aboutsummaryrefslogtreecommitdiff
path: root/arch/ia64/kernel/mca.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@g5.osdl.org>2005-09-11 15:51:40 -0700
committerLinus Torvalds <torvalds@g5.osdl.org>2005-09-11 15:51:40 -0700
commit357d596bd552ad157a906289ab13ea6ba7e66e3d (patch)
tree78b8f6bc2781af2e95a6cf2b20a06dfe8bb04e5c /arch/ia64/kernel/mca.c
parente6c69bd39199656a8bbd0569edaff60574ff9cac (diff)
parentd67eb16f5d444fb6d173bcec889ddb2066c0fa0c (diff)
Merge branch 'release' of master.kernel.org:/pub/scm/linux/kernel/git/aegl/linux-2.6
Diffstat (limited to 'arch/ia64/kernel/mca.c')
-rw-r--r--arch/ia64/kernel/mca.c821
1 files changed, 505 insertions, 316 deletions
diff --git a/arch/ia64/kernel/mca.c b/arch/ia64/kernel/mca.c
index 8d484204a3f..6dc726ad713 100644
--- a/arch/ia64/kernel/mca.c
+++ b/arch/ia64/kernel/mca.c
@@ -48,6 +48,9 @@
* Delete dead variables and functions.
* Reorder to remove the need for forward declarations and to consolidate
* related code.
+ *
+ * 2005-08-12 Keith Owens <kaos@sgi.com>
+ * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
*/
#include <linux/config.h>
#include <linux/types.h>
@@ -77,6 +80,8 @@
#include <asm/irq.h>
#include <asm/hw_irq.h>
+#include "entry.h"
+
#if defined(IA64_MCA_DEBUG_INFO)
# define IA64_MCA_DEBUG(fmt...) printk(fmt)
#else
@@ -84,9 +89,7 @@
#endif
/* Used by mca_asm.S */
-ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state;
-ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state;
-u64 ia64_mca_serialize;
+u32 ia64_mca_serialize;
DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
@@ -95,8 +98,10 @@ DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
unsigned long __per_cpu_mca[NR_CPUS];
/* In mca_asm.S */
-extern void ia64_monarch_init_handler (void);
-extern void ia64_slave_init_handler (void);
+extern void ia64_os_init_dispatch_monarch (void);
+extern void ia64_os_init_dispatch_slave (void);
+
+static int monarch_cpu = -1;
static ia64_mc_info_t ia64_mc_info;
@@ -234,7 +239,8 @@ ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
* This function retrieves a specified error record type from SAL
* and wakes up any processes waiting for error records.
*
- * Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT)
+ * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
+ * FIXME: remove MCA and irq_safe.
*/
static void
ia64_mca_log_sal_error_record(int sal_info_type)
@@ -242,7 +248,7 @@ ia64_mca_log_sal_error_record(int sal_info_type)
u8 *buffer;
sal_log_record_header_t *rh;
u64 size;
- int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT;
+ int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
#ifdef IA64_MCA_DEBUG_INFO
static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
#endif
@@ -330,182 +336,6 @@ ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
#endif /* CONFIG_ACPI */
-static void
-show_min_state (pal_min_state_area_t *minstate)
-{
- u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri;
- u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri;
-
- printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits);
- printk("pr\t\t%016lx\n", minstate->pmsa_pr);
- printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0);
- printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc);
- printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip);
- printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr);
- printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs);
- printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip);
- printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr);
- printk("xfs\t\t%016lx\n", minstate->pmsa_xfs);
- printk("b1\t\t%016lx ", minstate->pmsa_br1);
- print_symbol("%s\n", minstate->pmsa_br1);
-
- printk("\nstatic registers r0-r15:\n");
- printk(" r0- 3 %016lx %016lx %016lx %016lx\n",
- 0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]);
- printk(" r4- 7 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_gr[3], minstate->pmsa_gr[4],
- minstate->pmsa_gr[5], minstate->pmsa_gr[6]);
- printk(" r8-11 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_gr[7], minstate->pmsa_gr[8],
- minstate->pmsa_gr[9], minstate->pmsa_gr[10]);
- printk("r12-15 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_gr[11], minstate->pmsa_gr[12],
- minstate->pmsa_gr[13], minstate->pmsa_gr[14]);
-
- printk("\nbank 0:\n");
- printk("r16-19 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1],
- minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]);
- printk("r20-23 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5],
- minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]);
- printk("r24-27 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9],
- minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]);
- printk("r28-31 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13],
- minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]);
-
- printk("\nbank 1:\n");
- printk("r16-19 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1],
- minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]);
- printk("r20-23 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5],
- minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]);
- printk("r24-27 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9],
- minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]);
- printk("r28-31 %016lx %016lx %016lx %016lx\n",
- minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13],
- minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]);
-}
-
-static void
-fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw)
-{
- u64 *dst_banked, *src_banked, bit, shift, nat_bits;
- int i;
-
- /*
- * First, update the pt-regs and switch-stack structures with the contents stored
- * in the min-state area:
- */
- if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) {
- pt->cr_ipsr = ms->pmsa_xpsr;
- pt->cr_iip = ms->pmsa_xip;
- pt->cr_ifs = ms->pmsa_xfs;
- } else {
- pt->cr_ipsr = ms->pmsa_ipsr;
- pt->cr_iip = ms->pmsa_iip;
- pt->cr_ifs = ms->pmsa_ifs;
- }
- pt->ar_rsc = ms->pmsa_rsc;
- pt->pr = ms->pmsa_pr;
- pt->r1 = ms->pmsa_gr[0];
- pt->r2 = ms->pmsa_gr[1];
- pt->r3 = ms->pmsa_gr[2];
- sw->r4 = ms->pmsa_gr[3];
- sw->r5 = ms->pmsa_gr[4];
- sw->r6 = ms->pmsa_gr[5];
- sw->r7 = ms->pmsa_gr[6];
- pt->r8 = ms->pmsa_gr[7];
- pt->r9 = ms->pmsa_gr[8];
- pt->r10 = ms->pmsa_gr[9];
- pt->r11 = ms->pmsa_gr[10];
- pt->r12 = ms->pmsa_gr[11];
- pt->r13 = ms->pmsa_gr[12];
- pt->r14 = ms->pmsa_gr[13];
- pt->r15 = ms->pmsa_gr[14];
- dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */
- src_banked = ms->pmsa_bank1_gr;
- for (i = 0; i < 16; ++i)
- dst_banked[i] = src_banked[i];
- pt->b0 = ms->pmsa_br0;
- sw->b1 = ms->pmsa_br1;
-
- /* construct the NaT bits for the pt-regs structure: */
-# define PUT_NAT_BIT(dst, addr) \
- do { \
- bit = nat_bits & 1; nat_bits >>= 1; \
- shift = ((unsigned long) addr >> 3) & 0x3f; \
- dst = ((dst) & ~(1UL << shift)) | (bit << shift); \
- } while (0)
-
- /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */
- shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f;
- nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift));
-
- PUT_NAT_BIT(sw->caller_unat, &pt->r1);
- PUT_NAT_BIT(sw->caller_unat, &pt->r2);
- PUT_NAT_BIT(sw->caller_unat, &pt->r3);
- PUT_NAT_BIT(sw->ar_unat, &sw->r4);
- PUT_NAT_BIT(sw->ar_unat, &sw->r5);
- PUT_NAT_BIT(sw->ar_unat, &sw->r6);
- PUT_NAT_BIT(sw->ar_unat, &sw->r7);
- PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9);
- PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11);
- PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13);
- PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15);
- nat_bits >>= 16; /* skip over bank0 NaT bits */
- PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17);
- PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19);
- PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21);
- PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23);
- PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25);
- PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27);
- PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29);
- PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31);
-}
-
-static void
-init_handler_platform (pal_min_state_area_t *ms,
- struct pt_regs *pt, struct switch_stack *sw)
-{
- struct unw_frame_info info;
-
- /* if a kernel debugger is available call it here else just dump the registers */
-
- /*
- * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
- * generated via the BMC's command-line interface, but since the console is on the
- * same serial line, the user will need some time to switch out of the BMC before
- * the dump begins.
- */
- printk("Delaying for 5 seconds...\n");
- udelay(5*1000000);
- show_min_state(ms);
-
- printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm);
- fetch_min_state(ms, pt, sw);
- unw_init_from_interruption(&info, current, pt, sw);
- ia64_do_show_stack(&info, NULL);
-
- if (read_trylock(&tasklist_lock)) {
- struct task_struct *g, *t;
- do_each_thread (g, t) {
- if (t == current)
- continue;
-
- printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
- show_stack(t, NULL);
- } while_each_thread (g, t);
- }
-
- printk("\nINIT dump complete. Please reboot now.\n");
- while (1); /* hang city if no debugger */
-}
-
#ifdef CONFIG_ACPI
/*
* ia64_mca_register_cpev
@@ -648,42 +478,6 @@ ia64_mca_cmc_vector_enable_keventd(void *unused)
}
/*
- * ia64_mca_wakeup_ipi_wait
- *
- * Wait for the inter-cpu interrupt to be sent by the
- * monarch processor once it is done with handling the
- * MCA.
- *
- * Inputs : None
- * Outputs : None
- */
-static void
-ia64_mca_wakeup_ipi_wait(void)
-{
- int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6);
- int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f);
- u64 irr = 0;
-
- do {
- switch(irr_num) {
- case 0:
- irr = ia64_getreg(_IA64_REG_CR_IRR0);
- break;
- case 1:
- irr = ia64_getreg(_IA64_REG_CR_IRR1);
- break;
- case 2:
- irr = ia64_getreg(_IA64_REG_CR_IRR2);
- break;
- case 3:
- irr = ia64_getreg(_IA64_REG_CR_IRR3);
- break;
- }
- cpu_relax();
- } while (!(irr & (1UL << irr_bit))) ;
-}
-
-/*
* ia64_mca_wakeup
*
* Send an inter-cpu interrupt to wake-up a particular cpu
@@ -748,11 +542,9 @@ ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs)
*/
ia64_sal_mc_rendez();
- /* Wait for the wakeup IPI from the monarch
- * This waiting is done by polling on the wakeup-interrupt
- * vector bit in the processor's IRRs
- */
- ia64_mca_wakeup_ipi_wait();
+ /* Wait for the monarch cpu to exit. */
+ while (monarch_cpu != -1)
+ cpu_relax(); /* spin until monarch leaves */
/* Enable all interrupts */
local_irq_restore(flags);
@@ -780,53 +572,13 @@ ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
return IRQ_HANDLED;
}
-/*
- * ia64_return_to_sal_check
- *
- * This is function called before going back from the OS_MCA handler
- * to the OS_MCA dispatch code which finally takes the control back
- * to the SAL.
- * The main purpose of this routine is to setup the OS_MCA to SAL
- * return state which can be used by the OS_MCA dispatch code
- * just before going back to SAL.
- *
- * Inputs : None
- * Outputs : None
- */
-
-static void
-ia64_return_to_sal_check(int recover)
-{
-
- /* Copy over some relevant stuff from the sal_to_os_mca_handoff
- * so that it can be used at the time of os_mca_to_sal_handoff
- */
- ia64_os_to_sal_handoff_state.imots_sal_gp =
- ia64_sal_to_os_handoff_state.imsto_sal_gp;
-
- ia64_os_to_sal_handoff_state.imots_sal_check_ra =
- ia64_sal_to_os_handoff_state.imsto_sal_check_ra;
-
- if (recover)
- ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED;
- else
- ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT;
-
- /* Default = tell SAL to return to same context */
- ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT;
-
- ia64_os_to_sal_handoff_state.imots_new_min_state =
- (u64 *)ia64_sal_to_os_handoff_state.pal_min_state;
-
-}
-
/* Function pointer for extra MCA recovery */
int (*ia64_mca_ucmc_extension)
- (void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*)
+ (void*,struct ia64_sal_os_state*)
= NULL;
int
-ia64_reg_MCA_extension(void *fn)
+ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
{
if (ia64_mca_ucmc_extension)
return 1;
@@ -845,8 +597,321 @@ ia64_unreg_MCA_extension(void)
EXPORT_SYMBOL(ia64_reg_MCA_extension);
EXPORT_SYMBOL(ia64_unreg_MCA_extension);
+
+static inline void
+copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
+{
+ u64 fslot, tslot, nat;
+ *tr = *fr;
+ fslot = ((unsigned long)fr >> 3) & 63;
+ tslot = ((unsigned long)tr >> 3) & 63;
+ *tnat &= ~(1UL << tslot);
+ nat = (fnat >> fslot) & 1;
+ *tnat |= (nat << tslot);
+}
+
+/* On entry to this routine, we are running on the per cpu stack, see
+ * mca_asm.h. The original stack has not been touched by this event. Some of
+ * the original stack's registers will be in the RBS on this stack. This stack
+ * also contains a partial pt_regs and switch_stack, the rest of the data is in
+ * PAL minstate.
+ *
+ * The first thing to do is modify the original stack to look like a blocked
+ * task so we can run backtrace on the original task. Also mark the per cpu
+ * stack as current to ensure that we use the correct task state, it also means
+ * that we can do backtrace on the MCA/INIT handler code itself.
+ */
+
+static task_t *
+ia64_mca_modify_original_stack(struct pt_regs *regs,
+ const struct switch_stack *sw,
+ struct ia64_sal_os_state *sos,
+ const char *type)
+{
+ char *p, comm[sizeof(current->comm)];
+ ia64_va va;
+ extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
+ const pal_min_state_area_t *ms = sos->pal_min_state;
+ task_t *previous_current;
+ struct pt_regs *old_regs;
+ struct switch_stack *old_sw;
+ unsigned size = sizeof(struct pt_regs) +
+ sizeof(struct switch_stack) + 16;
+ u64 *old_bspstore, *old_bsp;
+ u64 *new_bspstore, *new_bsp;
+ u64 old_unat, old_rnat, new_rnat, nat;
+ u64 slots, loadrs = regs->loadrs;
+ u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
+ u64 ar_bspstore = regs->ar_bspstore;
+ u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
+ const u64 *bank;
+ const char *msg;
+ int cpu = smp_processor_id();
+
+ previous_current = curr_task(cpu);
+ set_curr_task(cpu, current);
+ if ((p = strchr(current->comm, ' ')))
+ *p = '\0';
+
+ /* Best effort attempt to cope with MCA/INIT delivered while in
+ * physical mode.
+ */
+ regs->cr_ipsr = ms->pmsa_ipsr;
+ if (ia64_psr(regs)->dt == 0) {
+ va.l = r12;
+ if (va.f.reg == 0) {
+ va.f.reg = 7;
+ r12 = va.l;
+ }
+ va.l = r13;
+ if (va.f.reg == 0) {
+ va.f.reg = 7;
+ r13 = va.l;
+ }
+ }
+ if (ia64_psr(regs)->rt == 0) {
+ va.l = ar_bspstore;
+ if (va.f.reg == 0) {
+ va.f.reg = 7;
+ ar_bspstore = va.l;
+ }
+ va.l = ar_bsp;
+ if (va.f.reg == 0) {
+ va.f.reg = 7;
+ ar_bsp = va.l;
+ }
+ }
+
+ /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
+ * have been copied to the old stack, the old stack may fail the
+ * validation tests below. So ia64_old_stack() must restore the dirty
+ * registers from the new stack. The old and new bspstore probably
+ * have different alignments, so loadrs calculated on the old bsp
+ * cannot be used to restore from the new bsp. Calculate a suitable
+ * loadrs for the new stack and save it in the new pt_regs, where
+ * ia64_old_stack() can get it.
+ */
+ old_bspstore = (u64 *)ar_bspstore;
+ old_bsp = (u64 *)ar_bsp;
+ slots = ia64_rse_num_regs(old_bspstore, old_bsp);
+ new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
+ new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
+ regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
+
+ /* Verify the previous stack state before we change it */
+ if (user_mode(regs)) {
+ msg = "occurred in user space";
+ goto no_mod;
+ }
+ if (r13 != sos->prev_IA64_KR_CURRENT) {
+ msg = "inconsistent previous current and r13";
+ goto no_mod;
+ }
+ if ((r12 - r13) >= KERNEL_STACK_SIZE) {
+ msg = "inconsistent r12 and r13";
+ goto no_mod;
+ }
+ if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
+ msg = "inconsistent ar.bspstore and r13";
+ goto no_mod;
+ }
+ va.p = old_bspstore;
+ if (va.f.reg < 5) {
+ msg = "old_bspstore is in the wrong region";
+ goto no_mod;
+ }
+ if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
+ msg = "inconsistent ar.bsp and r13";
+ goto no_mod;
+ }
+ size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
+ if (ar_bspstore + size > r12) {
+ msg = "no room for blocked state";
+ goto no_mod;
+ }
+
+ /* Change the comm field on the MCA/INT task to include the pid that
+ * was interrupted, it makes for easier debugging. If that pid was 0
+ * (swapper or nested MCA/INIT) then use the start of the previous comm
+ * field suffixed with its cpu.
+ */
+ if (previous_current->pid)
+ snprintf(comm, sizeof(comm), "%s %d",
+ current->comm, previous_current->pid);
+ else {
+ int l;
+ if ((p = strchr(previous_current->comm, ' ')))
+ l = p - previous_current->comm;
+ else
+ l = strlen(previous_current->comm);
+ snprintf(comm, sizeof(comm), "%s %*s %d",
+ current->comm, l, previous_current->comm,
+ previous_current->thread_info->cpu);
+ }
+ memcpy(current->comm, comm, sizeof(current->comm));
+
+ /* Make the original task look blocked. First stack a struct pt_regs,
+ * describing the state at the time of interrupt. mca_asm.S built a
+ * partial pt_regs, copy it and fill in the blanks using minstate.
+ */
+ p = (char *)r12 - sizeof(*regs);
+ old_regs = (struct pt_regs *)p;
+ memcpy(old_regs, regs, sizeof(*regs));
+ /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
+ * pmsa_{xip,xpsr,xfs}
+ */
+ if (ia64_psr(regs)->ic) {
+ old_regs->cr_iip = ms->pmsa_iip;
+ old_regs->cr_ipsr = ms->pmsa_ipsr;
+ old_regs->cr_ifs = ms->pmsa_ifs;
+ } else {
+ old_regs->cr_iip = ms->pmsa_xip;
+ old_regs->cr_ipsr = ms->pmsa_xpsr;
+ old_regs->cr_ifs = ms->pmsa_xfs;
+ }
+ old_regs->pr = ms->pmsa_pr;
+ old_regs->b0 = ms->pmsa_br0;
+ old_regs->loadrs = loadrs;
+ old_regs->ar_rsc = ms->pmsa_rsc;
+ old_unat = old_regs->ar_unat;
+ copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
+ copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
+ copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
+ copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
+ copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
+ copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
+ copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
+ copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
+ copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
+ copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
+ copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
+ if (ia64_psr(old_regs)->bn)
+ bank = ms->pmsa_bank1_gr;
+ else
+ bank = ms->pmsa_bank0_gr;
+ copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
+ copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
+ copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
+ copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
+ copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
+ copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
+ copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
+ copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
+ copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
+ copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
+ copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
+ copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
+ copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
+ copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
+ copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
+ copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
+
+ /* Next stack a struct switch_stack. mca_asm.S built a partial
+ * switch_stack, copy it and fill in the blanks using pt_regs and
+ * minstate.
+ *
+ * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
+ * ar.pfs is set to 0.
+ *
+ * unwind.c::unw_unwind() does special processing for interrupt frames.
+ * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
+ * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
+ * that this is documented, of course. Set PRED_NON_SYSCALL in the
+ * switch_stack on the original stack so it will unwind correctly when
+ * unwind.c reads pt_regs.
+ *
+ * thread.ksp is updated to point to the synthesized switch_stack.
+ */
+ p -= sizeof(struct switch_stack);
+ old_sw = (struct switch_stack *)p;
+ memcpy(old_sw, sw, sizeof(*sw));
+ old_sw->caller_unat = old_unat;
+ old_sw->ar_fpsr = old_regs->ar_fpsr;
+ copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
+ copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
+ copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
+ copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
+ old_sw->b0 = (u64)ia64_leave_kernel;
+ old_sw->b1 = ms->pmsa_br1;
+ old_sw->ar_pfs = 0;
+ old_sw->ar_unat = old_unat;
+ old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
+ previous_current->thread.ksp = (u64)p - 16;
+
+ /* Finally copy the original stack's registers back to its RBS.
+ * Registers from ar.bspstore through ar.bsp at the time of the event
+ * are in the current RBS, copy them back to the original stack. The
+ * copy must be done register by register because the original bspstore
+ * and the current one have different alignments, so the saved RNAT
+ * data occurs at different places.
+ *
+ * mca_asm does cover, so the old_bsp already includes all registers at
+ * the time of MCA/INIT. It also does flushrs, so all registers before
+ * this function have been written to backing store on the MCA/INIT
+ * stack.
+ */
+ new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
+ old_rnat = regs->ar_rnat;
+ while (slots--) {
+ if (ia64_rse_is_rnat_slot(new_bspstore)) {
+ new_rnat = ia64_get_rnat(new_bspstore++);
+ }
+ if (ia64_rse_is_rnat_slot(old_bspstore)) {
+ *old_bspstore++ = old_rnat;
+ old_rnat = 0;
+ }
+ nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
+ old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
+ old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
+ *old_bspstore++ = *new_bspstore++;
+ }
+ old_sw->ar_bspstore = (unsigned long)old_bspstore;
+ old_sw->ar_rnat = old_rnat;
+
+ sos->prev_task = previous_current;
+ return previous_current;
+
+no_mod:
+ printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
+ smp_processor_id(), type, msg);
+ return previous_current;
+}
+
+/* The monarch/slave interaction is based on monarch_cpu and requires that all
+ * slaves have entered rendezvous before the monarch leaves. If any cpu has
+ * not entered rendezvous yet then wait a bit. The assumption is that any
+ * slave that has not rendezvoused after a reasonable time is never going to do
+ * so. In this context, slave includes cpus that respond to the MCA rendezvous
+ * interrupt, as well as cpus that receive the INIT slave event.
+ */
+
+static void
+ia64_wait_for_slaves(int monarch)
+{
+ int c, wait = 0;
+ for_each_online_cpu(c) {
+ if (c == monarch)
+ continue;
+ if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
+ udelay(1000); /* short wait first */
+ wait = 1;
+ break;
+ }
+ }
+ if (!wait)
+ return;
+ for_each_online_cpu(c) {
+ if (c == monarch)
+ continue;
+ if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
+ udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
+ break;
+ }
+ }
+}
+
/*
- * ia64_mca_ucmc_handler
+ * ia64_mca_handler
*
* This is uncorrectable machine check handler called from OS_MCA
* dispatch code which is in turn called from SAL_CHECK().
@@ -857,16 +922,28 @@ EXPORT_SYMBOL(ia64_unreg_MCA_extension);
* further MCA logging is enabled by clearing logs.
* Monarch also has the duty of sending wakeup-IPIs to pull the
* slave processors out of rendezvous spinloop.
- *
- * Inputs : None
- * Outputs : None
*/
void
-ia64_mca_ucmc_handler(void)
+ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
+ struct ia64_sal_os_state *sos)
{
pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
- &ia64_sal_to_os_handoff_state.proc_state_param;
- int recover;
+ &sos->proc_state_param;
+ int recover, cpu = smp_processor_id();
+ task_t *previous_current;
+
+ oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
+ previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
+ monarch_cpu = cpu;
+ ia64_wait_for_slaves(cpu);
+
+ /* Wakeup all the processors which are spinning in the rendezvous loop.
+ * They will leave SAL, then spin in the OS with interrupts disabled
+ * until this monarch cpu leaves the MCA handler. That gets control
+ * back to the OS so we can backtrace the other cpus, backtrace when
+ * spinning in SAL does not work.
+ */
+ ia64_mca_wakeup_all();
/* Get the MCA error record and log it */
ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
@@ -874,25 +951,20 @@ ia64_mca_ucmc_handler(void)
/* TLB error is only exist in this SAL error record */
recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
/* other error recovery */
- || (ia64_mca_ucmc_extension
+ || (ia64_mca_ucmc_extension
&& ia64_mca_ucmc_extension(
IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
- &ia64_sal_to_os_handoff_state,
- &ia64_os_to_sal_handoff_state));
+ sos));
if (recover) {
sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
rh->severity = sal_log_severity_corrected;
ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
+ sos->os_status = IA64_MCA_CORRECTED;
}
- /*
- * Wakeup all the processors which are spinning in the rendezvous
- * loop.
- */
- ia64_mca_wakeup_all();
- /* Return to SAL */
- ia64_return_to_sal_check(recover);
+ set_curr_task(cpu, previous_current);
+ monarch_cpu = -1;
}
static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
@@ -1116,34 +1188,114 @@ ia64_mca_cpe_poll (unsigned long dummy)
/*
* C portion of the OS INIT handler
*
- * Called from ia64_monarch_init_handler
- *
- * Inputs: pointer to pt_regs where processor info was saved.
+ * Called from ia64_os_init_dispatch
*
- * Returns:
- * 0 if SAL must warm boot the System
- * 1 if SAL must return to interrupted context using PAL_MC_RESUME
+ * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
+ * this event. This code is used for both monarch and slave INIT events, see
+ * sos->monarch.
*
+ * All INIT events switch to the INIT stack and change the previous process to
+ * blocked status. If one of the INIT events is the monarch then we are
+ * probably processing the nmi button/command. Use the monarch cpu to dump all
+ * the processes. The slave INIT events all spin until the monarch cpu
+ * returns. We can also get INIT slave events for MCA, in which case the MCA
+ * process is the monarch.
*/
+
void
-ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw)
+ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
+ struct ia64_sal_os_state *sos)
{
- pal_min_state_area_t *ms;
+ static atomic_t slaves;
+ static atomic_t monarchs;
+ task_t *previous_current;
+ int cpu = smp_processor_id(), c;
+ struct task_struct *g, *t;
- oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */
+ oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
console_loglevel = 15; /* make sure printks make it to console */
- printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n",
- ia64_sal_to_os_handoff_state.proc_state_param);
+ printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
+ sos->proc_state_param, cpu, sos->monarch);
+ salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
- /*
- * Address of minstate area provided by PAL is physical,
- * uncacheable (bit 63 set). Convert to Linux virtual
- * address in region 6.
+ previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
+ sos->os_status = IA64_INIT_RESUME;
+
+ /* FIXME: Workaround for broken proms that drive all INIT events as
+ * slaves. The last slave that enters is promoted to be a monarch.
+ * Remove this code in September 2006, that gives platforms a year to
+ * fix their proms and get their customers updated.
*/
- ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61));
+ if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
+ printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
+ __FUNCTION__, cpu);
+ atomic_dec(&slaves);
+ sos->monarch = 1;
+ }
- init_handler_platform(ms, pt, sw); /* call platform specific routines */
+ /* FIXME: Workaround for broken proms that drive all INIT events as
+ * monarchs. Second and subsequent monarchs are demoted to slaves.
+ * Remove this code in September 2006, that gives platforms a year to
+ * fix their proms and get their customers updated.
+ */
+ if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
+ printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
+ __FUNCTION__, cpu);
+ atomic_dec(&monarchs);
+ sos->monarch = 0;
+ }
+
+ if (!sos->monarch) {
+ ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
+ while (monarch_cpu == -1)
+ cpu_relax(); /* spin until monarch enters */
+ while (monarch_cpu != -1)
+ cpu_relax(); /* spin until monarch leaves */
+ printk("Slave on cpu %d returning to normal service.\n", cpu);
+ set_curr_task(cpu, previous_current);
+ ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
+ atomic_dec(&slaves);
+ return;
+ }
+
+ monarch_cpu = cpu;
+
+ /*
+ * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
+ * generated via the BMC's command-line interface, but since the console is on the
+ * same serial line, the user will need some time to switch out of the BMC before
+ * the dump begins.
+ */
+ printk("Delaying for 5 seconds...\n");
+ udelay(5*1000000);
+ ia64_wait_for_slaves(cpu);
+ printk(KERN_ERR "Processes interrupted by INIT -");
+ for_each_online_cpu(c) {
+ struct ia64_sal_os_state *s;
+ t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
+ s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
+ g = s->prev_task;
+ if (g) {
+ if (g->pid)
+ printk(" %d", g->pid);
+ else
+ printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
+ }
+ }
+ printk("\n\n");
+ if (read_trylock(&tasklist_lock)) {
+ do_each_thread (g, t) {
+ printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
+ show_stack(t, NULL);
+ } while_each_thread (g, t);
+ read_unlock(&tasklist_lock);
+ }
+ printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
+ atomic_dec(&monarchs);
+ set_curr_task(cpu, previous_current);
+ monarch_cpu = -1;
+ return;
}
static int __init
@@ -1193,6 +1345,34 @@ static struct irqaction mca_cpep_irqaction = {
};
#endif /* CONFIG_ACPI */
+/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
+ * these stacks can never sleep, they cannot return from the kernel to user
+ * space, they do not appear in a normal ps listing. So there is no need to
+ * format most of the fields.
+ */
+
+static void
+format_mca_init_stack(void *mca_data, unsigned long offset,
+ const char *type, int cpu)
+{
+ struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
+ struct thread_info *ti;
+ memset(p, 0, KERNEL_STACK_SIZE);
+ ti = (struct thread_info *)((char *)p + IA64_TASK_SIZE);
+ ti->flags = _TIF_MCA_INIT;
+ ti->preempt_count = 1;
+ ti->task = p;
+ ti->cpu = cpu;
+ p->thread_info = ti;
+ p->state = TASK_UNINTERRUPTIBLE;
+ __set_bit(cpu, &p->cpus_allowed);
+ INIT_LIST_HEAD(&p->tasks);
+ p->parent = p->real_parent = p->group_leader = p;
+ INIT_LIST_HEAD(&p->children);
+ INIT_LIST_HEAD(&p->sibling);
+ strncpy(p->comm, type, sizeof(p->comm)-1);
+}
+
/* Do per-CPU MCA-related initialization. */
void __devinit
@@ -1205,19 +1385,28 @@ ia64_mca_cpu_init(void *cpu_data)
int cpu;
mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
- * NR_CPUS);
+ * NR_CPUS + KERNEL_STACK_SIZE);
+ mca_data = (void *)(((unsigned long)mca_data +
+ KERNEL_STACK_SIZE - 1) &
+ (-KERNEL_STACK_SIZE));
for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ format_mca_init_stack(mca_data,
+ offsetof(struct ia64_mca_cpu, mca_stack),
+ "MCA", cpu);
+ format_mca_init_stack(mca_data,
+ offsetof(struct ia64_mca_cpu, init_stack),
+ "INIT", cpu);
__per_cpu_mca[cpu] = __pa(mca_data);
mca_data += sizeof(struct ia64_mca_cpu);
}
}
- /*
- * The MCA info structure was allocated earlier and its
- * physical address saved in __per_cpu_mca[cpu]. Copy that
- * address * to ia64_mca_data so we can access it as a per-CPU
- * variable.
- */
+ /*
+ * The MCA info structure was allocated earlier and its
+ * physical address saved in __per_cpu_mca[cpu]. Copy that
+ * address * to ia64_mca_data so we can access it as a per-CPU
+ * variable.
+ */
__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
/*
@@ -1227,11 +1416,11 @@ ia64_mca_cpu_init(void *cpu_data)
__get_cpu_var(ia64_mca_per_cpu_pte) =
pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
- /*
- * Also, stash away a copy of the PAL address and the PTE
- * needed to map it.
- */
- pal_vaddr = efi_get_pal_addr();
+ /*
+ * Also, stash away a copy of the PAL address and the PTE
+ * needed to map it.
+ */
+ pal_vaddr = efi_get_pal_addr();
if (!pal_vaddr)
return;
__get_cpu_var(ia64_mca_pal_base) =
@@ -1263,8 +1452,8 @@ ia64_mca_cpu_init(void *cpu_data)
void __init
ia64_mca_init(void)
{
- ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler;
- ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler;
+ ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
+ ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
int i;
s64 rc;
@@ -1342,9 +1531,9 @@ ia64_mca_init(void)
* XXX - disable SAL checksum by setting size to 0, should be
* size of the actual init handler in mca_asm.S.
*/
- ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp);
+ ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
ia64_mc_info.imi_monarch_init_handler_size = 0;
- ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp);
+ ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
ia64_mc_info.imi_slave_init_handler_size = 0;
IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,