aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBartlomiej Zolnierkiewicz <bzolnier@gmail.com>2009-04-26 16:06:22 +0200
committerGreg Kroah-Hartman <gregkh@suse.de>2009-06-19 11:00:49 -0700
commitffbc7b854e1e3608eec5cc54bd8aa48c711d2996 (patch)
treeecbc2dd07af4eb699c03446332df1a64fdc835f6
parent9e4dab715bf4934b1c857135550dde47d43ce218 (diff)
Staging: rt2870: prepare for rt{28,30}70/common/*.[ch] merge
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
-rw-r--r--drivers/staging/rt2870/common/2870_rtmp_init.c63
-rw-r--r--drivers/staging/rt2870/common/action.c5
-rw-r--r--drivers/staging/rt2870/common/ba_action.c63
-rw-r--r--drivers/staging/rt2870/common/cmm_data.c144
-rw-r--r--drivers/staging/rt2870/common/cmm_data_2870.c35
-rw-r--r--drivers/staging/rt2870/common/cmm_info.c32
-rw-r--r--drivers/staging/rt2870/common/cmm_wpa.c12
-rw-r--r--drivers/staging/rt2870/common/eeprom.c1268
-rw-r--r--drivers/staging/rt2870/common/mlme.c810
-rw-r--r--drivers/staging/rt2870/common/rtmp_init.c432
-rw-r--r--drivers/staging/rt2870/common/rtusb_bulk.c14
-rw-r--r--drivers/staging/rt2870/common/rtusb_io.c74
-rw-r--r--drivers/staging/rt2870/common/spectrum.c5
13 files changed, 2926 insertions, 31 deletions
diff --git a/drivers/staging/rt2870/common/2870_rtmp_init.c b/drivers/staging/rt2870/common/2870_rtmp_init.c
index b8c589611ff..9ed818d442f 100644
--- a/drivers/staging/rt2870/common/2870_rtmp_init.c
+++ b/drivers/staging/rt2870/common/2870_rtmp_init.c
@@ -639,7 +639,7 @@ VOID RTMPFreeTxRxRingMemory(
// Free Tx frame resource
- for (acidx = 0; acidx < 4; acidx++)
+ for(acidx=0; acidx<4; acidx++)
{
PHT_TX_CONTEXT pHTTXContext = &(pAd->TxContext[acidx]);
if (pHTTXContext)
@@ -699,9 +699,14 @@ NDIS_STATUS AdapterBlockAllocateMemory(
usb_dev = pObj->pUsb_Dev;
+#ifndef RT30xx
pObj->MLMEThr_task = NULL;
pObj->RTUSBCmdThr_task = NULL;
-
+#endif
+#ifdef RT30xx
+ pObj->MLMEThr_pid = NULL;
+ pObj->RTUSBCmdThr_pid = NULL;
+#endif
*ppAd = (PVOID)vmalloc(sizeof(RTMP_ADAPTER));
if (*ppAd)
@@ -737,7 +742,12 @@ NDIS_STATUS CreateThreads(
{
PRTMP_ADAPTER pAd = net_dev->ml_priv;
POS_COOKIE pObj = (POS_COOKIE) pAd->OS_Cookie;
+#ifndef RT30xx
struct task_struct *tsk;
+#endif
+#ifdef RT30xx
+ pid_t pid_number;
+#endif
//init_MUTEX(&(pAd->usbdev_semaphore));
@@ -751,39 +761,76 @@ NDIS_STATUS CreateThreads(
init_completion (&pAd->TimerQComplete);
// Creat MLME Thread
+#ifndef RT30xx
pObj->MLMEThr_task = NULL;
tsk = kthread_run(MlmeThread, pAd, pAd->net_dev->name);
if (IS_ERR(tsk)) {
+#endif
+#ifdef RT30xx
+ pObj->MLMEThr_pid = NULL;
+ pid_number = kernel_thread(MlmeThread, pAd, CLONE_VM);
+ if (pid_number < 0)
+ {
+#endif
printk (KERN_WARNING "%s: unable to start Mlme thread\n",pAd->net_dev->name);
return NDIS_STATUS_FAILURE;
}
+#ifndef RT30xx
pObj->MLMEThr_task = tsk;
+#endif
+#ifdef RT30xx
+ pObj->MLMEThr_pid = find_get_pid(pid_number);
+#endif
// Wait for the thread to start
wait_for_completion(&(pAd->mlmeComplete));
// Creat Command Thread
+#ifndef RT30xx
pObj->RTUSBCmdThr_task = NULL;
tsk = kthread_run(RTUSBCmdThread, pAd, pAd->net_dev->name);
if (IS_ERR(tsk) < 0)
+#endif
+#ifdef RT30xx
+ pObj->RTUSBCmdThr_pid = NULL;
+ pid_number = kernel_thread(RTUSBCmdThread, pAd, CLONE_VM);
+ if (pid_number < 0)
+#endif
{
printk (KERN_WARNING "%s: unable to start RTUSBCmd thread\n",pAd->net_dev->name);
return NDIS_STATUS_FAILURE;
}
+#ifndef RT30xx
pObj->RTUSBCmdThr_task = tsk;
+#endif
+#ifdef RT30xx
+ pObj->RTUSBCmdThr_pid = find_get_pid(pid_number);
+#endif
wait_for_completion(&(pAd->CmdQComplete));
+#ifndef RT30xx
pObj->TimerQThr_task = NULL;
tsk = kthread_run(TimerQThread, pAd, pAd->net_dev->name);
if (IS_ERR(tsk) < 0)
+#endif
+#ifdef RT30xx
+ pObj->TimerQThr_pid = NULL;
+ pid_number = kernel_thread(TimerQThread, pAd, CLONE_VM);
+ if (pid_number < 0)
+#endif
{
printk (KERN_WARNING "%s: unable to start TimerQThread\n",pAd->net_dev->name);
return NDIS_STATUS_FAILURE;
}
+#ifndef RT30xx
pObj->TimerQThr_task = tsk;
+#endif
+#ifdef RT30xx
+ pObj->TimerQThr_pid = find_get_pid(pid_number);
+#endif
// Wait for the thread to start
wait_for_completion(&(pAd->TimerQComplete));
@@ -1260,9 +1307,9 @@ static void rt2870_hcca_dma_done_tasklet(unsigned long data)
UCHAR BulkOutPipeId = 4;
purbb_t pUrb;
-
+#ifndef RT30xx
DBGPRINT_RAW(RT_DEBUG_ERROR, ("--->hcca_dma_done_tasklet\n"));
-
+#endif
pUrb = (purbb_t)data;
pHTTXContext = (PHT_TX_CONTEXT)pUrb->context;
@@ -1292,13 +1339,19 @@ static void rt2870_hcca_dma_done_tasklet(unsigned long data)
RTMPDeQueuePacket(pAd, FALSE, BulkOutPipeId, MAX_TX_PROCESS);
}
+#ifndef RT30xx
RTUSB_SET_BULK_FLAG(pAd, fRTUSB_BULK_OUT_DATA_NORMAL);
+#endif
+#ifdef RT30xx
+ RTUSB_SET_BULK_FLAG(pAd, fRTUSB_BULK_OUT_DATA_NORMAL<<4);
+#endif
RTUSBKickBulkOut(pAd);
}
}
+#ifndef RT30xx
DBGPRINT_RAW(RT_DEBUG_ERROR, ("<---hcca_dma_done_tasklet\n"));
-
+#endif
return;
}
diff --git a/drivers/staging/rt2870/common/action.c b/drivers/staging/rt2870/common/action.c
index a32d361fe90..c2b4dc73a51 100644
--- a/drivers/staging/rt2870/common/action.c
+++ b/drivers/staging/rt2870/common/action.c
@@ -533,7 +533,12 @@ VOID SendRefreshBAR(
if (1) // Now we always send BAR.
{
+#ifndef RT30xx
MiniportMMRequest(pAd, 0, pOutBuffer, FrameLen);
+#endif
+#ifdef RT30xx
+ MiniportMMRequest(pAd, QID_AC_BE, pOutBuffer, FrameLen);
+#endif
}
MlmeFreeMemory(pAd, pOutBuffer);
}
diff --git a/drivers/staging/rt2870/common/ba_action.c b/drivers/staging/rt2870/common/ba_action.c
index 142c6698ac2..b4124a9532c 100644
--- a/drivers/staging/rt2870/common/ba_action.c
+++ b/drivers/staging/rt2870/common/ba_action.c
@@ -532,6 +532,13 @@ VOID BAOriSessionSetUp(
pBAEntry->TimeOutValue = TimeOut;
pBAEntry->pAdapter = pAd;
+#ifdef RT30xx
+ DBGPRINT(RT_DEBUG_TRACE,("Send AddBA to %02x:%02x:%02x:%02x:%02x:%02x Tid:%d isForced:%d Wcid:%d\n"
+ ,pEntry->Addr[0],pEntry->Addr[1],pEntry->Addr[2]
+ ,pEntry->Addr[3],pEntry->Addr[4],pEntry->Addr[5]
+ ,TID,isForced,pEntry->Aid));
+#endif
+
if (!(pEntry->TXBAbitmap & (1<<TID)))
{
RTMPInitTimer(pAd, &pBAEntry->ORIBATimer, GET_TIMER_FUNCTION(BAOriSessionSetupTimeout), pBAEntry, FALSE);
@@ -1072,8 +1079,16 @@ VOID BAOriSessionSetupTimeout(
AddbaReq.Token = pBAEntry->Token;
MlmeEnqueue(pAd, ACTION_STATE_MACHINE, MT2_MLME_ADD_BA_CATE, sizeof(MLME_ADDBA_REQ_STRUCT), (PVOID)&AddbaReq);
RT28XX_MLME_HANDLER(pAd);
+#ifndef RT30xx
DBGPRINT(RT_DEBUG_TRACE,("BA Ori Session Timeout(%d) : Send ADD BA again\n", pBAEntry->Token));
-
+#endif
+#ifdef RT30xx
+ DBGPRINT(RT_DEBUG_TRACE,("BA Ori Session Timeout(%d) to %02x:%02x:%02x:%02x:%02x:%02x Tid:%d Wcid:%d\n"
+ ,pBAEntry->Token
+ ,pEntry->Addr[0],pEntry->Addr[1],pEntry->Addr[2]
+ ,pEntry->Addr[3],pEntry->Addr[4],pEntry->Addr[5]
+ ,pBAEntry->TID,pEntry->Aid));
+#endif
pBAEntry->Token++;
RTMPSetTimer(&pBAEntry->ORIBATimer, ORI_BA_SESSION_TIMEOUT);
}
@@ -1377,6 +1392,10 @@ VOID SendPSMPAction(
//ULONG Idx;
FRAME_PSMP_ACTION Frame;
ULONG FrameLen;
+#ifdef RT30xx
+ UCHAR bbpdata=0;
+ UINT32 macdata;
+#endif // RT30xx //
NStatus = MlmeAllocateMemory(pAd, &pOutBuffer); //Get an unused nonpaged memory
if (NStatus != NDIS_STATUS_SUCCESS)
@@ -1392,12 +1411,54 @@ VOID SendPSMPAction(
switch (Psmp)
{
case MMPS_ENABLE:
+#ifdef RT30xx
+ if (IS_RT3090(pAd))
+ {
+ // disable MMPS BBP control register
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &bbpdata);
+ bbpdata &= ~(0x04); //bit 2
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, bbpdata);
+
+ // disable MMPS MAC control register
+ RTMP_IO_READ32(pAd, 0x1210, &macdata);
+ macdata &= ~(0x09); //bit 0, 3
+ RTMP_IO_WRITE32(pAd, 0x1210, macdata);
+ }
+#endif // RT30xx //
Frame.Psmp = 0;
break;
case MMPS_DYNAMIC:
+#ifdef RT30xx
+ if (IS_RT3090(pAd))
+ {
+ // enable MMPS BBP control register
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &bbpdata);
+ bbpdata |= 0x04; //bit 2
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, bbpdata);
+
+ // enable MMPS MAC control register
+ RTMP_IO_READ32(pAd, 0x1210, &macdata);
+ macdata |= 0x09; //bit 0, 3
+ RTMP_IO_WRITE32(pAd, 0x1210, macdata);
+ }
+#endif // RT30xx //
Frame.Psmp = 3;
break;
case MMPS_STATIC:
+#ifdef RT30xx
+ if (IS_RT3090(pAd))
+ {
+ // enable MMPS BBP control register
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &bbpdata);
+ bbpdata |= 0x04; //bit 2
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, bbpdata);
+
+ // enable MMPS MAC control register
+ RTMP_IO_READ32(pAd, 0x1210, &macdata);
+ macdata |= 0x09; //bit 0, 3
+ RTMP_IO_WRITE32(pAd, 0x1210, macdata);
+ }
+#endif // RT30xx //
Frame.Psmp = 1;
break;
}
diff --git a/drivers/staging/rt2870/common/cmm_data.c b/drivers/staging/rt2870/common/cmm_data.c
index 0ca1ab6c8d8..0513321bc03 100644
--- a/drivers/staging/rt2870/common/cmm_data.c
+++ b/drivers/staging/rt2870/common/cmm_data.c
@@ -172,7 +172,114 @@ NDIS_STATUS MiniportMMRequest(
return Status;
}
+#ifdef RT30xx
+NDIS_STATUS MlmeDataHardTransmit(
+ IN PRTMP_ADAPTER pAd,
+ IN UCHAR QueIdx,
+ IN PNDIS_PACKET pPacket);
+
+#define MAX_DATAMM_RETRY 3
+/*
+ ========================================================================
+
+ Routine Description:
+ API for MLME to transmit management frame to AP (BSS Mode)
+ or station (IBSS Mode)
+
+ Arguments:
+ pAd Pointer to our adapter
+ pData Pointer to the outgoing 802.11 frame
+ Length Size of outgoing management frame
+ Return Value:
+ NDIS_STATUS_FAILURE
+ NDIS_STATUS_PENDING
+ NDIS_STATUS_SUCCESS
+
+ IRQL = PASSIVE_LEVEL
+ IRQL = DISPATCH_LEVEL
+
+ Note:
+
+ ========================================================================
+*/
+NDIS_STATUS MiniportDataMMRequest(
+ IN PRTMP_ADAPTER pAd,
+ IN UCHAR QueIdx,
+ IN PUCHAR pData,
+ IN UINT Length)
+{
+ PNDIS_PACKET pPacket;
+ NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
+ ULONG FreeNum;
+ int retry = 0;
+ UCHAR IrqState;
+ UCHAR rtmpHwHdr[TXINFO_SIZE + TXWI_SIZE]; //RTMP_HW_HDR_LEN];
+
+ ASSERT(Length <= MGMT_DMA_BUFFER_SIZE);
+
+ // 2860C use Tx Ring
+ IrqState = pAd->irq_disabled;
+
+ do
+ {
+ // Reset is in progress, stop immediately
+ if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS) ||
+ RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_HALT_IN_PROGRESS | fRTMP_ADAPTER_NIC_NOT_EXIST)||
+ !RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_START_UP))
+ {
+ Status = NDIS_STATUS_FAILURE;
+ break;
+ }
+
+ // Check Free priority queue
+ // Since we use PBF Queue2 for management frame. Its corresponding DMA ring should be using TxRing.
+
+ // 2860C use Tx Ring
+
+ // free Tx(QueIdx) resources
+ FreeNum = GET_TXRING_FREENO(pAd, QueIdx);
+
+ if ((FreeNum > 0))
+ {
+ // We need to reserve space for rtmp hardware header. i.e., TxWI for RT2860 and TxInfo+TxWI for RT2870
+ NdisZeroMemory(&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE));
+ Status = RTMPAllocateNdisPacket(pAd, &pPacket, (PUCHAR)&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE), pData, Length);
+ if (Status != NDIS_STATUS_SUCCESS)
+ {
+ DBGPRINT(RT_DEBUG_WARN, ("MiniportMMRequest (error:: can't allocate NDIS PACKET)\n"));
+ break;
+ }
+
+ //pAd->CommonCfg.MlmeTransmit.field.MODE = MODE_CCK;
+ //pAd->CommonCfg.MlmeRate = RATE_2;
+
+
+ Status = MlmeDataHardTransmit(pAd, QueIdx, pPacket);
+ if (Status != NDIS_STATUS_SUCCESS)
+ RTMPFreeNdisPacket(pAd, pPacket);
+ retry = MAX_DATAMM_RETRY;
+ }
+ else
+ {
+ retry ++;
+
+ printk("retry %d\n", retry);
+ pAd->RalinkCounters.MgmtRingFullCount++;
+
+ if (retry >= MAX_DATAMM_RETRY)
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("Qidx(%d), not enough space in DataRing, MgmtRingFullCount=%ld!\n",
+ QueIdx, pAd->RalinkCounters.MgmtRingFullCount));
+ }
+ }
+
+ } while (retry < MAX_DATAMM_RETRY);
+
+
+ return Status;
+}
+#endif /* RT30xx */
/*
@@ -214,7 +321,23 @@ NDIS_STATUS MlmeHardTransmit(
}
+#ifdef RT30xx
+NDIS_STATUS MlmeDataHardTransmit(
+ IN PRTMP_ADAPTER pAd,
+ IN UCHAR QueIdx,
+ IN PNDIS_PACKET pPacket)
+{
+ if ((pAd->CommonCfg.RadarDetect.RDMode != RD_NORMAL_MODE)
+ )
+ {
+ return NDIS_STATUS_FAILURE;
+ }
+#ifdef RT2870
+ return MlmeHardTransmitMgmtRing(pAd,QueIdx,pPacket);
+#endif // RT2870 //
+}
+#endif /* RT30xx */
NDIS_STATUS MlmeHardTransmitMgmtRing(
IN PRTMP_ADAPTER pAd,
@@ -614,6 +737,11 @@ BOOLEAN RTMP_FillTxBlkInfo(
}
return TRUE;
+
+#ifdef RT30xx
+FillTxBlkErr:
+ return FALSE;
+#endif
}
@@ -701,6 +829,7 @@ VOID RTMPDeQueuePacket(
if (QIdx == NUM_OF_TX_RING)
{
sQIdx = 0;
+//PS packets use HCCA queue when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
eQIdx = 3; // 4 ACs, start from 0.
}
else
@@ -1413,7 +1542,15 @@ VOID RTMPResumeMsduTransmission(
{
DBGPRINT(RT_DEBUG_TRACE,("SCAN done, resume MSDU transmission ...\n"));
-
+#ifdef RT30xx
+ // After finish BSS_SCAN_IN_PROGRESS, we need to restore Current R66 value
+ // R66 should not be 0
+ if (pAd->BbpTuning.R66CurrentValue == 0)
+ {
+ pAd->BbpTuning.R66CurrentValue = 0x38;
+ DBGPRINT_ERR(("RTMPResumeMsduTransmission, R66CurrentValue=0...\n"));
+ }
+#endif
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R66, pAd->BbpTuning.R66CurrentValue);
RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS);
@@ -1774,7 +1911,12 @@ BOOLEAN MacTableDeleteEntry(
if (pAd->MacTab.Size == 0)
{
pAd->CommonCfg.AddHTInfo.AddHtInfo2.OperaionMode = 0;
+#ifndef RT30xx
AsicUpdateProtect(pAd, 0 /*pAd->CommonCfg.AddHTInfo.AddHtInfo2.OperaionMode*/, (ALLN_SETPROTECT), TRUE, 0 /*pAd->MacTab.fAnyStationNonGF*/);
+#endif
+#ifdef RT30xx
+ RT28XX_UPDATE_PROTECT(pAd); // edit by johnli, fix "in_interrupt" error when call "MacTableDeleteEntry" in Rx tasklet
+#endif
}
return TRUE;
diff --git a/drivers/staging/rt2870/common/cmm_data_2870.c b/drivers/staging/rt2870/common/cmm_data_2870.c
index 182f273d7eb..d6fc056f81d 100644
--- a/drivers/staging/rt2870/common/cmm_data_2870.c
+++ b/drivers/staging/rt2870/common/cmm_data_2870.c
@@ -292,6 +292,7 @@ USHORT RtmpUSB_WriteSingleTxResource(
pTxBlk->Priv = (TXINFO_SIZE + USBDMApktLen);
// For TxInfo, the length of USBDMApktLen = TXWI_SIZE + 802.11 header + payload
+ //PS packets use HCCA queue when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
RTMPWriteTxInfo(pAd, pTxInfo, (USHORT)(USBDMApktLen), FALSE, FIFO_EDCA, FALSE /*NextValid*/, FALSE);
if ((pHTTXContext->CurWritePosition + 3906 + pTxBlk->Priv) > MAX_TXBULK_LIMIT)
@@ -809,7 +810,12 @@ VOID RT28xxUsbStaAsicForceWakeup(
AutoWakeupCfg.word = 0;
RTMP_IO_WRITE32(pAd, AUTO_WAKEUP_CFG, AutoWakeupCfg.word);
+#ifndef RT30xx
AsicSendCommandToMcu(pAd, 0x31, 0xff, 0x00, 0x00);
+#endif
+#ifdef RT30xx
+ AsicSendCommandToMcu(pAd, 0x31, 0xff, 0x00, 0x02);
+#endif
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_DOZE);
}
@@ -846,7 +852,12 @@ VOID RT28xxUsbMlmeRadioOn(
if (!RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RADIO_OFF))
return;
+#ifndef RT30xx
AsicSendCommandToMcu(pAd, 0x31, 0xff, 0x00, 0x00);
+#endif
+#ifdef RT30xx
+ AsicSendCommandToMcu(pAd, 0x31, 0xff, 0x00, 0x02);
+#endif
RTMPusecDelay(10000);
NICResetFromError(pAd);
@@ -854,6 +865,13 @@ VOID RT28xxUsbMlmeRadioOn(
// Enable Tx/Rx
RTMPEnableRxTx(pAd);
+#ifdef RT3070
+ if (IS_RT3071(pAd))
+ {
+ RT30xxReverseRFSleepModeSetup(pAd);
+ }
+#endif // RT3070 //
+
// Clear Radio off flag
RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_RADIO_OFF);
@@ -890,6 +908,7 @@ VOID RT28xxUsbMlmeRadioOFF(
BssTableInit(&pAd->ScanTab);
}
+#ifndef RT30xx
// Disable MAC Tx/Rx
RTMP_IO_READ32(pAd, MAC_SYS_CTRL, &Value);
Value &= (0xfffffff3);
@@ -903,6 +922,7 @@ VOID RT28xxUsbMlmeRadioOFF(
// TX_PIN_CFG => value = 0x0 => 20mA
RTMP_IO_WRITE32(pAd, TX_PIN_CFG, 0);
+#endif
if (pAd->CommonCfg.BBPCurrentBW == BW_40)
{
@@ -915,6 +935,14 @@ VOID RT28xxUsbMlmeRadioOFF(
AsicTurnOffRFClk(pAd, pAd->CommonCfg.Channel);
}
+#ifdef RT30xx
+ // Disable Tx/Rx DMA
+ RTUSBReadMACRegister(pAd, WPDMA_GLO_CFG, &GloCfg.word); // disable DMA
+ GloCfg.field.EnableTxDMA = 0;
+ GloCfg.field.EnableRxDMA = 0;
+ RTUSBWriteMACRegister(pAd, WPDMA_GLO_CFG, GloCfg.word); // abort all TX rings
+#endif
+
// Waiting for DMA idle
i = 0;
do
@@ -926,6 +954,13 @@ VOID RT28xxUsbMlmeRadioOFF(
RTMPusecDelay(1000);
}while (i++ < 100);
+#ifdef RT30xx
+ // Disable MAC Tx/Rx
+ RTMP_IO_READ32(pAd, MAC_SYS_CTRL, &Value);
+ Value &= (0xfffffff3);
+ RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, Value);
+#endif
+
AsicSendCommandToMcu(pAd, 0x30, 0xff, 0xff, 0x02);
}
diff --git a/drivers/staging/rt2870/common/cmm_info.c b/drivers/staging/rt2870/common/cmm_info.c
index 2917d5f74bf..032e0701f2f 100644
--- a/drivers/staging/rt2870/common/cmm_info.c
+++ b/drivers/staging/rt2870/common/cmm_info.c
@@ -1388,6 +1388,7 @@ VOID RTMPSetHT(
pAd->CommonCfg.DesiredHtPhy.RxSTBC = 0;
}
+#ifndef RT30xx
#ifdef RT2870
/* Frank recommend ,If not, Tx maybe block in high power. Rx has no problem*/
if(IS_RT3070(pAd) && ((pAd->RfIcType == RFIC_3020) || (pAd->RfIcType == RFIC_2020)))
@@ -1396,6 +1397,7 @@ VOID RTMPSetHT(
pAd->CommonCfg.DesiredHtPhy.TxSTBC = 0;
}
#endif // RT2870 //
+#endif
if(pHTPhyMode->SHORTGI == GI_400)
{
@@ -2454,13 +2456,26 @@ INT Set_HtAutoBa_Proc(
Value = simple_strtol(arg, 0, 10);
if (Value == 0)
+ {
pAd->CommonCfg.BACapability.field.AutoBA = FALSE;
- else if (Value == 1)
+#ifdef RT30xx
+ pAd->CommonCfg.BACapability.field.Policy = BA_NOTUSE;
+#endif
+ }
+ else if (Value == 1)
+ {
pAd->CommonCfg.BACapability.field.AutoBA = TRUE;
+#ifdef RT30xx
+ pAd->CommonCfg.BACapability.field.Policy = IMMED_BA;
+#endif
+ }
else
return FALSE; //Invalid argument
pAd->CommonCfg.REGBACapability.field.AutoBA = pAd->CommonCfg.BACapability.field.AutoBA;
+#ifdef RT30xx
+ pAd->CommonCfg.REGBACapability.field.Policy = pAd->CommonCfg.BACapability.field.Policy;
+#endif
SetCommonHT(pAd);
DBGPRINT(RT_DEBUG_TRACE, ("Set_HtAutoBa_Proc::(HtAutoBa=%d)\n",pAd->CommonCfg.BACapability.field.AutoBA));
@@ -2677,6 +2692,9 @@ PCHAR RTMPGetRalinkAuthModeStr(
{
case Ndis802_11AuthModeOpen:
return "OPEN";
+#ifdef RT30xx
+ default:
+#endif
case Ndis802_11AuthModeWPAPSK:
return "WPAPSK";
case Ndis802_11AuthModeShared:
@@ -2691,10 +2709,12 @@ PCHAR RTMPGetRalinkAuthModeStr(
return "WPAPSKWPA2PSK";
case Ndis802_11AuthModeWPA1WPA2:
return "WPA1WPA2";
+#ifndef RT30xx
case Ndis802_11AuthModeWPANone:
return "WPANONE";
default:
return "UNKNOW";
+#endif
}
}
@@ -2703,6 +2723,9 @@ PCHAR RTMPGetRalinkEncryModeStr(
{
switch(encryMode)
{
+#ifdef RT30xx
+ default:
+#endif
case Ndis802_11WEPDisabled:
return "NONE";
case Ndis802_11WEPEnabled:
@@ -2713,8 +2736,10 @@ PCHAR RTMPGetRalinkEncryModeStr(
return "AES";
case Ndis802_11Encryption4Enabled:
return "TKIPAES";
+#ifndef RT30xx
default:
return "UNKNOW";
+#endif
}
}
@@ -2739,7 +2764,12 @@ INT RTMPShowCfgValue(
{
sprintf(pBuf, "\n");
for (PRTMP_PRIVATE_STA_SHOW_CFG_VALUE_PROC = RTMP_PRIVATE_STA_SHOW_CFG_VALUE_PROC; PRTMP_PRIVATE_STA_SHOW_CFG_VALUE_PROC->name; PRTMP_PRIVATE_STA_SHOW_CFG_VALUE_PROC++)
+#ifndef RT30xx
sprintf(pBuf + strlen(pBuf), "%s\n", PRTMP_PRIVATE_STA_SHOW_CFG_VALUE_PROC->name);
+#endif
+#ifdef RT30xx
+ sprintf(pBuf, "%s%s\n", pBuf, PRTMP_PRIVATE_STA_SHOW_CFG_VALUE_PROC->name);
+#endif
}
return Status;
diff --git a/drivers/staging/rt2870/common/cmm_wpa.c b/drivers/staging/rt2870/common/cmm_wpa.c
index e206077e278..d467f5338c4 100644
--- a/drivers/staging/rt2870/common/cmm_wpa.c
+++ b/drivers/staging/rt2870/common/cmm_wpa.c
@@ -39,10 +39,14 @@
// WPA OUI
UCHAR OUI_WPA_NONE_AKM[4] = {0x00, 0x50, 0xF2, 0x00};
UCHAR OUI_WPA_VERSION[4] = {0x00, 0x50, 0xF2, 0x01};
+#ifndef RT30xx
UCHAR OUI_WPA_WEP40[4] = {0x00, 0x50, 0xF2, 0x01};
+#endif
UCHAR OUI_WPA_TKIP[4] = {0x00, 0x50, 0xF2, 0x02};
UCHAR OUI_WPA_CCMP[4] = {0x00, 0x50, 0xF2, 0x04};
+#ifndef RT30xx
UCHAR OUI_WPA_WEP104[4] = {0x00, 0x50, 0xF2, 0x05};
+#endif
UCHAR OUI_WPA_8021X_AKM[4] = {0x00, 0x50, 0xF2, 0x01};
UCHAR OUI_WPA_PSK_AKM[4] = {0x00, 0x50, 0xF2, 0x02};
// WPA2 OUI
@@ -51,7 +55,9 @@ UCHAR OUI_WPA2_TKIP[4] = {0x00, 0x0F, 0xAC, 0x02};
UCHAR OUI_WPA2_CCMP[4] = {0x00, 0x0F, 0xAC, 0x04};
UCHAR OUI_WPA2_8021X_AKM[4] = {0x00, 0x0F, 0xAC, 0x01};
UCHAR OUI_WPA2_PSK_AKM[4] = {0x00, 0x0F, 0xAC, 0x02};
+#ifndef RT30xx
UCHAR OUI_WPA2_WEP104[4] = {0x00, 0x0F, 0xAC, 0x05};
+#endif
// MSA OUI
UCHAR OUI_MSA_8021X_AKM[4] = {0x00, 0x0F, 0xAC, 0x05}; // Not yet final - IEEE 802.11s-D1.06
UCHAR OUI_MSA_PSK_AKM[4] = {0x00, 0x0F, 0xAC, 0x06}; // Not yet final - IEEE 802.11s-D1.06
@@ -370,6 +376,7 @@ static VOID RTMPInsertRsnIeCipher(
break;
}
+#ifndef RT30xx
if ((pAd->OpMode == OPMODE_STA) &&
(pAd->StaCfg.GroupCipher != Ndis802_11Encryption2Enabled) &&
(pAd->StaCfg.GroupCipher != Ndis802_11Encryption3Enabled))
@@ -385,7 +392,7 @@ static VOID RTMPInsertRsnIeCipher(
break;
}
}
-
+#endif
// swap for big-endian platform
pRsnie_cipher->version = cpu2le16(pRsnie_cipher->version);
pRsnie_cipher->ucount = cpu2le16(pRsnie_cipher->ucount);
@@ -446,6 +453,7 @@ static VOID RTMPInsertRsnIeCipher(
break;
}
+#ifndef RT30xx
if ((pAd->OpMode == OPMODE_STA) &&
(pAd->StaCfg.GroupCipher != Ndis802_11Encryption2Enabled) &&
(pAd->StaCfg.GroupCipher != Ndis802_11Encryption3Enabled))
@@ -461,7 +469,7 @@ static VOID RTMPInsertRsnIeCipher(
break;
}
}
-
+#endif
// swap for big-endian platform
pRsnie_cipher->version = cpu2le16(pRsnie_cipher->version);
pRsnie_cipher->ucount = cpu2le16(pRsnie_cipher->ucount);
diff --git a/drivers/staging/rt2870/common/eeprom.c b/drivers/staging/rt2870/common/eeprom.c
index bed2d666629..e161f929a6f 100644
--- a/drivers/staging/rt2870/common/eeprom.c
+++ b/drivers/staging/rt2870/common/eeprom.c
@@ -73,12 +73,16 @@ USHORT ShiftInBits(
RaiseClock(pAd, &x);
RTMP_IO_READ32(pAd, E2PROM_CSR, &x);
-
+#ifdef RT30xx
+ LowerClock(pAd, &x); //prevent read failed
+#endif
x &= ~(EEDI);
if(x & EEDO)
data |= 1;
+#ifndef RT30xx
LowerClock(pAd, &x);
+#endif
}
return data;
@@ -181,6 +185,15 @@ USHORT RTMP_EEPROM_READ16(
UINT32 x;
USHORT data;
+#ifdef RT30xx
+ if (pAd->NicConfig2.field.AntDiversity)
+ {
+ pAd->EepromAccess = TRUE;
+ }
+//2008/09/11:KH add to support efuse<--
+//2008/09/11:KH add to support efuse-->
+{
+#endif
Offset /= 2;
// reset bits and set EECS
RTMP_IO_READ32(pAd, E2PROM_CSR, &x);
@@ -188,9 +201,17 @@ USHORT RTMP_EEPROM_READ16(
x |= EECS;
RTMP_IO_WRITE32(pAd, E2PROM_CSR, x);
+#ifdef RT30xx
+ // patch can not access e-Fuse issue
+ if (!IS_RT3090(pAd))
+ {
+#endif
// kick a pulse
RaiseClock(pAd, &x);
LowerClock(pAd, &x);
+#ifdef RT30xx
+ }
+#endif
// output the read_opcode and register number in that order
ShiftOutBits(pAd, EEPROM_READ_OPCODE, 3);
@@ -201,6 +222,17 @@ USHORT RTMP_EEPROM_READ16(
EEpromCleanup(pAd);
+#ifdef RT30xx
+ // Antenna and EEPROM access are both using EESK pin,
+ // Therefor we should avoid accessing EESK at the same time
+ // Then restore antenna after EEPROM access
+ if ((pAd->NicConfig2.field.AntDiversity) || (pAd->RfIcType == RFIC_3020))
+ {
+ pAd->EepromAccess = FALSE;
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
+ }
+}
+#endif
return data;
} //ReadEEprom
@@ -211,6 +243,15 @@ VOID RTMP_EEPROM_WRITE16(
{
UINT32 x;
+#ifdef RT30xx
+ if (pAd->NicConfig2.field.AntDiversity)
+ {
+ pAd->EepromAccess = TRUE;
+ }
+ //2008/09/11:KH add to support efuse<--
+//2008/09/11:KH add to support efuse-->
+ {
+#endif
Offset /= 2;
EWEN(pAd);
@@ -221,9 +262,17 @@ VOID RTMP_EEPROM_WRITE16(
x |= EECS;
RTMP_IO_WRITE32(pAd, E2PROM_CSR, x);
+#ifdef RT30xx
+ // patch can not access e-Fuse issue
+ if (!IS_RT3090(pAd))
+ {
+#endif
// kick a pulse
RaiseClock(pAd, &x);
LowerClock(pAd, &x);
+#ifdef RT30xx
+ }
+#endif
// output the read_opcode ,register number and data in that order
ShiftOutBits(pAd, EEPROM_WRITE_OPCODE, 3);
@@ -240,5 +289,1222 @@ VOID RTMP_EEPROM_WRITE16(
EWDS(pAd);
EEpromCleanup(pAd);
+
+#ifdef RT30xx
+ // Antenna and EEPROM access are both using EESK pin,
+ // Therefor we should avoid accessing EESK at the same time
+ // Then restore antenna after EEPROM access
+ if ((pAd->NicConfig2.field.AntDiversity) || (pAd->RfIcType == RFIC_3020))
+ {
+ pAd->EepromAccess = FALSE;
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
+ }
+}
+#endif
+}
+
+//2008/09/11:KH add to support efuse<--
+#ifdef RT30xx
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+UCHAR eFuseReadRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ OUT USHORT* pData)
+{
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ int i;
+ USHORT efuseDataOffset;
+ UINT32 data;
+
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ //Use the eeprom logical address and covert to address to block number
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 0.
+ eFuseCtrlStruc.field.EFSROM_MODE = 0;
+
+ //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ //rtmp.HwMemoryReadDword(EFUSE_CTRL, (DWORD *) &eFuseCtrlStruc, 4);
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ {
+ break;
+ }
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //if EFSROM_AOUT is not found in physical address, write 0xffff
+ if (eFuseCtrlStruc.field.EFSROM_AOUT == 0x3f)
+ {
+ for(i=0; i<Length/2; i++)
+ *(pData+2*i) = 0xffff;
+ }
+ else
+ {
+ //Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x590-0x59C)
+ efuseDataOffset = EFUSE_DATA3 - (Offset & 0xC) ;
+ //data hold 4 bytes data.
+ //In RTMP_IO_READ32 will automatically execute 32-bytes swapping
+ RTMP_IO_READ32(pAd, efuseDataOffset, &data);
+ //Decide the upper 2 bytes or the bottom 2 bytes.
+ // Little-endian S | S Big-endian
+ // addr 3 2 1 0 | 0 1 2 3
+ // Ori-V D C B A | A B C D
+ //After swapping
+ // D C B A | D C B A
+ //Return 2-bytes
+ //The return byte statrs from S. Therefore, the little-endian will return BA, the Big-endian will return DC.
+ //For returning the bottom 2 bytes, the Big-endian should shift right 2-bytes.
+ data = data >> (8*(Offset & 0x3));
+
+ NdisMoveMemory(pData, &data, Length);
+ }
+
+ return (UCHAR) eFuseCtrlStruc.field.EFSROM_AOUT;
+
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFusePhysicalReadRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ OUT USHORT* pData)
+{
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ int i;
+ USHORT efuseDataOffset;
+ UINT32 data;
+
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.
+ //Read in physical view
+ eFuseCtrlStruc.field.EFSROM_MODE = 1;
+
+ //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)
+ //Because the size of each EFUSE_DATA is 4 Bytes, the size of address of each is 2 bits.
+ //The previous 2 bits is the EFUSE_DATA number, the last 2 bits is used to decide which bytes
+ //Decide which EFUSE_DATA to read
+ //590:F E D C
+ //594:B A 9 8
+ //598:7 6 5 4
+ //59C:3 2 1 0
+ efuseDataOffset = EFUSE_DATA3 - (Offset & 0xC) ;
+
+ RTMP_IO_READ32(pAd, efuseDataOffset, &data);
+
+ data = data >> (8*(Offset & 0x3));
+
+ NdisMoveMemory(pData, &data, Length);
+
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFuseReadPhysical(
+ IN PRTMP_ADAPTER pAd,
+ IN PUSHORT lpInBuffer,
+ IN ULONG nInBufferSize,
+ OUT PUSHORT lpOutBuffer,
+ IN ULONG nOutBufferSize
+)
+{
+ USHORT* pInBuf = (USHORT*)lpInBuffer;
+ USHORT* pOutBuf = (USHORT*)lpOutBuffer;
+
+ USHORT Offset = pInBuf[0]; //addr
+ USHORT Length = pInBuf[1]; //length
+ int i;
+
+ for(i=0; i<Length; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd,Offset+i, 2, &pOutBuf[i/2]);
+ }
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS eFuseRead(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ OUT PUCHAR pData,
+ IN USHORT Length)
+{
+ USHORT* pOutBuf = (USHORT*)pData;
+ NTSTATUS Status = STATUS_SUCCESS;
+ UCHAR EFSROM_AOUT;
+ int i;
+
+ for(i=0; i<Length; i+=2)
+ {
+ EFSROM_AOUT = eFuseReadRegisters(pAd, Offset+i, 2, &pOutBuf[i/2]);
+ }
+ return Status;
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFusePhysicalWriteRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ OUT USHORT* pData)
+{
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ int i;
+ USHORT efuseDataOffset;
+ UINT32 data, eFuseDataBuffer[4];
+
+ //Step0. Write 16-byte of data to EFUSE_DATA0-3 (0x590-0x59C), where EFUSE_DATA0 is the LSB DW, EFUSE_DATA3 is the MSB DW.
+
+ /////////////////////////////////////////////////////////////////
+ //read current values of 16-byte block
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.
+ eFuseCtrlStruc.field.EFSROM_MODE = 1;
+
+ //Step2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //Step4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ RTMP_IO_READ32(pAd, efuseDataOffset, (PUINT32) &eFuseDataBuffer[i]);
+ efuseDataOffset -= 4;
+ }
+
+ //Update the value, the offset is multiple of 2, length is 2
+ efuseDataOffset = (Offset & 0xc) >> 2;
+ data = pData[0] & 0xffff;
+ //The offset should be 0x***10 or 0x***00
+ if((Offset % 4) != 0)
+ {
+ eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff) | (data << 16);
+ }
+ else
+ {
+ eFuseDataBuffer[efuseDataOffset] = (eFuseDataBuffer[efuseDataOffset] & 0xffff0000) | data;
+ }
+
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ RTMP_IO_WRITE32(pAd, efuseDataOffset, eFuseDataBuffer[i]);
+ efuseDataOffset -= 4;
+ }
+ /////////////////////////////////////////////////////////////////
+
+ //Step1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step2. Write EFSROM_MODE (0x580, bit7:bit6) to 3.
+ eFuseCtrlStruc.field.EFSROM_MODE = 3;
+
+ //Step3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It¡¦s done.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+
+ RTMPusecDelay(2);
+ i++;
+ }
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS eFuseWriteRegisters(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ IN USHORT* pData)
+{
+ USHORT i;
+ USHORT eFuseData;
+ USHORT LogicalAddress, BlkNum = 0xffff;
+ UCHAR EFSROM_AOUT;
+
+ USHORT addr,tmpaddr, InBuf[3], tmpOffset;
+ USHORT buffer[8];
+ BOOLEAN bWriteSuccess = TRUE;
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters Offset=%x, pData=%x\n", Offset, *pData));
+
+ //Step 0. find the entry in the mapping table
+ //The address of EEPROM is 2-bytes alignment.
+ //The last bit is used for alignment, so it must be 0.
+ tmpOffset = Offset & 0xfffe;
+ EFSROM_AOUT = eFuseReadRegisters(pAd, tmpOffset, 2, &eFuseData);
+
+ if( EFSROM_AOUT == 0x3f)
+ { //find available logical address pointer
+ //the logical address does not exist, find an empty one
+ //from the first address of block 45=16*45=0x2d0 to the last address of block 47
+ //==>48*16-3(reserved)=2FC
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ //Retrive the logical block nubmer form each logical address pointer
+ //It will access two logical address pointer each time.
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {//Not used logical address pointer
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {//Not used logical address pointer
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START+1;
+ }
+ break;
+ }
+ }
+ }
+ else
+ {
+ BlkNum = EFSROM_AOUT;
+ }
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum));
+
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+
+ //Step 1. Save data of this block which is pointed by the avaible logical address pointer
+ // read and save the original block data
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ buffer[i] = InBuf[2];
+ }
+
+ //Step 2. Update the data in buffer, and write the data to Efuse
+ buffer[ (Offset >> 1) % 8] = pData[0];
+
+ do
+ {
+ //Step 3. Write the data to Efuse
+ if(!bWriteSuccess)
+ {
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = buffer[i];
+
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
+ }
+ }
+ else
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+(Offset % 16);
+ InBuf[1] = 2;
+ InBuf[2] = pData[0];
+
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
+ }
+
+ //Step 4. Write mapping table
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ //convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry
+ tmpOffset = Offset;
+ tmpOffset >>= 4;
+ tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40;
+ tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80;
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ InBuf[2] = tmpOffset<<8;
+ else
+ InBuf[2] = tmpOffset;
+
+ eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0);
+
+ //Step 5. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted
+ bWriteSuccess = TRUE;
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ if(buffer[i] != InBuf[2])
+ {
+ bWriteSuccess = FALSE;
+ break;
+ }
+ }
+
+ //Step 6. invlidate mapping entry and find a free mapping entry if not succeed
+ if (!bWriteSuccess)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess BlkNum = %d\n", BlkNum));
+
+ // the offset of current mapping entry
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ //find a new mapping entry
+ BlkNum = 0xffff;
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i+1-EFUSE_USAGE_MAP_START;
+ }
+ break;
+ }
+ }
+ DBGPRINT(RT_DEBUG_TRACE, ("Not bWriteSuccess new BlkNum = %d\n", BlkNum));
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+
+ //invalidate the original mapping entry if new entry is not found
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ {
+ // Invalidate the high byte
+ for (i=8; i<15; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ else
+ {
+ // invalidate the low byte
+ for (i=0; i<8; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 0);
+ }
+ }
+ while(!bWriteSuccess);
+
+ return TRUE;
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+VOID eFuseWritePhysical(
+ IN PRTMP_ADAPTER pAd,
+ PUSHORT lpInBuffer,
+ ULONG nInBufferSize,
+ PUCHAR lpOutBuffer,
+ ULONG nOutBufferSize
+)
+{
+ USHORT* pInBuf = (USHORT*)lpInBuffer;
+ int i;
+ //USHORT* pOutBuf = (USHORT*)ioBuffer;
+
+ USHORT Offset = pInBuf[0]; //addr
+ USHORT Length = pInBuf[1]; //length
+ USHORT* pValueX = &pInBuf[2]; //value ...
+ // Little-endian S | S Big-endian
+ // addr 3 2 1 0 | 0 1 2 3
+ // Ori-V D C B A | A B C D
+ //After swapping
+ // D C B A | D C B A
+ //Both the little and big-endian use the same sequence to write data.
+ //Therefore, we only need swap data when read the data.
+ for(i=0; i<Length; i+=2)
+ {
+ eFusePhysicalWriteRegisters(pAd, Offset+i, 2, &pValueX[i/2]);
+ }
+}
+
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS eFuseWrite(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN PUCHAR pData,
+ IN USHORT length)
+{
+ int i;
+
+ USHORT* pValueX = (PUSHORT) pData; //value ...
+ //The input value=3070 will be stored as following
+ // Little-endian S | S Big-endian
+ // addr 1 0 | 0 1
+ // Ori-V 30 70 | 30 70
+ //After swapping
+ // 30 70 | 70 30
+ //Casting
+ // 3070 | 7030 (x)
+ //The swapping should be removed for big-endian
+ for(i=0; i<length; i+=2)
+ {
+ eFuseWriteRegisters(pAd, Offset+i, 2, &pValueX[i/2]);
+ }
+
+ return TRUE;
+}
+
+/*
+ ========================================================================
+
+ Routine Description:
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+INT set_eFuseGetFreeBlockCount_Proc(
+ IN PRTMP_ADAPTER pAd,
+ IN PUCHAR arg)
+{
+ USHORT i;
+ USHORT LogicalAddress;
+ USHORT efusefreenum=0;
+ if(!pAd->bUseEfuse)
+ return FALSE;
+ for (i = EFUSE_USAGE_MAP_START; i <= EFUSE_USAGE_MAP_END; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {
+ efusefreenum= (UCHAR) (EFUSE_USAGE_MAP_END-i+1);
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {
+ efusefreenum = (UCHAR) (EFUSE_USAGE_MAP_END-i);
+ break;
+ }
+
+ if(i == EFUSE_USAGE_MAP_END)
+ efusefreenum = 0;
+ }
+ printk("efuseFreeNumber is %d\n",efusefreenum);
+ return TRUE;
+}
+INT set_eFusedump_Proc(
+ IN PRTMP_ADAPTER pAd,
+ IN PUCHAR arg)
+{
+USHORT InBuf[3];
+ INT i=0;
+ if(!pAd->bUseEfuse)
+ return FALSE;
+ for(i =0; i<EFUSE_USAGE_MAP_END/2; i++)
+ {
+ InBuf[0] = 2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+ if(i%4==0)
+ printk("\nBlock %x:",i/8);
+ printk("%04x ",InBuf[2]);
+ }
+ return TRUE;
+}
+INT set_eFuseLoadFromBin_Proc(
+ IN PRTMP_ADAPTER pAd,
+ IN PUCHAR arg)
+{
+ CHAR *src;
+ struct file *srcf;
+ INT retval, orgfsuid, orgfsgid;
+ mm_segment_t orgfs;
+ UCHAR *buffer;
+ UCHAR BinFileSize=0;
+ INT i = 0,j=0,k=1;
+ USHORT *PDATA;
+ USHORT DATA;
+ BinFileSize=strlen("RT30xxEEPROM.bin");
+ src = kmalloc(128, MEM_ALLOC_FLAG);
+ NdisZeroMemory(src, 128);
+
+ if(strlen(arg)>0)
+ {
+
+ NdisMoveMemory(src, arg, strlen(arg));
+ }
+
+ else
+ {
+
+ NdisMoveMemory(src, "RT30xxEEPROM.bin", BinFileSize);
+ }
+
+ DBGPRINT(RT_DEBUG_TRACE, ("FileName=%s\n",src));
+ buffer = kmalloc(MAX_EEPROM_BIN_FILE_SIZE, MEM_ALLOC_FLAG);
+
+ if(buffer == NULL)
+ {
+ kfree(src);
+ return FALSE;
+}
+ PDATA=kmalloc(sizeof(USHORT)*8,MEM_ALLOC_FLAG);
+
+ if(PDATA==NULL)
+ {
+ kfree(src);
+
+ kfree(buffer);
+ return FALSE;
+ }
+ /* Don't change to uid 0, let the file be opened as the "normal" user */
+#if 0
+ orgfsuid = current->fsuid;
+ orgfsgid = current->fsgid;
+ current->fsuid=current->fsgid = 0;
+#endif
+ orgfs = get_fs();
+ set_fs(KERNEL_DS);
+
+ if (src && *src)
+ {
+ srcf = filp_open(src, O_RDONLY, 0);
+ if (IS_ERR(srcf))
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error %ld opening %s\n", -PTR_ERR(srcf),src));
+ return FALSE;
+ }
+ else
+ {
+ // The object must have a read method
+ if (srcf->f_op && srcf->f_op->read)
+ {
+ memset(buffer, 0x00, MAX_EEPROM_BIN_FILE_SIZE);
+ while(srcf->f_op->read(srcf, &buffer[i], 1, &srcf->f_pos)==1)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("%02X ",buffer[i]));
+ if((i+1)%8==0)
+ DBGPRINT(RT_DEBUG_TRACE, ("\n"));
+ i++;
+ if(i>=MAX_EEPROM_BIN_FILE_SIZE)
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error %ld reading %s, The file is too large[1024]\n", -PTR_ERR(srcf),src));
+ kfree(PDATA);
+ kfree(buffer);
+ kfree(src);
+ return FALSE;
+ }
+ }
+ }
+ else
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error!! System doest not support read function\n"));
+ kfree(PDATA);
+ kfree(buffer);
+ kfree(src);
+ return FALSE;
+ }
+ }
+
+
+ }
+ else
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("--> Error src or srcf is null\n"));
+ kfree(PDATA);
+ kfree(buffer);
+ return FALSE;
+
+ }
+
+
+ retval=filp_close(srcf,NULL);
+
+ if (retval)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("--> Error %d closing %s\n", -retval, src));
+ }
+ set_fs(orgfs);
+#if 0
+ current->fsuid = orgfsuid;
+ current->fsgid = orgfsgid;
+#endif
+ for(j=0;j<i;j++)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("%02X ",buffer[j]));
+ if((j+1)%2==0)
+ PDATA[j/2%8]=((buffer[j]<<8)&0xff00)|(buffer[j-1]&0xff);
+ if(j%16==0)
+ {
+ k=buffer[j];
+ }
+ else
+ {
+ k&=buffer[j];
+ if((j+1)%16==0)
+ {
+
+ DBGPRINT(RT_DEBUG_TRACE, (" result=%02X,blk=%02x\n",k,j/16));
+
+ if(k!=0xff)
+ eFuseWriteRegistersFromBin(pAd,(USHORT)j-15, 16, PDATA);
+ else
+ {
+ if(eFuseReadRegisters(pAd,j, 2,(PUSHORT)&DATA)!=0x3f)
+ eFuseWriteRegistersFromBin(pAd,(USHORT)j-15, 16, PDATA);
+ }
+ /*
+ for(l=0;l<8;l++)
+ printk("%04x ",PDATA[l]);
+ printk("\n");
+ */
+ NdisZeroMemory(PDATA,16);
+
+
+ }
+ }
+
+
+ }
+
+
+ kfree(PDATA);
+ kfree(buffer);
+ kfree(src);
+ return TRUE;
+}
+NTSTATUS eFuseWriteRegistersFromBin(
+ IN PRTMP_ADAPTER pAd,
+ IN USHORT Offset,
+ IN USHORT Length,
+ IN USHORT* pData)
+{
+ USHORT i;
+ USHORT eFuseData;
+ USHORT LogicalAddress, BlkNum = 0xffff;
+ UCHAR EFSROM_AOUT,Loop=0;
+ EFUSE_CTRL_STRUC eFuseCtrlStruc;
+ USHORT efuseDataOffset;
+ UINT32 data,tempbuffer;
+ USHORT addr,tmpaddr, InBuf[3], tmpOffset;
+ UINT32 buffer[4];
+ BOOLEAN bWriteSuccess = TRUE;
+ BOOLEAN bNotWrite=TRUE;
+ BOOLEAN bAllocateNewBlk=TRUE;
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin Offset=%x, pData=%04x:%04x:%04x:%04x\n", Offset, *pData,*(pData+1),*(pData+2),*(pData+3)));
+
+ do
+ {
+ //Step 0. find the entry in the mapping table
+ //The address of EEPROM is 2-bytes alignment.
+ //The last bit is used for alignment, so it must be 0.
+ Loop++;
+ tmpOffset = Offset & 0xfffe;
+ EFSROM_AOUT = eFuseReadRegisters(pAd, tmpOffset, 2, &eFuseData);
+
+ if( EFSROM_AOUT == 0x3f)
+ { //find available logical address pointer
+ //the logical address does not exist, find an empty one
+ //from the first address of block 45=16*45=0x2d0 to the last address of block 47
+ //==>48*16-3(reserved)=2FC
+ bAllocateNewBlk=TRUE;
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ //Retrive the logical block nubmer form each logical address pointer
+ //It will access two logical address pointer each time.
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {//Not used logical address pointer
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {//Not used logical address pointer
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START+1;
+ }
+ break;
+ }
+ }
+ }
+ else
+ {
+ bAllocateNewBlk=FALSE;
+ BlkNum = EFSROM_AOUT;
+ }
+
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters BlkNum = %d \n", BlkNum));
+
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegisters: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+ //Step 1.1.0
+ //If the block is not existing in mapping table, create one
+ //and write down the 16-bytes data to the new block
+ if(bAllocateNewBlk)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk\n"));
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("Allocate New Blk, Data%d=%04x%04x\n",3-i,pData[2*i+1],pData[2*i]));
+ tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i];
+
+
+ RTMP_IO_WRITE32(pAd, efuseDataOffset,tempbuffer);
+ efuseDataOffset -= 4;
+
+ }
+ /////////////////////////////////////////////////////////////////
+
+ //Step1.1.1. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = BlkNum* 0x10 ;
+
+ //Step1.1.2. Write EFSROM_MODE (0x580, bit7:bit6) to 3.
+ eFuseCtrlStruc.field.EFSROM_MODE = 3;
+
+ //Step1.1.3. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical write procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step1.1.4. Polling EFSROM_KICK(0x580, bit30) until it become 0 again. It¡¦s done.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ }
+ else
+ { //Step1.2.
+ //If the same logical number is existing, check if the writting data and the data
+ //saving in this block are the same.
+ /////////////////////////////////////////////////////////////////
+ //read current values of 16-byte block
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ //Step1.2.0. Write 10-bit of address to EFSROM_AIN (0x580, bit25:bit16). The address must be 16-byte alignment.
+ eFuseCtrlStruc.field.EFSROM_AIN = Offset & 0xfff0;
+
+ //Step1.2.1. Write EFSROM_MODE (0x580, bit7:bit6) to 1.
+ eFuseCtrlStruc.field.EFSROM_MODE = 0;
+
+ //Step1.2.2. Write EFSROM_KICK (0x580, bit30) to 1 to kick-off physical read procedure.
+ eFuseCtrlStruc.field.EFSROM_KICK = 1;
+
+ NdisMoveMemory(&data, &eFuseCtrlStruc, 4);
+ RTMP_IO_WRITE32(pAd, EFUSE_CTRL, data);
+
+ //Step1.2.3. Polling EFSROM_KICK(0x580, bit30) until it become 0 again.
+ i = 0;
+ while(i < 100)
+ {
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, (PUINT32) &eFuseCtrlStruc);
+
+ if(eFuseCtrlStruc.field.EFSROM_KICK == 0)
+ break;
+ RTMPusecDelay(2);
+ i++;
+ }
+
+ //Step1.2.4. Read 16-byte of data from EFUSE_DATA0-3 (0x59C-0x590)
+ efuseDataOffset = EFUSE_DATA3;
+ for(i=0; i< 4; i++)
+ {
+ RTMP_IO_READ32(pAd, efuseDataOffset, (PUINT32) &buffer[i]);
+ efuseDataOffset -= 4;
+ }
+ //Step1.2.5. Check if the data of efuse and the writing data are the same.
+ for(i =0; i<4; i++)
+ {
+ tempbuffer=((pData[2*i+1]<<16)&0xffff0000)|pData[2*i];
+ DBGPRINT(RT_DEBUG_TRACE, ("buffer[%d]=%x,pData[%d]=%x,pData[%d]=%x,tempbuffer=%x\n",i,buffer[i],2*i,pData[2*i],2*i+1,pData[2*i+1],tempbuffer));
+
+ if(((buffer[i]&0xffff0000)==(pData[2*i+1]<<16))&&((buffer[i]&0xffff)==pData[2*i]))
+ bNotWrite&=TRUE;
+ else
+ {
+ bNotWrite&=FALSE;
+ break;
+ }
+ }
+ if(!bNotWrite)
+ {
+ printk("The data is not the same\n");
+
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = pData[i];
+
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 2);
+ }
+
+ }
+ else
+ return TRUE;
+ }
+
+
+
+ //Step 2. Write mapping table
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ //convert the address from 10 to 8 bit ( bit7, 6 = parity and bit5 ~ 0 = bit9~4), and write to logical map entry
+ tmpOffset = Offset;
+ tmpOffset >>= 4;
+ tmpOffset |= ((~((tmpOffset & 0x01) ^ ( tmpOffset >> 1 & 0x01) ^ (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01))) << 6) & 0x40;
+ tmpOffset |= ((~( (tmpOffset >> 2 & 0x01) ^ (tmpOffset >> 3 & 0x01) ^ (tmpOffset >> 4 & 0x01) ^ ( tmpOffset >> 5 & 0x01))) << 7) & 0x80;
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ InBuf[2] = tmpOffset<<8;
+ else
+ InBuf[2] = tmpOffset;
+
+ eFuseWritePhysical(pAd,&InBuf[0], 6, NULL, 0);
+
+ //Step 3. Compare data if not the same, invalidate the mapping entry, then re-write the data until E-fuse is exhausted
+ bWriteSuccess = TRUE;
+ for(i =0; i<8; i++)
+ {
+ addr = BlkNum * 0x10 ;
+
+ InBuf[0] = addr+2*i;
+ InBuf[1] = 2;
+ InBuf[2] = 0x0;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+ DBGPRINT(RT_DEBUG_TRACE, ("addr=%x, buffer[i]=%x,InBuf[2]=%x\n",InBuf[0],pData[i],InBuf[2]));
+ if(pData[i] != InBuf[2])
+ {
+ bWriteSuccess = FALSE;
+ break;
+ }
+ }
+
+ //Step 4. invlidate mapping entry and find a free mapping entry if not succeed
+
+ if (!bWriteSuccess&&Loop<2)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess BlkNum = %d\n", BlkNum));
+
+ // the offset of current mapping entry
+ addr = EFUSE_USAGE_MAP_START+BlkNum;
+
+ //find a new mapping entry
+ BlkNum = 0xffff;
+ for (i=EFUSE_USAGE_MAP_START; i<=EFUSE_USAGE_MAP_END; i+=2)
+ {
+ eFusePhysicalReadRegisters(pAd, i, 2, &LogicalAddress);
+ if( (LogicalAddress & 0xff) == 0)
+ {
+ BlkNum = i-EFUSE_USAGE_MAP_START;
+ break;
+ }
+ else if(( (LogicalAddress >> 8) & 0xff) == 0)
+ {
+ if (i != EFUSE_USAGE_MAP_END)
+ {
+ BlkNum = i+1-EFUSE_USAGE_MAP_START;
+ }
+ break;
+ }
+ }
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin::Not bWriteSuccess new BlkNum = %d\n", BlkNum));
+ if(BlkNum == 0xffff)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("eFuseWriteRegistersFromBin: out of free E-fuse space!!!\n"));
+ return FALSE;
+ }
+
+ //invalidate the original mapping entry if new entry is not found
+ tmpaddr = addr;
+
+ if(addr % 2 != 0)
+ addr = addr -1;
+ InBuf[0] = addr;
+ InBuf[1] = 2;
+
+ eFuseReadPhysical(pAd, &InBuf[0], 4, &InBuf[2], 2);
+
+ // write the logical address
+ if(tmpaddr%2 != 0)
+ {
+ // Invalidate the high byte
+ for (i=8; i<15; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ else
+ {
+ // invalidate the low byte
+ for (i=0; i<8; i++)
+ {
+ if( ( (InBuf[2] >> i) & 0x01) == 0)
+ {
+ InBuf[2] |= (0x1 <<i);
+ break;
+ }
+ }
+ }
+ eFuseWritePhysical(pAd, &InBuf[0], 6, NULL, 0);
+ }
+
+ }
+ while(!bWriteSuccess&&Loop<2);
+
+ return TRUE;
}
+#endif // RT30xx //
+//2008/09/11:KH add to support efuse-->
diff --git a/drivers/staging/rt2870/common/mlme.c b/drivers/staging/rt2870/common/mlme.c
index 399ced28573..f1962e04a8b 100644
--- a/drivers/staging/rt2870/common/mlme.c
+++ b/drivers/staging/rt2870/common/mlme.c
@@ -447,7 +447,13 @@ FREQUENCY_ITEM FreqItems3020[] =
{13, 247, 2, 2},
{14, 248, 2, 4},
};
+#ifndef RT30xx
#define NUM_OF_3020_CHNL (sizeof(FreqItems3020) / sizeof(FREQUENCY_ITEM))
+#endif
+#ifdef RT30xx
+//2008/07/10:KH Modified to share this variable
+UCHAR NUM_OF_3020_CHNL=(sizeof(FreqItems3020) / sizeof(FREQUENCY_ITEM));
+#endif
/*
==========================================================================
@@ -638,7 +644,10 @@ VOID MlmeHandler(
VOID MlmeHalt(
IN PRTMP_ADAPTER pAd)
{
- BOOLEAN Cancelled;
+ BOOLEAN Cancelled;
+#ifdef RT3070
+ UINT32 TxPinCfg = 0x00050F0F;
+#endif // RT3070 //
DBGPRINT(RT_DEBUG_TRACE, ("==> MlmeHalt\n"));
@@ -679,6 +688,16 @@ VOID MlmeHalt(
RTMP_IO_WRITE32(pAd, LED_CFG, LedCfg.word);
}
#endif // RT2870 //
+#ifdef RT3070
+ //
+ // Turn off LNA_PE
+ //
+ if (IS_RT3070(pAd) || IS_RT3071(pAd))
+ {
+ TxPinCfg &= 0xFFFFF0F0;
+ RTUSBWriteMACRegister(pAd, TX_PIN_CFG, TxPinCfg);
+ }
+#endif // RT3070 //
}
RTMPusecDelay(5000); // 5 msec to gurantee Ant Diversity timer canceled
@@ -789,6 +808,10 @@ VOID MlmePeriodicExec(
// RECBATimerTimeout(SystemSpecific1,FunctionContext,SystemSpecific2,SystemSpecific3);
pAd->Mlme.PeriodicRound ++;
+#ifdef RT3070
+ // execute every 100ms, update the Tx FIFO Cnt for update Tx Rate.
+ NICUpdateFifoStaCounters(pAd);
+#endif // RT3070 //
// execute every 500ms
if ((pAd->Mlme.PeriodicRound % 5 == 0) && RTMPAutoRateSwitchCheck(pAd)/*(OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_TX_RATE_SWITCH_ENABLED))*/)
{
@@ -852,6 +875,7 @@ VOID MlmePeriodicExec(
pAd->RalinkCounters.OneSecTxRetryOkCount +
pAd->RalinkCounters.OneSecTxFailCount;
+ // dynamic adjust antenna evaluation period according to the traffic
if (TxTotalCnt > 50)
{
if (pAd->Mlme.OneSecPeriodicRound % 10 == 0)
@@ -1334,7 +1358,10 @@ VOID MlmeSelectTxRateTable(
//else if ((pAd->StaActive.SupRateLen == 4) && (pAd->StaActive.ExtRateLen == 0) && (pAd->StaActive.SupportedPhyInfo.MCSSet[0] == 0) && (pAd->StaActive.SupportedPhyInfo.MCSSet[1] == 0))
if ((pEntry->RateLen == 4)
+#ifndef RT30xx
+//Iverson mark for Adhoc b mode,sta will use rate 54 Mbps when connect with sta b/g/n mode
&& (pEntry->HTCapability.MCSSet[0] == 0) && (pEntry->HTCapability.MCSSet[1] == 0)
+#endif
)
{// B only AP
*ppTable = RateSwitchTable11B;
@@ -2501,6 +2528,7 @@ VOID MlmeCheckPsmChange(
if (INFRA_ON(pAd) &&
(PowerMode != Ndis802_11PowerModeCAM) &&
(pAd->StaCfg.Psm == PWR_ACTIVE) &&
+#ifndef RT30xx
(pAd->Mlme.CntlMachine.CurrState == CNTL_IDLE))
{
NdisGetSystemUpTime(&pAd->Mlme.LastSendNULLpsmTime);
@@ -2515,6 +2543,42 @@ VOID MlmeCheckPsmChange(
RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE);
}
}
+#endif
+#ifdef RT30xx
+// (! RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS))
+ (pAd->Mlme.CntlMachine.CurrState == CNTL_IDLE) /*&&
+ (pAd->RalinkCounters.OneSecTxNoRetryOkCount == 0) &&
+ (pAd->RalinkCounters.OneSecTxRetryOkCount == 0)*/)
+ {
+ // add by johnli, use Rx OK data count per second to calculate throughput
+ // If Ttraffic is too high ( > 400 Rx per second), don't go to sleep mode. If tx rate is low, use low criteria
+ // Mode=CCK/MCS=3 => 11 Mbps, Mode=OFDM/MCS=3 => 18 Mbps
+ if (((pAd->StaCfg.HTPhyMode.field.MCS <= 3) &&
+/* Iverson mark
+ (pAd->StaCfg.HTPhyMode.field.MODE <= MODE_OFDM) &&
+*/
+ (pAd->RalinkCounters.OneSecRxOkDataCnt < (ULONG)100)) ||
+ ((pAd->StaCfg.HTPhyMode.field.MCS > 3) &&
+/* Iverson mark
+ (pAd->StaCfg.HTPhyMode.field.MODE > MODE_OFDM) &&
+*/
+ (pAd->RalinkCounters.OneSecRxOkDataCnt < (ULONG)400)))
+ {
+ // Get this time
+ NdisGetSystemUpTime(&pAd->Mlme.LastSendNULLpsmTime);
+ pAd->RalinkCounters.RxCountSinceLastNULL = 0;
+ MlmeSetPsmBit(pAd, PWR_SAVE);
+ if (!(pAd->CommonCfg.bAPSDCapable && pAd->CommonCfg.APEdcaParm.bAPSDCapable))
+ {
+ RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, FALSE);
+ }
+ else
+ {
+ RTMPSendNullFrame(pAd, pAd->CommonCfg.TxRate, TRUE);
+ }
+ }
+ }
+#endif
}
// IRQL = PASSIVE_LEVEL
@@ -2529,7 +2593,9 @@ VOID MlmeSetPsmBit(
RTMP_IO_READ32(pAd, AUTO_RSP_CFG, &csr4.word);
csr4.field.AckCtsPsmBit = (psm == PWR_SAVE)? 1:0;
RTMP_IO_WRITE32(pAd, AUTO_RSP_CFG, csr4.word);
+#ifndef RT30xx
DBGPRINT(RT_DEBUG_TRACE, ("MlmeSetPsmBit = %d\n", psm));
+#endif
}
// IRQL = DISPATCH_LEVEL
@@ -3560,9 +3626,21 @@ ULONG BssTableSetEntry(
}
else
{
+#ifndef RT30xx
BssEntrySet(pAd, &Tab->BssEntry[Idx], pBssid, Ssid, SsidLen, BssType, BeaconPeriod,CfParm, AtimWin,
CapabilityInfo, SupRate, SupRateLen, ExtRate, ExtRateLen,pHtCapability, pAddHtInfo,HtCapabilityLen, AddHtInfoLen,
NewExtChanOffset, ChannelNo, Rssi, TimeStamp, CkipFlag, pEdcaParm, pQosCapability, pQbssLoad, LengthVIE, pVIE);
+#endif
+#ifdef RT30xx
+ /* avoid Hidden SSID form beacon to overwirite correct SSID from probe response */
+ if ((SSID_EQUAL(Ssid, SsidLen, Tab->BssEntry[Idx].Ssid, Tab->BssEntry[Idx].SsidLen)) ||
+ (NdisEqualMemory(Tab->BssEntry[Idx].Ssid, ZeroSsid, Tab->BssEntry[Idx].SsidLen)))
+ {
+ BssEntrySet(pAd, &Tab->BssEntry[Idx], pBssid, Ssid, SsidLen, BssType, BeaconPeriod,CfParm, AtimWin,
+ CapabilityInfo, SupRate, SupRateLen, ExtRate, ExtRateLen,pHtCapability, pAddHtInfo,HtCapabilityLen, AddHtInfoLen,
+ NewExtChanOffset, ChannelNo, Rssi, TimeStamp, CkipFlag, pEdcaParm, pQosCapability, pQbssLoad, LengthVIE, pVIE);
+ }
+#endif
}
return Idx;
@@ -3623,9 +3701,14 @@ VOID BssTableSsidSort(
continue;
// check group cipher
+#ifndef RT30xx
if ((pAd->StaCfg.WepStatus < pInBss->WPA.GroupCipher) &&
(pInBss->WPA.GroupCipher != Ndis802_11GroupWEP40Enabled) &&
(pInBss->WPA.GroupCipher != Ndis802_11GroupWEP104Enabled))
+#endif
+#ifdef RT30xx
+ if (pAd->StaCfg.WepStatus < pInBss->WPA.GroupCipher)
+#endif
continue;
// check pairwise cipher, skip if none matched
@@ -3644,9 +3727,14 @@ VOID BssTableSsidSort(
continue;
// check group cipher
+#ifndef RT30xx
if ((pAd->StaCfg.WepStatus < pInBss->WPA.GroupCipher) &&
(pInBss->WPA2.GroupCipher != Ndis802_11GroupWEP40Enabled) &&
(pInBss->WPA2.GroupCipher != Ndis802_11GroupWEP104Enabled))
+#endif
+#ifdef RT30xx
+ if (pAd->StaCfg.WepStatus < pInBss->WPA2.GroupCipher)
+#endif
continue;
// check pairwise cipher, skip if none matched
@@ -3924,10 +4012,16 @@ VOID BssCipherParse(
switch (*pTmp)
{
case 1:
+#ifndef RT30xx
pBss->WPA.GroupCipher = Ndis802_11GroupWEP40Enabled;
break;
case 5:
pBss->WPA.GroupCipher = Ndis802_11GroupWEP104Enabled;
+#endif
+#ifdef RT30xx
+ case 5: // Although WEP is not allowed in WPA related auth mode, we parse it anyway
+ pBss->WPA.GroupCipher = Ndis802_11Encryption1Enabled;
+#endif
break;
case 2:
pBss->WPA.GroupCipher = Ndis802_11Encryption2Enabled;
@@ -4014,7 +4108,6 @@ VOID BssCipherParse(
pBss->AuthMode = Ndis802_11AuthModeWPANone;
pBss->AuthModeAux = Ndis802_11AuthModeWPANone;
pBss->WepStatus = pBss->WPA.GroupCipher;
- // Patched bugs for old driver
if (pBss->WPA.PairCipherAux == Ndis802_11WEPDisabled)
pBss->WPA.PairCipherAux = pBss->WPA.GroupCipher;
}
@@ -4044,10 +4137,16 @@ VOID BssCipherParse(
switch (pCipher->Type)
{
case 1:
+#ifndef RT30xx
pBss->WPA2.GroupCipher = Ndis802_11GroupWEP40Enabled;
break;
case 5:
pBss->WPA2.GroupCipher = Ndis802_11GroupWEP104Enabled;
+#endif
+#ifdef RT30xx
+ case 5: // Although WEP is not allowed in WPA related auth mode, we parse it anyway
+ pBss->WPA2.GroupCipher = Ndis802_11Encryption1Enabled;
+#endif
break;
case 2:
pBss->WPA2.GroupCipher = Ndis802_11Encryption2Enabled;
@@ -4141,7 +4240,6 @@ VOID BssCipherParse(
pBss->WPA.PairCipherAux = pBss->WPA2.PairCipherAux;
pBss->WPA.GroupCipher = pBss->WPA2.GroupCipher;
pBss->WepStatus = pBss->WPA.GroupCipher;
- // Patched bugs for old driver
if (pBss->WPA.PairCipherAux == Ndis802_11WEPDisabled)
pBss->WPA.PairCipherAux = pBss->WPA.GroupCipher;
}
@@ -5249,6 +5347,277 @@ VOID AsicUpdateProtect(
}
}
+
+#ifdef RT30xx
+/*
+ ========================================================================
+
+ Routine Description: Write RT30xx RF register through MAC
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS RT30xxWriteRFRegister(
+ IN PRTMP_ADAPTER pAd,
+ IN UCHAR RegID,
+ IN UCHAR Value)
+{
+ RF_CSR_CFG_STRUC rfcsr;
+ UINT i = 0;
+
+ do
+ {
+ RTMP_IO_READ32(pAd, RF_CSR_CFG, &rfcsr.word);
+
+ if (!rfcsr.field.RF_CSR_KICK)
+ break;
+ i++;
+ }
+ while ((i < RETRY_LIMIT) && (!RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_NIC_NOT_EXIST)));
+
+ if ((i == RETRY_LIMIT) || (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_NIC_NOT_EXIST)))
+ {
+ DBGPRINT_RAW(RT_DEBUG_ERROR, ("Retry count exhausted or device removed!!!\n"));
+ return STATUS_UNSUCCESSFUL;
+ }
+
+ rfcsr.field.RF_CSR_WR = 1;
+ rfcsr.field.RF_CSR_KICK = 1;
+ rfcsr.field.TESTCSR_RFACC_REGNUM = RegID;
+ rfcsr.field.RF_CSR_DATA = Value;
+
+ RTMP_IO_WRITE32(pAd, RF_CSR_CFG, rfcsr.word);
+
+ return STATUS_SUCCESS;
+}
+
+
+/*
+ ========================================================================
+
+ Routine Description: Read RT30xx RF register through MAC
+
+ Arguments:
+
+ Return Value:
+
+ IRQL =
+
+ Note:
+
+ ========================================================================
+*/
+NTSTATUS RT30xxReadRFRegister(
+ IN PRTMP_ADAPTER pAd,
+ IN UCHAR RegID,
+ IN PUCHAR pValue)
+{
+ RF_CSR_CFG_STRUC rfcsr;
+ UINT i=0, k=0;
+
+ for (i=0; i<MAX_BUSY_COUNT; i++)
+ {
+ RTMP_IO_READ32(pAd, RF_CSR_CFG, &rfcsr.word);
+
+ if (rfcsr.field.RF_CSR_KICK == BUSY)
+ {
+ continue;
+ }
+ rfcsr.word = 0;
+ rfcsr.field.RF_CSR_WR = 0;
+ rfcsr.field.RF_CSR_KICK = 1;
+ rfcsr.field.TESTCSR_RFACC_REGNUM = RegID;
+ RTMP_IO_WRITE32(pAd, RF_CSR_CFG, rfcsr.word);
+ for (k=0; k<MAX_BUSY_COUNT; k++)
+ {
+ RTMP_IO_READ32(pAd, RF_CSR_CFG, &rfcsr.word);
+
+ if (rfcsr.field.RF_CSR_KICK == IDLE)
+ break;
+ }
+ if ((rfcsr.field.RF_CSR_KICK == IDLE) &&
+ (rfcsr.field.TESTCSR_RFACC_REGNUM == RegID))
+ {
+ *pValue = (UCHAR)rfcsr.field.RF_CSR_DATA;
+ break;
+ }
+ }
+ if (rfcsr.field.RF_CSR_KICK == BUSY)
+ {
+ DBGPRINT_ERR(("RF read R%d=0x%x fail, i[%d], k[%d]\n", RegID, rfcsr.word,i,k));
+ return STATUS_UNSUCCESSFUL;
+ }
+
+ return STATUS_SUCCESS;
+}
+#endif // RT30xx //
+
+#ifdef RT30xx
+// add by johnli, RF power sequence setup
+/*
+ ==========================================================================
+ Description:
+
+ Load RF normal operation-mode setup
+
+ ==========================================================================
+ */
+VOID RT30xxLoadRFNormalModeSetup(
+ IN PRTMP_ADAPTER pAd)
+{
+ UCHAR RFValue;
+
+ // RX0_PD & TX0_PD, RF R1 register Bit 2 & Bit 3 to 0 and RF_BLOCK_en,RX1_PD & TX1_PD, Bit0, Bit 4 & Bit5 to 1
+ RT30xxReadRFRegister(pAd, RF_R01, &RFValue);
+ RFValue = (RFValue & (~0x0C)) | 0x31;
+ RT30xxWriteRFRegister(pAd, RF_R01, RFValue);
+
+ // TX_LO2_en, RF R15 register Bit 3 to 0
+ RT30xxReadRFRegister(pAd, RF_R15, &RFValue);
+ RFValue &= (~0x08);
+ RT30xxWriteRFRegister(pAd, RF_R15, RFValue);
+
+ // TX_LO1_en, RF R17 register Bit 3 to 0
+ RT30xxReadRFRegister(pAd, RF_R17, &RFValue);
+ RFValue &= (~0x08);
+ // to fix rx long range issue
+ if (((pAd->MACVersion & 0xffff) >= 0x0211) && (pAd->NicConfig2.field.ExternalLNAForG == 0))
+ {
+ RFValue |= 0x20;
+ }
+ RT30xxWriteRFRegister(pAd, RF_R17, RFValue);
+
+ // RX_LO1_en, RF R20 register Bit 3 to 0
+ RT30xxReadRFRegister(pAd, RF_R20, &RFValue);
+ RFValue &= (~0x08);
+ RT30xxWriteRFRegister(pAd, RF_R20, RFValue);
+
+ // RX_LO2_en, RF R21 register Bit 3 to 0
+ RT30xxReadRFRegister(pAd, RF_R21, &RFValue);
+ RFValue &= (~0x08);
+ RT30xxWriteRFRegister(pAd, RF_R21, RFValue);
+
+ // LDORF_VC, RF R27 register Bit 2 to 0
+ RT30xxReadRFRegister(pAd, RF_R27, &RFValue);
+ if ((pAd->MACVersion & 0xffff) < 0x0211)
+ RFValue = (RFValue & (~0x77)) | 0x3;
+ else
+ RFValue = (RFValue & (~0x77));
+ RT30xxWriteRFRegister(pAd, RF_R27, RFValue);
+ /* end johnli */
+}
+
+/*
+ ==========================================================================
+ Description:
+
+ Load RF sleep-mode setup
+
+ ==========================================================================
+ */
+VOID RT30xxLoadRFSleepModeSetup(
+ IN PRTMP_ADAPTER pAd)
+{
+ UCHAR RFValue;
+ UINT32 MACValue;
+
+ // RF_BLOCK_en. RF R1 register Bit 0 to 0
+ RT30xxReadRFRegister(pAd, RF_R01, &RFValue);
+ RFValue &= (~0x01);
+ RT30xxWriteRFRegister(pAd, RF_R01, RFValue);
+
+ // VCO_IC, RF R7 register Bit 4 & Bit 5 to 0
+ RT30xxReadRFRegister(pAd, RF_R07, &RFValue);
+ RFValue &= (~0x30);
+ RT30xxWriteRFRegister(pAd, RF_R07, RFValue);
+
+ // Idoh, RF R9 register Bit 1, Bit 2 & Bit 3 to 0
+ RT30xxReadRFRegister(pAd, RF_R09, &RFValue);
+ RFValue &= (~0x0E);
+ RT30xxWriteRFRegister(pAd, RF_R09, RFValue);
+
+ // RX_CTB_en, RF R21 register Bit 7 to 0
+ RT30xxReadRFRegister(pAd, RF_R21, &RFValue);
+ RFValue &= (~0x80);
+ RT30xxWriteRFRegister(pAd, RF_R21, RFValue);
+
+ // LDORF_VC, RF R27 register Bit 0, Bit 1 & Bit 2 to 1
+ RT30xxReadRFRegister(pAd, RF_R27, &RFValue);
+ RFValue |= 0x77;
+ RT30xxWriteRFRegister(pAd, RF_R27, RFValue);
+
+ RTMP_IO_READ32(pAd, LDO_CFG0, &MACValue);
+ MACValue |= 0x1D000000;
+ RTMP_IO_WRITE32(pAd, LDO_CFG0, MACValue);
+}
+
+/*
+ ==========================================================================
+ Description:
+
+ Reverse RF sleep-mode setup
+
+ ==========================================================================
+ */
+VOID RT30xxReverseRFSleepModeSetup(
+ IN PRTMP_ADAPTER pAd)
+{
+ UCHAR RFValue;
+ UINT32 MACValue;
+
+ // RF_BLOCK_en, RF R1 register Bit 0 to 1
+ RT30xxReadRFRegister(pAd, RF_R01, &RFValue);
+ RFValue |= 0x01;
+ RT30xxWriteRFRegister(pAd, RF_R01, RFValue);
+
+ // VCO_IC, RF R7 register Bit 4 & Bit 5 to 1
+ RT30xxReadRFRegister(pAd, RF_R07, &RFValue);
+ RFValue |= 0x30;
+ RT30xxWriteRFRegister(pAd, RF_R07, RFValue);
+
+ // Idoh, RF R9 register Bit 1, Bit 2 & Bit 3 to 1
+ RT30xxReadRFRegister(pAd, RF_R09, &RFValue);
+ RFValue |= 0x0E;
+ RT30xxWriteRFRegister(pAd, RF_R09, RFValue);
+
+ // RX_CTB_en, RF R21 register Bit 7 to 1
+ RT30xxReadRFRegister(pAd, RF_R21, &RFValue);
+ RFValue |= 0x80;
+ RT30xxWriteRFRegister(pAd, RF_R21, RFValue);
+
+ // LDORF_VC, RF R27 register Bit 2 to 0
+ RT30xxReadRFRegister(pAd, RF_R27, &RFValue);
+ if ((pAd->MACVersion & 0xffff) < 0x0211)
+ RFValue = (RFValue & (~0x77)) | 0x3;
+ else
+ RFValue = (RFValue & (~0x77));
+ RT30xxWriteRFRegister(pAd, RF_R27, RFValue);
+
+ // RT3071 version E has fixed this issue
+ if ((pAd->NicConfig2.field.DACTestBit == 1) && ((pAd->MACVersion & 0xffff) < 0x0211))
+ {
+ // patch tx EVM issue temporarily
+ RTMP_IO_READ32(pAd, LDO_CFG0, &MACValue);
+ MACValue = ((MACValue & 0xE0FFFFFF) | 0x0D000000);
+ RTMP_IO_WRITE32(pAd, LDO_CFG0, MACValue);
+ }
+ else
+ {
+ RTMP_IO_READ32(pAd, LDO_CFG0, &MACValue);
+ MACValue = ((MACValue & 0xE0FFFFFF) | 0x01000000);
+ RTMP_IO_WRITE32(pAd, LDO_CFG0, MACValue);
+ }
+}
+// end johnli
+#endif // RT30xx //
+
/*
==========================================================================
Description:
@@ -5270,6 +5639,21 @@ VOID AsicSwitchChannel(
RTMP_RF_REGS *RFRegTable;
// Search Tx power value
+#ifdef RT30xx
+ // We can't use ChannelList to search channel, since some central channl's txpowr doesn't list
+ // in ChannelList, so use TxPower array instead.
+ //
+ for (index = 0; index < MAX_NUM_OF_CHANNELS; index++)
+ {
+ if (Channel == pAd->TxPower[index].Channel)
+ {
+ TxPwer = pAd->TxPower[index].Power;
+ TxPwer2 = pAd->TxPower[index].Power2;
+ break;
+ }
+ }
+#endif
+#ifndef RT30xx
for (index = 0; index < pAd->ChannelListNum; index++)
{
if (Channel == pAd->ChannelList[index].Channel)
@@ -5279,15 +5663,27 @@ VOID AsicSwitchChannel(
break;
}
}
+#endif
if (index == MAX_NUM_OF_CHANNELS)
{
+#ifndef RT30xx
DBGPRINT(RT_DEBUG_ERROR, ("AsicSwitchChannel: Cant find the Channel#%d \n", Channel));
+#endif
+#ifdef RT30xx
+ DBGPRINT(RT_DEBUG_ERROR, ("AsicSwitchChannel: Can't find the Channel#%d \n", Channel));
+#endif
}
#ifdef RT2870
// The RF programming sequence is difference between 3xxx and 2xxx
+#ifdef RT30xx
+ if ((IS_RT3070(pAd) || IS_RT3090(pAd)) && ((pAd->RfIcType == RFIC_3020) || (pAd->RfIcType == RFIC_2020) ||
+ (pAd->RfIcType == RFIC_3021) || (pAd->RfIcType == RFIC_3022)))
+#endif
+#ifndef RT30xx
if (IS_RT3070(pAd) && ((pAd->RfIcType == RFIC_3020) || (pAd->RfIcType == RFIC_2020)))
+#endif
{
/* modify by WY for Read RF Reg. error */
UCHAR RFValue;
@@ -5300,6 +5696,7 @@ VOID AsicSwitchChannel(
RT30xxWriteRFRegister(pAd, RF_R02, FreqItems3020[index].N);
RT30xxWriteRFRegister(pAd, RF_R03, FreqItems3020[index].K);
+#ifndef RT30xx
RT30xxReadRFRegister(pAd, RF_R06, (PUCHAR)&RFValue);
RFValue = (RFValue & 0xFC) | FreqItems3020[index].R;
RT30xxWriteRFRegister(pAd, RF_R06, (UCHAR)RFValue);
@@ -5313,7 +5710,42 @@ VOID AsicSwitchChannel(
RT30xxReadRFRegister(pAd, RF_R23, (PUCHAR)&RFValue);
RFValue = (RFValue & 0x80) | pAd->RfFreqOffset;
RT30xxWriteRFRegister(pAd, RF_R23, (UCHAR)RFValue);
+#endif
+#ifdef RT30xx
+ RT30xxReadRFRegister(pAd, RF_R06, &RFValue);
+ RFValue = (RFValue & 0xFC) | FreqItems3020[index].R;
+ RT30xxWriteRFRegister(pAd, RF_R06, RFValue);
+
+ // Set Tx0 Power
+ RT30xxReadRFRegister(pAd, RF_R12, &RFValue);
+ RFValue = (RFValue & 0xE0) | TxPwer;
+ RT30xxWriteRFRegister(pAd, RF_R12, RFValue);
+
+ // Set Tx1 Power
+ RT30xxReadRFRegister(pAd, RF_R13, &RFValue);
+ RFValue = (RFValue & 0xE0) | TxPwer2;
+ RT30xxWriteRFRegister(pAd, RF_R13, RFValue);
+
+ // Tx/Rx Stream setting
+ RT30xxReadRFRegister(pAd, RF_R01, &RFValue);
+ //if (IS_RT3090(pAd))
+ // RFValue |= 0x01; // Enable RF block.
+ RFValue &= 0x03; //clear bit[7~2]
+ if (pAd->Antenna.field.TxPath == 1)
+ RFValue |= 0xA0;
+ else if (pAd->Antenna.field.TxPath == 2)
+ RFValue |= 0x80;
+ if (pAd->Antenna.field.RxPath == 1)
+ RFValue |= 0x50;
+ else if (pAd->Antenna.field.RxPath == 2)
+ RFValue |= 0x40;
+ RT30xxWriteRFRegister(pAd, RF_R01, RFValue);
+ // Set RF offset
+ RT30xxReadRFRegister(pAd, RF_R23, &RFValue);
+ RFValue = (RFValue & 0x80) | pAd->RfFreqOffset;
+ RT30xxWriteRFRegister(pAd, RF_R23, RFValue);
+#endif
// Set BW
if (!bScan && (pAd->CommonCfg.BBPCurrentBW == BW_40))
{
@@ -5324,6 +5756,7 @@ VOID AsicSwitchChannel(
{
RFValue = pAd->Mlme.CaliBW20RfR24;
}
+#ifndef RT30xx
RT30xxWriteRFRegister(pAd, RF_R24, (UCHAR)RFValue);
// Enable RF tuning
@@ -5333,11 +5766,34 @@ VOID AsicSwitchChannel(
// latch channel for future usage.
pAd->LatchRfRegs.Channel = Channel;
+#endif
+#ifdef RT30xx
+ RT30xxWriteRFRegister(pAd, RF_R24, RFValue);
+ RT30xxWriteRFRegister(pAd, RF_R31, RFValue);
+ // Enable RF tuning
+ RT30xxReadRFRegister(pAd, RF_R07, &RFValue);
+ RFValue = RFValue | 0x1;
+ RT30xxWriteRFRegister(pAd, RF_R07, RFValue);
+
+ // latch channel for future usage.
+ pAd->LatchRfRegs.Channel = Channel;
+
+ DBGPRINT(RT_DEBUG_TRACE, ("SwitchChannel#%d(RF=%d, Pwr0=%d, Pwr1=%d, %dT), N=0x%02X, K=0x%02X, R=0x%02X\n",
+ Channel,
+ pAd->RfIcType,
+ TxPwer,
+ TxPwer2,
+ pAd->Antenna.field.TxPath,
+ FreqItems3020[index].N,
+ FreqItems3020[index].K,
+ FreqItems3020[index].R));
+#endif
break;
}
}
+#ifndef RT30xx
DBGPRINT(RT_DEBUG_TRACE, ("SwitchChannel#%d(RF=%d, Pwr0=%d, Pwr1=%d, %dT), N=0x%02X, K=0x%02X, R=0x%02X\n",
Channel,
pAd->RfIcType,
@@ -5347,6 +5803,7 @@ VOID AsicSwitchChannel(
FreqItems3020[index].N,
FreqItems3020[index].K,
FreqItems3020[index].R));
+#endif
}
else
#endif // RT2870 //
@@ -5603,6 +6060,53 @@ VOID AsicAntennaSelect(
IN PRTMP_ADAPTER pAd,
IN UCHAR Channel)
{
+#ifdef RT30xx
+ if (pAd->Mlme.OneSecPeriodicRound % 2 == 1)
+ {
+ // patch for AsicSetRxAnt failed
+ pAd->RxAnt.EvaluatePeriod = 0;
+
+ // check every 2 second. If rcv-beacon less than 5 in the past 2 second, then AvgRSSI is no longer a
+ // valid indication of the distance between this AP and its clients.
+ if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_MEDIA_STATE_CONNECTED))
+ {
+ SHORT realavgrssi1;
+
+ // if no traffic then reset average rssi to trigger evaluation
+ if (pAd->StaCfg.NumOfAvgRssiSample < 5)
+ {
+ pAd->RxAnt.Pair1LastAvgRssi = (-99);
+ pAd->RxAnt.Pair2LastAvgRssi = (-99);
+ DBGPRINT(RT_DEBUG_TRACE, ("MlmePeriodicExec: no traffic/beacon, reset RSSI\n"));
+ }
+
+ pAd->StaCfg.NumOfAvgRssiSample = 0;
+ realavgrssi1 = (pAd->RxAnt.Pair1AvgRssi[pAd->RxAnt.Pair1PrimaryRxAnt] >> 3);
+
+ DBGPRINT(RT_DEBUG_TRACE,("Ant-realrssi0(%d), Lastrssi0(%d), EvaluateStableCnt=%d\n", realavgrssi1, pAd->RxAnt.Pair1LastAvgRssi, pAd->RxAnt.EvaluateStableCnt));
+
+ // if the difference between two rssi is larger or less than 5, then evaluate the other antenna
+ if ((pAd->RxAnt.EvaluateStableCnt < 2) || (realavgrssi1 > (pAd->RxAnt.Pair1LastAvgRssi + 5)) || (realavgrssi1 < (pAd->RxAnt.Pair1LastAvgRssi - 5)))
+ {
+ pAd->RxAnt.Pair1LastAvgRssi = realavgrssi1;
+ AsicEvaluateRxAnt(pAd);
+ }
+ }
+ else
+ {
+ // if not connected, always switch antenna to try to connect
+ UCHAR temp;
+
+ temp = pAd->RxAnt.Pair1PrimaryRxAnt;
+ pAd->RxAnt.Pair1PrimaryRxAnt = pAd->RxAnt.Pair1SecondaryRxAnt;
+ pAd->RxAnt.Pair1SecondaryRxAnt = temp;
+
+ DBGPRINT(RT_DEBUG_TRACE, ("MlmePeriodicExec: no connect, switch to another one to try connection\n"));
+
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
+ }
+ }
+#endif /* RT30xx */
}
/*
@@ -6320,6 +6824,14 @@ VOID AsicSetEdcaParm(
Ac0Cfg.field.Aifsn = 3;
Ac2Cfg.field.AcTxop = 5;
}
+
+#ifdef RT30xx
+ if (pAd->RfIcType == RFIC_3020 || pAd->RfIcType == RFIC_2020)
+ {
+ // Tuning for WiFi WMM S3-T07: connexant legacy sta ==> broadcom 11n sta.
+ Ac2Cfg.field.Aifsn = 5;
+ }
+#endif // RT30xx //
}
Ac3Cfg.field.AcTxop = pEdcaParm->Txop[QID_AC_VO];
@@ -6386,7 +6898,7 @@ VOID AsicSetEdcaParm(
AifsnCsr.field.Aifsn2 = Ac2Cfg.field.Aifsn - 4;
// Tuning for TGn Wi-Fi 5.2.32
- // STA TestBed changes in this item: conexant legacy sta ==> broadcom 11n sta
+ // STA TestBed changes in this item: connexant legacy sta ==> broadcom 11n sta
if (STA_TGN_WIFI_ON(pAd) &&
pEdcaParm->Aifsn[QID_AC_VI] == 10)
{
@@ -6399,6 +6911,10 @@ VOID AsicSetEdcaParm(
}
AifsnCsr.field.Aifsn3 = Ac3Cfg.field.Aifsn - 1; //pEdcaParm->Aifsn[QID_AC_VO]; //for TGn wifi test
+#ifdef RT30xx
+ if (pAd->RfIcType == RFIC_3020 || pAd->RfIcType == RFIC_2020)
+ AifsnCsr.field.Aifsn2 = 0x2; //pEdcaParm->Aifsn[QID_AC_VI]; //for WiFi WMM S4-T04.
+#endif // RT30xx //
RTMP_IO_WRITE32(pAd, WMM_AIFSN_CFG, AifsnCsr.word);
@@ -6461,6 +6977,7 @@ VOID AsicSetSlotTime(
SlotTime = (bUseShortSlotTime)? 9 : 20;
{
+#ifndef RT30xx
// force using short SLOT time for FAE to demo performance when TxBurst is ON
if (((pAd->StaActive.SupportedPhyInfo.bHtEnable == FALSE) && (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED)))
|| ((pAd->StaActive.SupportedPhyInfo.bHtEnable == TRUE) && (pAd->CommonCfg.BACapability.field.Policy == BA_NOTUSE))
@@ -6470,6 +6987,10 @@ VOID AsicSetSlotTime(
// And we will not set to short slot when bEnableTxBurst is TRUE.
}
else if (pAd->CommonCfg.bEnableTxBurst)
+#endif
+#ifdef RT30xx
+ if (pAd->CommonCfg.bEnableTxBurst)
+#endif
SlotTime = 9;
}
@@ -7302,6 +7823,58 @@ CHAR RTMPMaxRssi(
return larger;
}
+#ifdef RT30xx
+// Antenna divesity use GPIO3 and EESK pin for control
+// Antenna and EEPROM access are both using EESK pin,
+// Therefor we should avoid accessing EESK at the same time
+// Then restore antenna after EEPROM access
+VOID AsicSetRxAnt(
+ IN PRTMP_ADAPTER pAd,
+ IN UCHAR Ant)
+{
+#ifdef RT30xx
+ UINT32 Value;
+ UINT32 x;
+
+ if ((pAd->EepromAccess) ||
+ (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS)) ||
+ (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_HALT_IN_PROGRESS)) ||
+ (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RADIO_OFF)) ||
+ (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_NIC_NOT_EXIST)))
+ {
+ return;
+ }
+
+ // the antenna selection is through firmware and MAC register(GPIO3)
+ if (Ant == 0)
+ {
+ // Main antenna
+ RTMP_IO_READ32(pAd, E2PROM_CSR, &x);
+ x |= (EESK);
+ RTMP_IO_WRITE32(pAd, E2PROM_CSR, x);
+
+ RTMP_IO_READ32(pAd, GPIO_CTRL_CFG, &Value);
+ Value &= ~(0x0808);
+ RTMP_IO_WRITE32(pAd, GPIO_CTRL_CFG, Value);
+ DBGPRINT_RAW(RT_DEBUG_TRACE, ("AsicSetRxAnt, switch to main antenna\n"));
+ }
+ else
+ {
+ // Aux antenna
+ RTMP_IO_READ32(pAd, E2PROM_CSR, &x);
+ x &= ~(EESK);
+ RTMP_IO_WRITE32(pAd, E2PROM_CSR, x);
+
+ RTMP_IO_READ32(pAd, GPIO_CTRL_CFG, &Value);
+ Value &= ~(0x0808);
+ Value |= 0x08;
+ RTMP_IO_WRITE32(pAd, GPIO_CTRL_CFG, Value);
+ DBGPRINT_RAW(RT_DEBUG_TRACE, ("AsicSetRxAnt, switch to aux antenna\n"));
+ }
+#endif // RT30xx //
+}
+#endif /* RT30xx */
+
/*
========================================================================
Routine Description:
@@ -7320,6 +7893,7 @@ VOID AsicEvaluateRxAnt(
{
UCHAR BBPR3 = 0;
+#ifndef RT30xx
{
if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS |
fRTMP_ADAPTER_HALT_IN_PROGRESS |
@@ -7366,6 +7940,89 @@ VOID AsicEvaluateRxAnt(
pAd->Mlme.bLowThroughput = TRUE;
}
}
+#endif /* RT30xx */
+#ifdef RT30xx
+ if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS |
+ fRTMP_ADAPTER_HALT_IN_PROGRESS |
+ fRTMP_ADAPTER_RADIO_OFF |
+ fRTMP_ADAPTER_NIC_NOT_EXIST |
+ fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS) ||
+ OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE)
+#ifdef RT30xx
+ || (pAd->EepromAccess)
+#endif // RT30xx //
+ )
+ return;
+
+
+ {
+ //if (pAd->StaCfg.Psm == PWR_SAVE)
+ // return;
+ }
+
+ // two antenna selection mechanism- one is antenna diversity, the other is failed antenna remove
+ // one is antenna diversity:there is only one antenna can rx and tx
+ // the other is failed antenna remove:two physical antenna can rx and tx
+ if (pAd->NicConfig2.field.AntDiversity)
+ {
+ DBGPRINT(RT_DEBUG_TRACE,("AntDiv - before evaluate Pair1-Ant (%d,%d)\n",
+ pAd->RxAnt.Pair1PrimaryRxAnt, pAd->RxAnt.Pair1SecondaryRxAnt));
+
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1SecondaryRxAnt);
+
+ pAd->RxAnt.EvaluatePeriod = 1; // 1:Means switch to SecondaryRxAnt, 0:Means switch to Pair1PrimaryRxAnt
+ pAd->RxAnt.FirstPktArrivedWhenEvaluate = FALSE;
+ pAd->RxAnt.RcvPktNumWhenEvaluate = 0;
+
+ // a one-shot timer to end the evalution
+ // dynamic adjust antenna evaluation period according to the traffic
+ if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_MEDIA_STATE_CONNECTED))
+ RTMPSetTimer(&pAd->Mlme.RxAntEvalTimer, 100);
+ else
+ RTMPSetTimer(&pAd->Mlme.RxAntEvalTimer, 300);
+ }
+ else
+ {
+ if (pAd->StaCfg.Psm == PWR_SAVE)
+ return;
+
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &BBPR3);
+ BBPR3 &= (~0x18);
+ if(pAd->Antenna.field.RxPath == 3)
+ {
+ BBPR3 |= (0x10);
+ }
+ else if(pAd->Antenna.field.RxPath == 2)
+ {
+ BBPR3 |= (0x8);
+ }
+ else if(pAd->Antenna.field.RxPath == 1)
+ {
+ BBPR3 |= (0x0);
+ }
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, BBPR3);
+
+ if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_MEDIA_STATE_CONNECTED)
+ )
+ {
+ ULONG TxTotalCnt = pAd->RalinkCounters.OneSecTxNoRetryOkCount +
+ pAd->RalinkCounters.OneSecTxRetryOkCount +
+ pAd->RalinkCounters.OneSecTxFailCount;
+
+ // dynamic adjust antenna evaluation period according to the traffic
+ if (TxTotalCnt > 50)
+ {
+ RTMPSetTimer(&pAd->Mlme.RxAntEvalTimer, 20);
+ pAd->Mlme.bLowThroughput = FALSE;
+ }
+ else
+ {
+ RTMPSetTimer(&pAd->Mlme.RxAntEvalTimer, 300);
+ pAd->Mlme.bLowThroughput = TRUE;
+ }
+ }
+ }
+#endif /* RT30xx */
}
/*
@@ -7391,6 +8048,7 @@ VOID AsicRxAntEvalTimeout(
UCHAR BBPR3 = 0;
CHAR larger = -127, rssi0, rssi1, rssi2;
+#ifndef RT30xx
{
if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS) ||
RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_HALT_IN_PROGRESS) ||
@@ -7449,6 +8107,107 @@ VOID AsicRxAntEvalTimeout(
}
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, BBPR3);
}
+#endif /* RT30xx */
+#ifdef RT30xx
+ if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS |
+ fRTMP_ADAPTER_HALT_IN_PROGRESS |
+ fRTMP_ADAPTER_RADIO_OFF |
+ fRTMP_ADAPTER_NIC_NOT_EXIST) ||
+ OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE)
+#ifdef RT30xx
+ || (pAd->EepromAccess)
+#endif // RT30xx //
+ )
+ return;
+
+ {
+ //if (pAd->StaCfg.Psm == PWR_SAVE)
+ // return;
+
+ if (pAd->NicConfig2.field.AntDiversity)
+ {
+ if ((pAd->RxAnt.RcvPktNumWhenEvaluate != 0) && (pAd->RxAnt.Pair1AvgRssi[pAd->RxAnt.Pair1SecondaryRxAnt] >= pAd->RxAnt.Pair1AvgRssi[pAd->RxAnt.Pair1PrimaryRxAnt]))
+ {
+ UCHAR temp;
+
+ //
+ // select PrimaryRxAntPair
+ // Role change, Used Pair1SecondaryRxAnt as PrimaryRxAntPair.
+ // Since Pair1SecondaryRxAnt Quality good than Pair1PrimaryRxAnt
+ //
+ temp = pAd->RxAnt.Pair1PrimaryRxAnt;
+ pAd->RxAnt.Pair1PrimaryRxAnt = pAd->RxAnt.Pair1SecondaryRxAnt;
+ pAd->RxAnt.Pair1SecondaryRxAnt = temp;
+
+ pAd->RxAnt.Pair1LastAvgRssi = (pAd->RxAnt.Pair1AvgRssi[pAd->RxAnt.Pair1SecondaryRxAnt] >> 3);
+ pAd->RxAnt.EvaluateStableCnt = 0;
+ }
+ else
+ {
+ // if the evaluated antenna is not better than original, switch back to original antenna
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
+ pAd->RxAnt.EvaluateStableCnt ++;
+ }
+
+ pAd->RxAnt.EvaluatePeriod = 0; // 1:Means switch to SecondaryRxAnt, 0:Means switch to Pair1PrimaryRxAnt
+
+ DBGPRINT(RT_DEBUG_TRACE,("AsicRxAntEvalAction::After Eval(fix in #%d), <%d, %d>, RcvPktNumWhenEvaluate=%ld\n",
+ pAd->RxAnt.Pair1PrimaryRxAnt, (pAd->RxAnt.Pair1AvgRssi[0] >> 3), (pAd->RxAnt.Pair1AvgRssi[1] >> 3), pAd->RxAnt.RcvPktNumWhenEvaluate));
+ }
+ else
+ {
+ if (pAd->StaCfg.Psm == PWR_SAVE)
+ return;
+
+ // if the traffic is low, use average rssi as the criteria
+ if (pAd->Mlme.bLowThroughput == TRUE)
+ {
+ rssi0 = pAd->StaCfg.RssiSample.LastRssi0;
+ rssi1 = pAd->StaCfg.RssiSample.LastRssi1;
+ rssi2 = pAd->StaCfg.RssiSample.LastRssi2;
+ }
+ else
+ {
+ rssi0 = pAd->StaCfg.RssiSample.AvgRssi0;
+ rssi1 = pAd->StaCfg.RssiSample.AvgRssi1;
+ rssi2 = pAd->StaCfg.RssiSample.AvgRssi2;
+ }
+
+ if(pAd->Antenna.field.RxPath == 3)
+ {
+ larger = max(rssi0, rssi1);
+
+ if (larger > (rssi2 + 20))
+ pAd->Mlme.RealRxPath = 2;
+ else
+ pAd->Mlme.RealRxPath = 3;
+ }
+ else if(pAd->Antenna.field.RxPath == 2)
+ {
+ if (rssi0 > (rssi1 + 20))
+ pAd->Mlme.RealRxPath = 1;
+ else
+ pAd->Mlme.RealRxPath = 2;
+ }
+
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &BBPR3);
+ BBPR3 &= (~0x18);
+ if(pAd->Mlme.RealRxPath == 3)
+ {
+ BBPR3 |= (0x10);
+ }
+ else if(pAd->Mlme.RealRxPath == 2)
+ {
+ BBPR3 |= (0x8);
+ }
+ else if(pAd->Mlme.RealRxPath == 1)
+ {
+ BBPR3 |= (0x0);
+ }
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, BBPR3);
+ }
+ }
+#endif /* RT30xx */
}
@@ -7664,14 +8423,24 @@ VOID AsicStaBbpTuning(
#ifdef RT2870
// RT3070 is a no LNA solution, it should have different control regarding to AGC gain control
// Otherwise, it will have some throughput side effect when low RSSI
+#ifndef RT30xx
if (IS_RT3070(pAd))
+#endif
+#ifdef RT30xx
+ if (IS_RT30xx(pAd))
+#endif
{
if (Rssi > RSSI_FOR_MID_LOW_SENSIBILITY)
{
R66 = 0x1C + 2*GET_LNA_GAIN(pAd) + 0x20;
if (OrigR66Value != R66)
{
+#ifndef RT30xx
RTUSBWriteBBPRegister(pAd, BBP_R66, R66);
+#endif
+#ifdef RT30xx
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R66, R66);
+#endif
}
}
else
@@ -7679,7 +8448,12 @@ VOID AsicStaBbpTuning(
R66 = 0x1C + 2*GET_LNA_GAIN(pAd);
if (OrigR66Value != R66)
{
+#ifndef RT30xx
RTUSBWriteBBPRegister(pAd, BBP_R66, R66);
+#endif
+#ifdef RT30xx
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R66, R66);
+#endif
}
}
}
@@ -7781,12 +8555,20 @@ VOID AsicTurnOffRFClk(
IN PRTMP_ADAPTER pAd,
IN UCHAR Channel)
{
-
// RF R2 bit 18 = 0
UINT32 R1 = 0, R2 = 0, R3 = 0;
UCHAR index;
RTMP_RF_REGS *RFRegTable;
+#ifdef RT30xx
+ // The RF programming sequence is difference between 3xxx and 2xxx
+ if (IS_RT3090(pAd))
+ {
+ RT30xxLoadRFSleepModeSetup(pAd); // add by johnli, RF power sequence setup, load RF sleep-mode setup
+ }
+ else
+ {
+#endif // RT30xx //
RFRegTable = RF2850RegTable;
switch (pAd->RfIcType)
@@ -7828,6 +8610,10 @@ VOID AsicTurnOffRFClk(
default:
break;
}
+#ifdef RT30xx
+ }
+#endif // RT30xx //
+
}
@@ -7835,12 +8621,19 @@ VOID AsicTurnOnRFClk(
IN PRTMP_ADAPTER pAd,
IN UCHAR Channel)
{
-
// RF R2 bit 18 = 0
UINT32 R1 = 0, R2 = 0, R3 = 0;
UCHAR index;
RTMP_RF_REGS *RFRegTable;
+#ifdef RT30xx
+ // The RF programming sequence is difference between 3xxx and 2xxx
+ if (IS_RT3090(pAd))
+ {
+ }
+ else
+ {
+#endif // RT30xx //
RFRegTable = RF2850RegTable;
switch (pAd->RfIcType)
@@ -7887,9 +8680,14 @@ VOID AsicTurnOnRFClk(
break;
}
+#ifndef RT30xx
DBGPRINT(RT_DEBUG_TRACE, ("AsicTurnOnRFClk#%d(RF=%d, ) , R2=0x%08x\n",
Channel,
pAd->RfIcType,
R2));
+#endif
+#ifdef RT30xx
+ }
+#endif // RT30xx //
}
diff --git a/drivers/staging/rt2870/common/rtmp_init.c b/drivers/staging/rt2870/common/rtmp_init.c
index 69de5a34a11..92e25ff76cf 100644
--- a/drivers/staging/rt2870/common/rtmp_init.c
+++ b/drivers/staging/rt2870/common/rtmp_init.c
@@ -38,7 +38,12 @@
Jan Lee 2006-09-15 RT2860. Change for 802.11n , EEPROM, Led, BA, HT.
*/
#include "../rt_config.h"
+#ifndef RT30xx
#include "firmware.h"
+#endif
+#ifdef RT30xx
+#include "../../rt3070/firmware.h"
+#endif
UCHAR BIT8[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
ULONG BIT32[] = {0x00000001, 0x00000002, 0x00000004, 0x00000008,
@@ -134,7 +139,12 @@ REG_PAIR RT30xx_RFRegTable[] = {
{RF_R06, 0x02},
{RF_R07, 0x70},
{RF_R09, 0x0F},
+#ifndef RT30xx
{RF_R10, 0x71},
+#endif
+#ifdef RT30xx
+ {RF_R10, 0x41},
+#endif
{RF_R11, 0x21},
{RF_R12, 0x7B},
{RF_R14, 0x90},
@@ -147,7 +157,9 @@ REG_PAIR RT30xx_RFRegTable[] = {
{RF_R21, 0xDB},
{RF_R24, 0x16},
{RF_R25, 0x01},
+#ifndef RT30xx
{RF_R27, 0x03},
+#endif
{RF_R29, 0x1F},
};
#define NUM_RF_REG_PARMS (sizeof(RT30xx_RFRegTable) / sizeof(REG_PAIR))
@@ -184,6 +196,7 @@ RTMP_REG_PAIR MACRegTable[] = {
{AUTO_RSP_CFG, 0x00000013}, // Initial Auto_Responder, because QA will turn off Auto-Responder
{CCK_PROT_CFG, 0x05740003 /*0x01740003*/}, // Initial Auto_Responder, because QA will turn off Auto-Responder. And RTS threshold is enabled.
{OFDM_PROT_CFG, 0x05740003 /*0x01740003*/}, // Initial Auto_Responder, because QA will turn off Auto-Responder. And RTS threshold is enabled.
+//PS packets use Tx1Q (for HCCA) when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
#ifdef RT2870
{PBF_CFG, 0xf40006}, // Only enable Queue 2
{MM40_PROT_CFG, 0x3F44084}, // Initial Auto_Responder, because QA will turn off Auto-Responder
@@ -1070,6 +1083,7 @@ NDIS_STATUS NICReadRegParameters(
========================================================================
*/
+#ifndef RT30xx
VOID RTUSBFilterCalibration(
IN PRTMP_ADAPTER pAd)
{
@@ -1206,13 +1220,168 @@ VOID RTUSBFilterCalibration(
DBGPRINT(RT_DEBUG_TRACE, ("RTUSBFilterCalibration - CaliBW20RfR24=0x%x, CaliBW40RfR24=0x%x\n", pAd->Mlme.CaliBW20RfR24, pAd->Mlme.CaliBW40RfR24));
}
+#endif /* RT30xx */
+#ifdef RT30xx
+VOID RTMPFilterCalibration(
+ IN PRTMP_ADAPTER pAd)
+{
+ UCHAR R55x = 0, value, FilterTarget = 0x1E, BBPValue=0;
+ UINT loop = 0, count = 0, loopcnt = 0, ReTry = 0;
+ UCHAR RF_R24_Value = 0;
+
+ // Give bbp filter initial value
+ pAd->Mlme.CaliBW20RfR24 = 0x1F;
+ pAd->Mlme.CaliBW40RfR24 = 0x2F; //Bit[5] must be 1 for BW 40
+
+ do
+ {
+ if (loop == 1) //BandWidth = 40 MHz
+ {
+ // Write 0x27 to RF_R24 to program filter
+ RF_R24_Value = 0x27;
+ RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
+ if (IS_RT3090(pAd))
+ FilterTarget = 0x15;
+ else
+ FilterTarget = 0x19;
+
+ // when calibrate BW40, BBP mask must set to BW40.
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &BBPValue);
+ BBPValue&= (~0x18);
+ BBPValue|= (0x10);
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, BBPValue);
+
+ // set to BW40
+ RT30xxReadRFRegister(pAd, RF_R31, &value);
+ value |= 0x20;
+ RT30xxWriteRFRegister(pAd, RF_R31, value);
+ }
+ else //BandWidth = 20 MHz
+ {
+ // Write 0x07 to RF_R24 to program filter
+ RF_R24_Value = 0x07;
+ RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
+ if (IS_RT3090(pAd))
+ FilterTarget = 0x13;
+ else
+ FilterTarget = 0x16;
+
+ // set to BW20
+ RT30xxReadRFRegister(pAd, RF_R31, &value);
+ value &= (~0x20);
+ RT30xxWriteRFRegister(pAd, RF_R31, value);
+ }
+
+ // Write 0x01 to RF_R22 to enable baseband loopback mode
+ RT30xxReadRFRegister(pAd, RF_R22, &value);
+ value |= 0x01;
+ RT30xxWriteRFRegister(pAd, RF_R22, value);
+
+ // Write 0x00 to BBP_R24 to set power & frequency of passband test tone
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R24, 0);
+
+ do
+ {
+ // Write 0x90 to BBP_R25 to transmit test tone
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R25, 0x90);
+
+ RTMPusecDelay(1000);
+ // Read BBP_R55[6:0] for received power, set R55x = BBP_R55[6:0]
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R55, &value);
+ R55x = value & 0xFF;
+
+ } while ((ReTry++ < 100) && (R55x == 0));
+
+ // Write 0x06 to BBP_R24 to set power & frequency of stopband test tone
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R24, 0x06);
+
+ while(TRUE)
+ {
+ // Write 0x90 to BBP_R25 to transmit test tone
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R25, 0x90);
+
+ //We need to wait for calibration
+ RTMPusecDelay(1000);
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R55, &value);
+ value &= 0xFF;
+ if ((R55x - value) < FilterTarget)
+ {
+ RF_R24_Value ++;
+ }
+ else if ((R55x - value) == FilterTarget)
+ {
+ RF_R24_Value ++;
+ count ++;
+ }
+ else
+ {
+ break;
+ }
+
+ // prevent infinite loop cause driver hang.
+ if (loopcnt++ > 100)
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("RTMPFilterCalibration - can't find a valid value, loopcnt=%d stop calibrating", loopcnt));
+ break;
+ }
+
+ // Write RF_R24 to program filter
+ RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
+ }
+
+ if (count > 0)
+ {
+ RF_R24_Value = RF_R24_Value - ((count) ? (1) : (0));
+ }
+
+ // Store for future usage
+ if (loopcnt < 100)
+ {
+ if (loop++ == 0)
+ {
+ //BandWidth = 20 MHz
+ pAd->Mlme.CaliBW20RfR24 = (UCHAR)RF_R24_Value;
+ }
+ else
+ {
+ //BandWidth = 40 MHz
+ pAd->Mlme.CaliBW40RfR24 = (UCHAR)RF_R24_Value;
+ break;
+ }
+ }
+ else
+ break;
+
+ RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
+
+ // reset count
+ count = 0;
+ } while(TRUE);
+
+ //
+ // Set back to initial state
+ //
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R24, 0);
+
+ RT30xxReadRFRegister(pAd, RF_R22, &value);
+ value &= ~(0x01);
+ RT30xxWriteRFRegister(pAd, RF_R22, value);
+
+ // set BBP back to BW20
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &BBPValue);
+ BBPValue&= (~0x18);
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, BBPValue);
+ DBGPRINT(RT_DEBUG_TRACE, ("RTMPFilterCalibration - CaliBW20RfR24=0x%x, CaliBW40RfR24=0x%x\n", pAd->Mlme.CaliBW20RfR24, pAd->Mlme.CaliBW40RfR24));
+}
+#endif /* RT30xx */
VOID NICInitRT30xxRFRegisters(IN PRTMP_ADAPTER pAd)
{
INT i;
// Driver must read EEPROM to get RfIcType before initial RF registers
// Initialize RF register to default value
+#ifndef RT30xx
if (IS_RT3070(pAd) && ((pAd->RfIcType == RFIC_3020) ||(pAd->RfIcType == RFIC_2020)))
{
// Init RF calibration
@@ -1234,7 +1403,86 @@ VOID NICInitRT30xxRFRegisters(IN PRTMP_ADAPTER pAd)
//For RF filter Calibration
RTUSBFilterCalibration(pAd);
}
+#endif
+#ifdef RT30xx
+ if (IS_RT3070(pAd) || IS_RT3071(pAd))
+ {
+ // Init RF calibration
+ // Driver should toggle RF R30 bit7 before init RF registers
+ UINT32 RfReg = 0;
+ UINT32 data;
+
+ RT30xxReadRFRegister(pAd, RF_R30, (PUCHAR)&RfReg);
+ RfReg |= 0x80;
+ RT30xxWriteRFRegister(pAd, RF_R30, (UCHAR)RfReg);
+ RTMPusecDelay(1000);
+ RfReg &= 0x7F;
+ RT30xxWriteRFRegister(pAd, RF_R30, (UCHAR)RfReg);
+
+ // Initialize RF register to default value
+ for (i = 0; i < NUM_RF_REG_PARMS; i++)
+ {
+ RT30xxWriteRFRegister(pAd, RT30xx_RFRegTable[i].Register, RT30xx_RFRegTable[i].Value);
+ }
+
+ // add by johnli
+ if (IS_RT3070(pAd))
+ {
+ // Update MAC 0x05D4 from 01xxxxxx to 0Dxxxxxx (voltage 1.2V to 1.35V) for RT3070 to improve yield rate
+ RTUSBReadMACRegister(pAd, LDO_CFG0, &data);
+ data = ((data & 0xF0FFFFFF) | 0x0D000000);
+ RTUSBWriteMACRegister(pAd, LDO_CFG0, data);
+ }
+ else if (IS_RT3071(pAd))
+ {
+ // Driver should set RF R6 bit6 on before init RF registers
+ RT30xxReadRFRegister(pAd, RF_R06, (PUCHAR)&RfReg);
+ RfReg |= 0x40;
+ RT30xxWriteRFRegister(pAd, RF_R06, (UCHAR)RfReg);
+
+ // init R31
+ RT30xxWriteRFRegister(pAd, RF_R31, 0x14);
+
+ // RT3071 version E has fixed this issue
+ if ((pAd->NicConfig2.field.DACTestBit == 1) && ((pAd->MACVersion & 0xffff) < 0x0211))
+ {
+ // patch tx EVM issue temporarily
+ RTUSBReadMACRegister(pAd, LDO_CFG0, &data);
+ data = ((data & 0xE0FFFFFF) | 0x0D000000);
+ RTUSBWriteMACRegister(pAd, LDO_CFG0, data);
+ }
+ else
+ {
+ RTMP_IO_READ32(pAd, LDO_CFG0, &data);
+ data = ((data & 0xE0FFFFFF) | 0x01000000);
+ RTMP_IO_WRITE32(pAd, LDO_CFG0, data);
+ }
+
+ // patch LNA_PE_G1 failed issue
+ RTUSBReadMACRegister(pAd, GPIO_SWITCH, &data);
+ data &= ~(0x20);
+ RTUSBWriteMACRegister(pAd, GPIO_SWITCH, data);
+ }
+
+ //For RF filter Calibration
+ RTMPFilterCalibration(pAd);
+ // Initialize RF R27 register, set RF R27 must be behind RTMPFilterCalibration()
+ if ((pAd->MACVersion & 0xffff) < 0x0211)
+ RT30xxWriteRFRegister(pAd, RF_R27, 0x3);
+
+ // set led open drain enable
+ RTUSBReadMACRegister(pAd, OPT_14, &data);
+ data |= 0x01;
+ RTUSBWriteMACRegister(pAd, OPT_14, data);
+
+ if (IS_RT3071(pAd))
+ {
+ // add by johnli, RF power sequence setup, load RF normal operation-mode setup
+ RT30xxLoadRFNormalModeSetup(pAd);
+ }
+ }
+#endif
}
#endif // RT2870 //
@@ -1411,11 +1659,25 @@ VOID NICReadEEPROMParameters(
Antenna.word = pAd->EEPROMDefaultValue[0];
if (Antenna.word == 0xFFFF)
{
- Antenna.word = 0;
- Antenna.field.RfIcType = RFIC_2820;
- Antenna.field.TxPath = 1;
- Antenna.field.RxPath = 2;
- DBGPRINT(RT_DEBUG_WARN, ("E2PROM error, hard code as 0x%04x\n", Antenna.word));
+#ifdef RT30xx
+ if(IS_RT3090(pAd))
+ {
+ Antenna.word = 0;
+ Antenna.field.RfIcType = RFIC_3020;
+ Antenna.field.TxPath = 1;
+ Antenna.field.RxPath = 1;
+ }
+ else
+ {
+#endif // RT30xx //
+ Antenna.word = 0;
+ Antenna.field.RfIcType = RFIC_2820;
+ Antenna.field.TxPath = 1;
+ Antenna.field.RxPath = 2;
+ DBGPRINT(RT_DEBUG_WARN, ("E2PROM error, hard code as 0x%04x\n", Antenna.word));
+#ifdef RT30xx
+ }
+#endif // RT30xx //
}
// Choose the desired Tx&Rx stream.
@@ -1444,7 +1706,9 @@ VOID NICReadEEPROMParameters(
NicConfig2.word = pAd->EEPROMDefaultValue[1];
{
+#ifndef RT30xx
NicConfig2.word = 0;
+#endif
if ((NicConfig2.word & 0x00ff) == 0xff)
{
NicConfig2.word &= 0xff00;
@@ -1637,6 +1901,14 @@ VOID NICReadEEPROMParameters(
RTMPReadTxPwrPerRate(pAd);
+#ifdef RT30xx
+ if (IS_RT30xx(pAd))
+ {
+ eFusePhysicalReadRegisters(pAd, EFUSE_TAG, 2, &value);
+ pAd->EFuseTag = (value & 0xff);
+ }
+#endif // RT30xx //
+
DBGPRINT(RT_DEBUG_TRACE, ("<-- NICReadEEPROMParameters\n"));
}
@@ -1681,16 +1953,49 @@ VOID NICInitAsicFromEEPROM(
}
}
+#ifndef RT30xx
Antenna.word = pAd->Antenna.word;
+#endif
+#ifdef RT30xx
+ Antenna.word = pAd->EEPROMDefaultValue[0];
+ if (Antenna.word == 0xFFFF)
+ {
+ DBGPRINT(RT_DEBUG_ERROR, ("E2PROM error, hard code as 0x%04x\n", Antenna.word));
+ BUG_ON(Antenna.word == 0xFFFF);
+ }
+#endif
pAd->Mlme.RealRxPath = (UCHAR) Antenna.field.RxPath;
pAd->RfIcType = (UCHAR) Antenna.field.RfIcType;
+#ifdef RT30xx
+ DBGPRINT(RT_DEBUG_WARN, ("pAd->RfIcType = %d, RealRxPath=%d, TxPath = %d\n", pAd->RfIcType, pAd->Mlme.RealRxPath,Antenna.field.TxPath));
+
+ // Save the antenna for future use
+ pAd->Antenna.word = Antenna.word;
+#endif
NicConfig2.word = pAd->EEPROMDefaultValue[1];
+#ifdef RT30xx
+ {
+ if ((NicConfig2.word & 0x00ff) == 0xff)
+ {
+ NicConfig2.word &= 0xff00;
+ }
+ if ((NicConfig2.word >> 8) == 0xff)
+ {
+ NicConfig2.word &= 0x00ff;
+ }
+ }
+#endif
// Save the antenna for future use
pAd->NicConfig2.word = NicConfig2.word;
+#ifdef RT30xx
+ // set default antenna as main
+ if (pAd->RfIcType == RFIC_3020)
+ AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
+#endif
//
// Send LED Setting to MCU.
//
@@ -1919,6 +2224,9 @@ NDIS_STATUS NICInitializeAsic(
NTSTATUS Status;
UCHAR Value = 0xff;
#endif // RT2870 //
+#ifdef RT30xx
+ UINT32 eFuseCtrl;
+#endif // RT30xx //
USHORT KeyIdx;
INT i,apidx;
@@ -1959,9 +2267,16 @@ NDIS_STATUS NICInitializeAsic(
// Initialize MAC register to default value
for(Index=0; Index<NUM_MAC_REG_PARMS; Index++)
{
+#ifdef RT3070
+ if ((MACRegTable[Index].Register == TX_SW_CFG0) && (IS_RT3070(pAd) || IS_RT3071(pAd)))
+ {
+ MACRegTable[Index].Value = 0x00000400;
+ }
+#endif // RT3070 //
RTMP_IO_WRITE32(pAd, (USHORT)MACRegTable[Index].Register, MACRegTable[Index].Value);
}
+#ifndef RT30xx
if(IS_RT3070(pAd))
{
// According to Frank Hsu (from Gary Tsao)
@@ -1971,7 +2286,7 @@ NDIS_STATUS NICInitializeAsic(
RTUSBWriteMACRegister(pAd, TX_SW_CFG1, 0);
RTUSBWriteMACRegister(pAd, TX_SW_CFG2, 0);
}
-
+#endif
{
for (Index = 0; Index < NUM_STA_MAC_REG_PARMS; Index++)
@@ -1981,6 +2296,36 @@ NDIS_STATUS NICInitializeAsic(
}
#endif // RT2870 //
+#ifdef RT30xx
+ // Initialize RT3070 serial MAc registers which is different from RT2870 serial
+ if (IS_RT3090(pAd))
+ {
+ RTMP_IO_WRITE32(pAd, TX_SW_CFG1, 0);
+
+ // RT3071 version E has fixed this issue
+ if ((pAd->MACVersion & 0xffff) < 0x0211)
+ {
+ if (pAd->NicConfig2.field.DACTestBit == 1)
+ {
+ RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x1F); // To fix throughput drop drastically
+ }
+ else
+ {
+ RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x0F); // To fix throughput drop drastically
+ }
+ }
+ else
+ {
+ RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x0);
+ }
+ }
+ else if (IS_RT3070(pAd))
+ {
+ RTMP_IO_WRITE32(pAd, TX_SW_CFG1, 0);
+ RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x1F); // To fix throughput drop drastically
+ }
+#endif // RT30xx //
+
//
// Before program BBP, we need to wait BBP/RF get wake up.
//
@@ -2020,6 +2365,7 @@ NDIS_STATUS NICInitializeAsic(
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBPRegTable[Index].Register, BBPRegTable[Index].Value);
}
+#ifndef RT30xx
// for rt2860E and after, init BBP_R84 with 0x19. This is for extension channel overlapping IOT.
if ((pAd->MACVersion&0xffff) != 0x0101)
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R84, 0x19);
@@ -2033,7 +2379,55 @@ NDIS_STATUS NICInitializeAsic(
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R105, 0x05);
}
#endif // RT2870 //
+#endif
+#ifdef RT30xx
+ // for rt2860E and after, init BBP_R84 with 0x19. This is for extension channel overlapping IOT.
+ // RT3090 should not program BBP R84 to 0x19, otherwise TX will block.
+ if (((pAd->MACVersion&0xffff) != 0x0101) && (!IS_RT30xx(pAd)))
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R84, 0x19);
+
+// add by johnli, RF power sequence setup
+ if (IS_RT30xx(pAd))
+ { //update for RT3070/71/72/90/91/92.
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R79, 0x13);
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R80, 0x05);
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R81, 0x33);
+ }
+
+ if (IS_RT3090(pAd))
+ {
+ UCHAR bbpreg=0;
+ // enable DC filter
+ if ((pAd->MACVersion & 0xffff) >= 0x0211)
+ {
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R103, 0xc0);
+ }
+
+ // improve power consumption
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R138, &bbpreg);
+ if (pAd->Antenna.field.TxPath == 1)
+ {
+ // turn off tx DAC_1
+ bbpreg = (bbpreg | 0x20);
+ }
+
+ if (pAd->Antenna.field.RxPath == 1)
+ {
+ // turn off tx ADC_1
+ bbpreg &= (~0x2);
+ }
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R138, bbpreg);
+
+ // improve power consumption in RT3071 Ver.E
+ if ((pAd->MACVersion & 0xffff) >= 0x0211)
+ {
+ RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R31, &bbpreg);
+ bbpreg &= (~0x3);
+ RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R31, bbpreg);
+ }
+ }
+#endif
if (pAd->MACVersion == 0x28600100)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R69, 0x16);
@@ -2123,6 +2517,20 @@ NDIS_STATUS NICInitializeAsic(
Counter|=0x000001e;
RTMP_IO_WRITE32(pAd, USB_CYC_CFG, Counter);
#endif // RT2870 //
+#ifdef RT30xx
+ pAd->bUseEfuse=FALSE;
+ RTMP_IO_READ32(pAd, EFUSE_CTRL, &eFuseCtrl);
+ pAd->bUseEfuse = ( (eFuseCtrl & 0x80000000) == 0x80000000) ? 1 : 0;
+ if(pAd->bUseEfuse)
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("NVM is Efuse\n"));
+ }
+ else
+ {
+ DBGPRINT(RT_DEBUG_TRACE, ("NVM is EEPROM\n"));
+
+ }
+#endif // RT30xx //
{
// for rt2860E and after, init TXOP_CTRL_CFG with 0x583f. This is for extension channel overlapping IOT.
@@ -2635,19 +3043,18 @@ NDIS_STATUS NICLoadFirmware(
ULONG FileLength, Index;
//ULONG firm;
UINT32 MacReg = 0;
-#ifdef RT2870
UINT32 Version = (pAd->MACVersion >> 16);
-#endif // RT2870 //
pFirmwareImage = FirmwareImage;
FileLength = sizeof(FirmwareImage);
-#ifdef RT2870
+
// New 8k byte firmware size for RT3071/RT3072
//printk("Usb Chip\n");
if (FIRMWAREIMAGE_LENGTH == FIRMWAREIMAGE_MAX_LENGTH)
//The firmware image consists of two parts. One is the origianl and the other is the new.
//Use Second Part
{
+#ifdef RT2870
if ((Version != 0x2860) && (Version != 0x2872) && (Version != 0x3070))
{ // Use Firmware V2.
//printk("KH:Use New Version,part2\n");
@@ -2660,6 +3067,7 @@ NDIS_STATUS NICLoadFirmware(
pFirmwareImage = FirmwareImage;
FileLength = FIRMWAREIMAGEV1_LENGTH;
}
+#endif // RT2870 //
}
else
{
@@ -2667,8 +3075,6 @@ NDIS_STATUS NICLoadFirmware(
Status = NDIS_STATUS_FAILURE;
}
-#endif // RT2870 //
-
RT28XX_WRITE_FIRMWARE(pAd, pFirmwareImage, FileLength);
/* check if MCU is ready */
@@ -2969,7 +3375,9 @@ VOID UserCfgInit(
pAd->SharedKey[bss_index][key_index].CipherAlg = CIPHER_NONE;
}
}
-
+#ifdef RT30xx
+ pAd->EepromAccess = FALSE;
+#endif
pAd->Antenna.word = 0;
pAd->CommonCfg.BBPCurrentBW = BW_20;
diff --git a/drivers/staging/rt2870/common/rtusb_bulk.c b/drivers/staging/rt2870/common/rtusb_bulk.c
index de8b0849bb4..7ae3e959613 100644
--- a/drivers/staging/rt2870/common/rtusb_bulk.c
+++ b/drivers/staging/rt2870/common/rtusb_bulk.c
@@ -317,6 +317,7 @@ VOID RTUSBBulkOutDataPacket(
break;
}
+ //PS packets use HCCA queue when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
if (pTxInfo->QSEL != FIFO_EDCA)
{
printk("%s(): ====> pTxInfo->QueueSel(%d)!= FIFO_EDCA!!!!\n", __func__, pTxInfo->QSEL);
@@ -349,7 +350,7 @@ VOID RTUSBBulkOutDataPacket(
pLastTxInfo = pTxInfo;
// Make sure we use EDCA QUEUE.
- pTxInfo->QSEL = FIFO_EDCA;
+ pTxInfo->QSEL = FIFO_EDCA; //PS packets use HCCA queue when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
ThisBulkSize += (pTxInfo->USBDMATxPktLen+4);
TmpBulkEndPos += (pTxInfo->USBDMATxPktLen+4);
@@ -975,6 +976,17 @@ VOID RTUSBKickBulkOut(
RTUSBBulkOutDataPacket(pAd, 3, pAd->NextBulkOutIndex[3]);
}
}
+#ifdef RT30xx
+ //PS packets use HCCA queue when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
+ if (RTUSB_TEST_BULK_FLAG(pAd, fRTUSB_BULK_OUT_DATA_NORMAL_5))
+ {
+ if (((!RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS)) ||
+ (!OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_MEDIA_STATE_CONNECTED))
+ ))
+ {
+ }
+ }
+#endif
// 7. Null frame is the last
else if (RTUSB_TEST_BULK_FLAG(pAd, fRTUSB_BULK_OUT_DATA_NULL))
diff --git a/drivers/staging/rt2870/common/rtusb_io.c b/drivers/staging/rt2870/common/rtusb_io.c
index 4a930f0050d..fd1b0c18f2a 100644
--- a/drivers/staging/rt2870/common/rtusb_io.c
+++ b/drivers/staging/rt2870/common/rtusb_io.c
@@ -110,6 +110,12 @@ NTSTATUS RTUSBFirmwareWrite(
Status = RTUSBWriteMACRegister(pAd, 0x701c, 0xffffffff);
Status = RTUSBFirmwareRun(pAd);
+#ifdef RT30xx
+ RTMPusecDelay(10000);
+ RTUSBWriteMACRegister(pAd,H2M_MAILBOX_CSR,0);
+ AsicSendCommandToMcu(pAd, 0x72, 0x00, 0x00, 0x00);//reset rf by MCU supported by new firmware
+#endif
+
return Status;
}
@@ -665,6 +671,7 @@ NTSTATUS RTUSBWriteRFRegister(
return STATUS_SUCCESS;
}
+#ifndef RT30xx
/*
========================================================================
@@ -772,6 +779,7 @@ NTSTATUS RT30xxReadRFRegister(
return STATUS_SUCCESS;
}
+#endif /* RT30xx */
/*
========================================================================
@@ -796,6 +804,14 @@ NTSTATUS RTUSBReadEEPROM(
{
NTSTATUS Status = STATUS_SUCCESS;
+#ifdef RT30xx
+ if(pAd->bUseEfuse)
+ {
+ Status =eFuseRead(pAd, Offset, pData, length);
+ }
+ else
+#endif // RT30xx //
+ {
Status = RTUSB_VendorRequest(
pAd,
(USBD_TRANSFER_DIRECTION_IN | USBD_SHORT_TRANSFER_OK),
@@ -805,6 +821,7 @@ NTSTATUS RTUSBReadEEPROM(
Offset,
pData,
length);
+ }
return Status;
}
@@ -832,6 +849,14 @@ NTSTATUS RTUSBWriteEEPROM(
{
NTSTATUS Status = STATUS_SUCCESS;
+#ifdef RT30xx
+ if(pAd->bUseEfuse)
+ {
+ Status = eFuseWrite(pAd, Offset, pData, length);
+ }
+ else
+#endif // RT30xx //
+ {
Status = RTUSB_VendorRequest(
pAd,
USBD_TRANSFER_DIRECTION_OUT,
@@ -841,6 +866,7 @@ NTSTATUS RTUSBWriteEEPROM(
Offset,
pData,
length);
+ }
return Status;
}
@@ -957,9 +983,13 @@ NDIS_STATUS RTUSBEnqueueCmdFromNdis(
PCmdQElmt cmdqelmt = NULL;
POS_COOKIE pObj = (POS_COOKIE) pAd->OS_Cookie;
-
+#ifndef RT30xx
BUG_ON(pObj->RTUSBCmdThr_task == NULL);
CHECK_PID_LEGALITY(task_pid(pObj->RTUSBCmdThr_task))
+#endif
+#ifdef RT30xx
+ if (pObj->RTUSBCmdThr_pid < 0)
+#endif
return (NDIS_STATUS_RESOURCES);
status = RTMPAllocateMemory((PVOID *)&cmdqelmt, sizeof(CmdQElmt));
@@ -1710,6 +1740,38 @@ VOID CMDHandler(
}
break;
+#ifdef RT30xx
+//Benson modified for USB interface, avoid in interrupt when write key, 20080724 -->
+ case RT_CMD_SET_KEY_TABLE: //General call for AsicAddPairwiseKeyEntry()
+ {
+ RT_ADD_PAIRWISE_KEY_ENTRY KeyInfo;
+ KeyInfo = *((PRT_ADD_PAIRWISE_KEY_ENTRY)(pData));
+ AsicAddPairwiseKeyEntry(pAd,
+ KeyInfo.MacAddr,
+ (UCHAR)KeyInfo.MacTabMatchWCID,
+ &KeyInfo.CipherKey);
+ }
+ break;
+ case RT_CMD_SET_RX_WCID_TABLE: //General call for RTMPAddWcidAttributeEntry()
+ {
+ PMAC_TABLE_ENTRY pEntry;
+ UCHAR KeyIdx;
+ UCHAR CipherAlg;
+ UCHAR ApIdx;
+
+ pEntry = (PMAC_TABLE_ENTRY)(pData);
+
+ RTMPAddWcidAttributeEntry(
+ pAd,
+ ApIdx,
+ KeyIdx,
+ CipherAlg,
+ pEntry);
+ }
+ break;
+//Benson modified for USB interface, avoid in interrupt when write key, 20080724 <--
+#endif
+
case CMDTHREAD_SET_CLIENT_MAC_ENTRY:
{
MAC_TABLE_ENTRY *pEntry;
@@ -1756,6 +1818,16 @@ VOID CMDHandler(
}
break;
+#ifdef RT30xx
+// add by johnli, fix "in_interrupt" error when call "MacTableDeleteEntry" in Rx tasklet
+ case CMDTHREAD_UPDATE_PROTECT:
+ {
+ AsicUpdateProtect(pAd, 0, (ALLN_SETPROTECT), TRUE, 0);
+ }
+ break;
+// end johnli
+#endif
+
case OID_802_11_ADD_WEP:
{
UINT i;
diff --git a/drivers/staging/rt2870/common/spectrum.c b/drivers/staging/rt2870/common/spectrum.c
index c2a9443b36a..9a88c760b03 100644
--- a/drivers/staging/rt2870/common/spectrum.c
+++ b/drivers/staging/rt2870/common/spectrum.c
@@ -1569,7 +1569,12 @@ static VOID PeerMeasureReportAction(
if ((pMeasureReportInfo = kmalloc(sizeof(MEASURE_RPI_REPORT), GFP_ATOMIC)) == NULL)
{
+#ifndef RT30xx
DBGPRINT(RT_DEBUG_ERROR, ("%s unable to alloc memory for measure report buffer (size=%zu).\n", __func__, sizeof(MEASURE_RPI_REPORT)));
+#endif
+#ifdef RT30xx
+ DBGPRINT(RT_DEBUG_ERROR, ("%s unable to alloc memory for measure report buffer (size=%d).\n", __func__, sizeof(MEASURE_RPI_REPORT)));
+#endif
return;
}