texel(tgsi_sampler, 0, level0, x[j], y[j], z[j], rgba, j); } } static void img_filter_1d_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; unsigned level0, j; int width; int x0[4], x1[4]; float xw[4]; /* weights */ level0 = samp->level; width = texture->width[level0]; assert(width > 0); samp->linear_texcoord_s(s, width, x0, x1, xw); for (j = 0; j < QUAD_SIZE; j++) { float tx[4][4]; /* texels */ int c; get_texel(tgsi_sampler, 0, level0, x0[j], 0, 0, tx, 0); get_texel(tgsi_sampler, 0, level0, x1[j], 0, 0, tx, 1); /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp(xw[j], tx[c][0], tx[c][1]); } } } static void img_filter_2d_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; const unsigned *faces = samp->faces; /* zero when not cube-mapping */ unsigned level0, j; int width, height; int x0[4], y0[4], x1[4], y1[4]; float xw[4], yw[4]; /* weights */ level0 = samp->level; width = texture->width[level0]; height = texture->height[level0]; assert(width > 0); samp->linear_texcoord_s(s, width, x0, x1, xw); samp->linear_texcoord_s(t, height, y0, y1, yw); for (j = 0; j < QUAD_SIZE; j++) { float tx[4][4]; /* texels */ int c; get_texel(tgsi_sampler, faces[j], level0, x0[j], y0[j], 0, tx, 0); get_texel(tgsi_sampler, faces[j], level0, x1[j], y0[j], 0, tx, 1); get_texel(tgsi_sampler, faces[j], level0, x0[j], y1[j], 0, tx, 2); get_texel(tgsi_sampler, faces[j], level0, x1[j], y1[j], 0, tx, 3); /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_2d(xw[j], yw[j], tx[c][0], tx[c][1], tx[c][2], tx[c][3]); } } } static void img_filter_3d_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; unsigned level0, j; int width, height, depth; int x0[4], x1[4], y0[4], y1[4], z0[4], z1[4]; float xw[4], yw[4], zw[4]; /* interpolation weights */ level0 = samp->level; width = texture->width[level0]; height = texture->height[level0]; depth = texture->depth[level0]; assert(width > 0); assert(height > 0); assert(depth > 0); samp->linear_texcoord_s(s, width, x0, x1, xw); samp->linear_texcoord_s(t, height, y0, y1, yw); samp->linear_texcoord_s(p, depth, z0, z1, zw); for (j = 0; j < QUAD_SIZE; j++) { float tx0[4][4], tx1[4][4]; int c; get_texel(tgsi_sampler, 0, level0, x0[j], y0[j], z0[j], tx0, 0); get_texel(tgsi_sampler, 0, level0, x1[j], y0[j], z0[j], tx0, 1); get_texel(tgsi_sampler, 0, level0, x0[j], y1[j], z0[j], tx0, 2); get_texel(tgsi_sampler, 0, level0, x1[j], y1[j], z0[j], tx0, 3); get_texel(tgsi_sampler, 0, level0, x0[j], y0[j], z1[j], tx1, 0); get_texel(tgsi_sampler, 0, level0, x1[j], y0[j], z1[j], tx1, 1); get_texel(tgsi_sampler, 0, level0, x0[j], y1[j], z1[j], tx1, 2); get_texel(tgsi_sampler, 0, level0, x1[j], y1[j], z1[j], tx1, 3); /* interpolate R, G, B, A */ for (c = 0; c < 4; c++) { rgba[c][j] = lerp_3d(xw[j], yw[j], zw[j], tx0[c][0], tx0[c][1], tx0[c][2], tx0[c][3], tx1[c][0], tx1[c][1], tx1[c][2], tx1[c][3]); } } } static void mip_filter_linear(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; int level0; float lambda; lambda = samp->compute_lambda(samp, s, t, p, lodbias); level0 = (int)lambda; if (lambda < 0.0) { samp->level = 0; samp->mag_img_filter( tgsi_sampler, s, t, p, 0, rgba ); } else if (level0 >= texture->last_level) { samp->level = texture->last_level; samp->min_img_filter( tgsi_sampler, s, t, p, 0, rgba ); } else { float levelBlend = lambda - level0; float rgba0[4][4]; float rgba1[4][4]; int c,j; samp->level = level0; samp->min_img_filter( tgsi_sampler, s, t, p, 0, rgba0 ); samp->level = level0+1; samp->min_img_filter( tgsi_sampler, s, t, p, 0, rgba1 ); for (j = 0; j < QUAD_SIZE; j++) { for (c = 0; c < 4; c++) { rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]); } } } } static void mip_filter_nearest(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; float lambda; lambda = samp->compute_lambda(samp, s, t, p, lodbias); if (lambda < 0.0) { samp->level = 0; samp->mag_img_filter( tgsi_sampler, s, t, p, 0, rgba ); } else { samp->level = (int)(lambda + 0.5) ; samp->level = MIN2(samp->level, (int)texture->last_level); samp->min_img_filter( tgsi_sampler, s, t, p, 0, rgba ); } } static void mip_filter_none(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); float lambda = samp->compute_lambda(samp, s, t, p, lodbias); if (lambda < 0.0) { samp->mag_img_filter( tgsi_sampler, s, t, p, 0, rgba ); } else { samp->min_img_filter( tgsi_sampler, s, t, p, 0, rgba ); } } /* Specialized version of mip_filter_linear with hard-wired calls to * 2d lambda calculation and 2d_linear_repeat_POT img filters. */ static void mip_filter_linear_2d_linear_repeat_POT( struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_texture *texture = samp->texture; int level0; float lambda; lambda = compute_lambda_2d(samp, s, t, p, lodbias); level0 = (int)lambda; /* Catches both negative and large values of level0: */ if ((unsigned)level0 >= texture->last_level) { if (level0 < 0) samp->level = 0; else samp->level = texture->last_level; img_filter_2d_linear_repeat_POT( tgsi_sampler, s, t, p, 0, rgba ); } else { float levelBlend = lambda - level0; float rgba0[4][4]; float rgba1[4][4]; int c,j; samp->level = level0; img_filter_2d_linear_repeat_POT( tgsi_sampler, s, t, p, 0, rgba0 ); samp->level = level0+1; img_filter_2d_linear_repeat_POT( tgsi_sampler, s, t, p, 0, rgba1 ); for (j = 0; j < QUAD_SIZE; j++) { for (c = 0; c < 4; c++) { rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]); } } } } /* Compare stage in the little sampling pipeline. */ static void sample_compare(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); const struct pipe_sampler_state *sampler = samp->sampler; int j, k0, k1, k2, k3; float val; samp->mip_filter( tgsi_sampler, s, t, p, lodbias, rgba ); /** * Compare texcoord 'p' (aka R) against texture value 'rgba[0]' * When we sampled the depth texture, the depth value was put into all * RGBA channels. We look at the red channel here. */ /* compare four texcoords vs. four texture samples */ switch (sampler->compare_func) { case PIPE_FUNC_LESS: k0 = p[0] < rgba[0][0]; k1 = p[1] < rgba[0][1]; k2 = p[2] < rgba[0][2]; k3 = p[3] < rgba[0][3]; break; case PIPE_FUNC_LEQUAL: k0 = p[0] <= rgba[0][0]; k1 = p[1] <= rgba[0][1]; k2 = p[2] <= rgba[0][2]; k3 = p[3] <= rgba[0][3]; break; case PIPE_FUNC_GREATER: k0 = p[0] > rgba[0][0]; k1 = p[1] > rgba[0][1]; k2 = p[2] > rgba[0][2]; k3 = p[3] > rgba[0][3]; break; case PIPE_FUNC_GEQUAL: k0 = p[0] >= rgba[0][0]; k1 = p[1] >= rgba[0][1]; k2 = p[2] >= rgba[0][2]; k3 = p[3] >= rgba[0][3]; break; case PIPE_FUNC_EQUAL: k0 = p[0] == rgba[0][0]; k1 = p[1] == rgba[0][1]; k2 = p[2] == rgba[0][2]; k3 = p[3] == rgba[0][3]; break; case PIPE_FUNC_NOTEQUAL: k0 = p[0] != rgba[0][0]; k1 = p[1] != rgba[0][1]; k2 = p[2] != rgba[0][2]; k3 = p[3] != rgba[0][3]; break; case PIPE_FUNC_ALWAYS: k0 = k1 = k2 = k3 = 1; break; case PIPE_FUNC_NEVER: k0 = k1 = k2 = k3 = 0; break; default: k0 = k1 = k2 = k3 = 0; assert(0); break; } /* convert four pass/fail values to an intensity in [0,1] */ val = 0.25F * (k0 + k1 + k2 + k3); /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */ for (j = 0; j < 4; j++) { rgba[0][j] = rgba[1][j] = rgba[2][j] = val; rgba[3][j] = 1.0F; } } /* Calculate cube faces. */ static void sample_cube(struct tgsi_sampler *tgsi_sampler, const float s[QUAD_SIZE], const float t[QUAD_SIZE], const float p[QUAD_SIZE], float lodbias, float rgba[NUM_CHANNELS][QUAD_SIZE]) { struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler); unsigned j; float ssss[4], tttt[4]; /* major axis direction target sc tc ma ---------- ------------------------------- --- --- --- +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz */ for (j = 0; j < QUAD_SIZE; j++) { float rx = s[j]; float ry = t[j]; float rz = p[j]; const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz); unsigned face; float sc, tc, ma; if (arx > ary && arx > arz) { if (rx >= 0.0F) { face = PIPE_TEX_FACE_POS_X; sc = -rz; tc = -ry; ma = arx; } else { face = PIPE_TEX_FACE_NEG_X; sc = rz; tc = -ry; ma = arx; } } else if (ary > arx && ary > arz) { if (ry >= 0.0F) { face = PIPE_TEX_FACE_POS_Y; sc = rx; tc = rz; ma = ary; } else { face = PIPE_TEX_FACE_NEG_Y; sc = rx; tc = -rz; ma = ary; } } else { if (rz > 0.0F) { face = PIPE_TEX_FACE_POS_Z; sc = rx; tc = -ry; ma = arz; } else { face = PIPE_TEX_FACE_NEG_Z; sc = -rx; tc = -ry; ma = arz; } } ssss[j] = ( sc / ma + 1.0F ) * 0.5F; tttt[j] = ( tc / ma + 1.0F ) * 0.5F; samp->faces[j] = face; } /* In our little pipeline, the compare stage is next. If compare * is not active, this will point somewhere deeper into the * pipeline, eg. to mip_filter or even img_filter. */ samp->compare(tgsi_sampler, ssss, tttt, NULL, lodbias, rgba); } static wrap_nearest_func get_nearest_unorm_wrap( unsigned mode ) { switch (mode) { case PIPE_TEX_WRAP_CLAMP: return wrap_nearest_unorm_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_nearest_unorm_clamp_to_border; default: assert(0); return wrap_nearest_unorm_clamp; } } static wrap_nearest_func get_nearest_wrap( unsigned mode ) { switch (mode) { case PIPE_TEX_WRAP_REPEAT: return wrap_nearest_repeat; case PIPE_TEX_WRAP_CLAMP: return wrap_nearest_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_nearest_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_nearest_clamp_to_border; case PIPE_TEX_WRAP_MIRROR_REPEAT: return wrap_nearest_mirror_repeat; case PIPE_TEX_WRAP_MIRROR_CLAMP: return wrap_nearest_mirror_clamp; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return wrap_nearest_mirror_clamp_to_edge; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return wrap_nearest_mirror_clamp_to_border; default: assert(0); return wrap_nearest_repeat; } } static wrap_linear_func get_linear_unorm_wrap( unsigned mode ) { switch (mode) { case PIPE_TEX_WRAP_CLAMP: return wrap_linear_unorm_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_linear_unorm_clamp_to_border; default: assert(0); return wrap_linear_unorm_clamp; } } static wrap_linear_func get_linear_wrap( unsigned mode ) { switch (mode) { case PIPE_TEX_WRAP_REPEAT: return wrap_linear_repeat; case PIPE_TEX_WRAP_CLAMP: return wrap_linear_clamp; case PIPE_TEX_WRAP_CLAMP_TO_EDGE: return wrap_linear_clamp_to_edge; case PIPE_TEX_WRAP_CLAMP_TO_BORDER: return wrap_linear_clamp_to_border; case PIPE_TEX_WRAP_MIRROR_REPEAT: return wrap_linear_mirror_repeat; case PIPE_TEX_WRAP_MIRROR_CLAMP: return wrap_linear_mirror_clamp; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: return wrap_linear_mirror_clamp_to_edge; case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: return wrap_linear_mirror_clamp_to_border; default: assert(0); return wrap_linear_repeat; } } static compute_lambda_func get_lambda_func( const union sp_sampler_key key ) { if (key.bits.processor == TGSI_PROCESSOR_VERTEX) return compute_lambda_vert; switch (key.bits.target) { case PIPE_TEXTURE_1D: return compute_lambda_1d; case PIPE_TEXTURE_2D: return compute_lambda_2d; case PIPE_TEXTURE_3D: return compute_lambda_3d; default: assert(0); return compute_lambda_1d; } } static filter_func get_img_filter( const union sp_sampler_key key, unsigned filter, const struct pipe_sampler_state *sampler ) { switch (key.bits.target) { case PIPE_TEXTURE_1D: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_1d_nearest; else return img_filter_1d_linear; break; case PIPE_TEXTURE_2D: /* Try for fast path: */ if (key.bits.is_pot && sampler->wrap_s == sampler->wrap_t && sampler->normalized_coords) { switch (sampler->wrap_s) { case PIPE_TEX_WRAP_REPEAT: switch (filter) { case PIPE_TEX_FILTER_NEAREST: return img_filter_2d_nearest_repeat_POT; case PIPE_TEX_FILTER_LINEAR: return img_filter_2d_linear_repeat_POT; default: break; } break; case PIPE_TEX_WRAP_CLAMP: switch (filter) { case PIPE_TEX_FILTER_NEAREST: return img_filter_2d_nearest_clamp_POT; default: break; } } } /* Fallthrough to default versions: */ case PIPE_TEXTURE_CUBE: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_2d_nearest; else return img_filter_2d_linear; break; case PIPE_TEXTURE_3D: if (filter == PIPE_TEX_FILTER_NEAREST) return img_filter_3d_nearest; else return img_filter_3d_linear; break; default: assert(0); return img_filter_1d_nearest; } } void sp_sampler_varient_bind_texture( struct sp_sampler_varient *samp, struct softpipe_tile_cache *tex_cache, const struct pipe_texture *texture ) { const struct pipe_sampler_state *sampler = samp->sampler; samp->texture = texture; samp->cache = tex_cache; samp->xpot = util_unsigned_logbase2( texture->width[0] ); samp->ypot = util_unsigned_logbase2( texture->height[0] ); samp->level = CLAMP((int) sampler->min_lod, 0, (int) texture->last_level); } /* Create a sampler varient for a given set of non-orthogonal state. Currently the */ struct sp_sampler_varient * sp_create_sampler_varient( const struct pipe_sampler_state *sampler, const union sp_sampler_key key ) { struct sp_sampler_varient *samp = CALLOC_STRUCT(sp_sampler_varient); if (!samp) return NULL; samp->sampler = sampler; samp->key = key; /* Note that (for instance) linear_texcoord_s and * nearest_texcoord_s may be active at the same time, if the * sampler min_img_filter differs from its mag_img_filter. */ if (sampler->normalized_coords) { samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s ); samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t ); samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r ); samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s ); samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t ); samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r ); } else { samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s ); samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t ); samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r ); samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s ); samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t ); samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r ); } samp->compute_lambda = get_lambda_func( key ); samp->min_img_filter = get_img_filter(key, sampler->min_img_filter, sampler); samp->mag_img_filter = get_img_filter(key, sampler->min_img_filter, sampler); switch (sampler->min_mip_filter) { case PIPE_TEX_MIPFILTER_NONE: if (sampler->min_img_filter == sampler->mag_img_filter) samp->mip_filter = samp->min_img_filter; else samp->mip_filter = mip_filter_none; break; case PIPE_TEX_MIPFILTER_NEAREST: samp->mip_filter = mip_filter_nearest; break; case PIPE_TEX_MIPFILTER_LINEAR: if (key.bits.is_pot && sampler->min_img_filter == sampler->mag_img_filter && sampler->wrap_s == sampler->wrap_t && sampler->normalized_coords && sampler->wrap_s == sampler->wrap_t && sampler->wrap_s == PIPE_TEX_WRAP_REPEAT && sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR) { samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT; } else { samp->mip_filter = mip_filter_linear; } break; } if (sampler->compare_mode != FALSE) { samp->compare = sample_compare; } else { /* Skip compare operation by promoting the mip_filter function * pointer: */ samp->compare = samp->mip_filter; } if (key.bits.target == PIPE_TEXTURE_CUBE) { samp->base.get_samples = sample_cube; } else { samp->faces[0] = 0; samp->faces[1] = 0; samp->faces[2] = 0; samp->faces[3] = 0; /* Skip cube face determination by promoting the compare * function pointer: */ samp->base.get_samples = samp->compare; } return samp; }