aboutsummaryrefslogtreecommitdiff
path: root/arch/parisc/lib/milli
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@woody.linux-foundation.org>2007-10-20 20:19:15 -0700
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-10-20 20:19:15 -0700
commitcfa76f024f7c9e65169425804e5b32e71f66d0ee (patch)
treeee64e98cbfb1b654842c9256446a9584857f6730 /arch/parisc/lib/milli
parent093faa1dd26fc6766f8f04c429030757a8a0def4 (diff)
parent7210c678202bb3107085bffeb63f66a9b8ba1c85 (diff)
Merge branch 'master' of hera.kernel.org:/pub/scm/linux/kernel/git/kyle/parisc-2.6
* 'master' of hera.kernel.org:/pub/scm/linux/kernel/git/kyle/parisc-2.6: (29 commits) [PARISC] fix uninitialized variable warning in asm/rtc.h [PARISC] Port checkstack.pl to parisc [PARISC] Make palo target work when $obj != $src [PARISC] Zap unused variable warnings in pci.c [PARISC] Fix tests in palo target [PARISC] Fix palo target [PARISC] Restore palo target [PARISC] Attempt to clean up parisc/Makefile [PARISC] Fix infinite loop in /proc/iomem [PARISC] Quiet sysfs_create_link __must_check warnings in pdc_stable [PARISC] Squelch pci_enable_device __must_check warning in superio [PARISC] Kill off broken irqstack code [PARISC] Remove hardcoded uses of PAGE_SIZE [PARISC] Clean up pointless ASM_PAGE_SIZE_DIV use [PARISC] Kill off the last vestiges of ASM_PAGE_SIZE [PARISC] Kill off ASM_PAGE_SIZE use [PARISC] Beautify parisc vmlinux.lds.S [PARISC] Clean up a resource_size_t warning in sba_iommu [PARISC] Kill incorrect cast warning in unwinder [PARISC] Kill zone_to_nid printk warning ... Fixed trivial conflict in include/asm-parisc/tlbflush.h manually
Diffstat (limited to 'arch/parisc/lib/milli')
-rw-r--r--arch/parisc/lib/milli/Makefile1
-rw-r--r--arch/parisc/lib/milli/divI.S254
-rw-r--r--arch/parisc/lib/milli/divU.S235
-rw-r--r--arch/parisc/lib/milli/div_const.S682
-rw-r--r--arch/parisc/lib/milli/dyncall.S32
-rw-r--r--arch/parisc/lib/milli/milli.S2071
-rw-r--r--arch/parisc/lib/milli/milli.h165
-rw-r--r--arch/parisc/lib/milli/mulI.S474
-rw-r--r--arch/parisc/lib/milli/remI.S185
-rw-r--r--arch/parisc/lib/milli/remU.S148
10 files changed, 4247 insertions, 0 deletions
diff --git a/arch/parisc/lib/milli/Makefile b/arch/parisc/lib/milli/Makefile
new file mode 100644
index 00000000000..9b24e9b1f3c
--- /dev/null
+++ b/arch/parisc/lib/milli/Makefile
@@ -0,0 +1 @@
+obj-y := dyncall.o divI.o divU.o remI.o remU.o div_const.o mulI.o
diff --git a/arch/parisc/lib/milli/divI.S b/arch/parisc/lib/milli/divI.S
new file mode 100644
index 00000000000..ac106b7b6f2
--- /dev/null
+++ b/arch/parisc/lib/milli/divI.S
@@ -0,0 +1,254 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#include "milli.h"
+
+#ifdef L_divI
+/* ROUTINES: $$divI, $$divoI
+
+ Single precision divide for signed binary integers.
+
+ The quotient is truncated towards zero.
+ The sign of the quotient is the XOR of the signs of the dividend and
+ divisor.
+ Divide by zero is trapped.
+ Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = quotient
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions:
+ . divisor is zero (traps with ADDIT,= 0,25,0)
+ . dividend==-2**31 and divisor==-1 and routine is $$divoI
+ . (traps with ADDO 26,25,0)
+ . Changes memory at the following places:
+ . NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Branchs to other millicode routines using BE
+ . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
+ .
+ . For selected divisors, calls a divide by constant routine written by
+ . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13.
+ .
+ . The only overflow case is -2**31 divided by -1.
+ . Both routines return -2**31 but only $$divoI traps. */
+
+RDEFINE(temp,r1)
+RDEFINE(retreg,ret1) /* r29 */
+RDEFINE(temp1,arg0)
+ SUBSPA_MILLI_DIV
+ ATTR_MILLI
+ .import $$divI_2,millicode
+ .import $$divI_3,millicode
+ .import $$divI_4,millicode
+ .import $$divI_5,millicode
+ .import $$divI_6,millicode
+ .import $$divI_7,millicode
+ .import $$divI_8,millicode
+ .import $$divI_9,millicode
+ .import $$divI_10,millicode
+ .import $$divI_12,millicode
+ .import $$divI_14,millicode
+ .import $$divI_15,millicode
+ .export $$divI,millicode
+ .export $$divoI,millicode
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$divoI)
+ comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */
+GSYM($$divI)
+ ldo -1(arg1),temp /* is there at most one bit set ? */
+ and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */
+ addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */
+ b,n LREF(neg_denom)
+LSYM(pow2)
+ addi,>= 0,arg0,retreg /* if numerator is negative, add the */
+ add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */
+ extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
+ extrs retreg,15,16,retreg /* retreg = retreg >> 16 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
+ ldi 0xcc,temp1 /* setup 0xcc in temp1 */
+ extru,= arg1,23,8,temp /* test denominator with 0xff00 */
+ extrs retreg,23,24,retreg /* retreg = retreg >> 8 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
+ ldi 0xaa,temp /* setup 0xaa in temp */
+ extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
+ extrs retreg,27,28,retreg /* retreg = retreg >> 4 */
+ and,= arg1,temp1,r0 /* test denominator with 0xcc */
+ extrs retreg,29,30,retreg /* retreg = retreg >> 2 */
+ and,= arg1,temp,r0 /* test denominator with 0xaa */
+ extrs retreg,30,31,retreg /* retreg = retreg >> 1 */
+ MILLIRETN
+LSYM(neg_denom)
+ addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */
+ b,n LREF(regular_seq)
+ sub r0,arg1,temp /* make denominator positive */
+ comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */
+ ldo -1(temp),retreg /* is there at most one bit set ? */
+ and,= temp,retreg,r0 /* if so, the denominator is power of 2 */
+ b,n LREF(regular_seq)
+ sub r0,arg0,retreg /* negate numerator */
+ comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */
+ copy retreg,arg0 /* set up arg0, arg1 and temp */
+ copy temp,arg1 /* before branching to pow2 */
+ b LREF(pow2)
+ ldo -1(arg1),temp
+LSYM(regular_seq)
+ comib,>>=,n 15,arg1,LREF(small_divisor)
+ add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
+LSYM(normal)
+ subi 0,retreg,retreg /* make it positive */
+ sub 0,arg1,temp /* clear carry, */
+ /* negate the divisor */
+ ds 0,temp,0 /* set V-bit to the comple- */
+ /* ment of the divisor sign */
+ add retreg,retreg,retreg /* shift msb bit into carry */
+ ds r0,arg1,temp /* 1st divide step, if no carry */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 2nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 3rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 4th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 5th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 6th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 7th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 8th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 9th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 10th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 11th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 12th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 13th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 14th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 15th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 16th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 17th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 18th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 19th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 20th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 21st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 22nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 23rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 24th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 25th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 26th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 27th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 28th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 29th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 30th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 31st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 32nd divide step, */
+ addc retreg,retreg,retreg /* shift last retreg bit into retreg */
+ xor,>= arg0,arg1,0 /* get correct sign of quotient */
+ sub 0,retreg,retreg /* based on operand signs */
+ MILLIRETN
+ nop
+
+LSYM(small_divisor)
+
+#if defined(CONFIG_64BIT)
+/* Clear the upper 32 bits of the arg1 register. We are working with */
+/* small divisors (and 32-bit integers) We must not be mislead */
+/* by "1" bits left in the upper 32 bits. */
+ depd %r0,31,32,%r25
+#endif
+ blr,n arg1,r0
+ nop
+/* table for divisor == 0,1, ... ,15 */
+ addit,= 0,arg1,r0 /* trap if divisor == 0 */
+ nop
+ MILLIRET /* divisor == 1 */
+ copy arg0,retreg
+ MILLI_BEN($$divI_2) /* divisor == 2 */
+ nop
+ MILLI_BEN($$divI_3) /* divisor == 3 */
+ nop
+ MILLI_BEN($$divI_4) /* divisor == 4 */
+ nop
+ MILLI_BEN($$divI_5) /* divisor == 5 */
+ nop
+ MILLI_BEN($$divI_6) /* divisor == 6 */
+ nop
+ MILLI_BEN($$divI_7) /* divisor == 7 */
+ nop
+ MILLI_BEN($$divI_8) /* divisor == 8 */
+ nop
+ MILLI_BEN($$divI_9) /* divisor == 9 */
+ nop
+ MILLI_BEN($$divI_10) /* divisor == 10 */
+ nop
+ b LREF(normal) /* divisor == 11 */
+ add,>= 0,arg0,retreg
+ MILLI_BEN($$divI_12) /* divisor == 12 */
+ nop
+ b LREF(normal) /* divisor == 13 */
+ add,>= 0,arg0,retreg
+ MILLI_BEN($$divI_14) /* divisor == 14 */
+ nop
+ MILLI_BEN($$divI_15) /* divisor == 15 */
+ nop
+
+LSYM(negative1)
+ sub 0,arg0,retreg /* result is negation of dividend */
+ MILLIRET
+ addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */
+ .exit
+ .procend
+ .end
+#endif
diff --git a/arch/parisc/lib/milli/divU.S b/arch/parisc/lib/milli/divU.S
new file mode 100644
index 00000000000..9287fe2546f
--- /dev/null
+++ b/arch/parisc/lib/milli/divU.S
@@ -0,0 +1,235 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#include "milli.h"
+
+#ifdef L_divU
+/* ROUTINE: $$divU
+ .
+ . Single precision divide for unsigned integers.
+ .
+ . Quotient is truncated towards zero.
+ . Traps on divide by zero.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = quotient
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions:
+ . divisor is zero
+ . Changes memory at the following places:
+ . NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Does not create a stack frame.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Branchs to other millicode routines using BE:
+ . $$divU_# for 3,5,6,7,9,10,12,14,15
+ .
+ . For selected small divisors calls the special divide by constant
+ . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */
+
+RDEFINE(temp,r1)
+RDEFINE(retreg,ret1) /* r29 */
+RDEFINE(temp1,arg0)
+ SUBSPA_MILLI_DIV
+ ATTR_MILLI
+ .export $$divU,millicode
+ .import $$divU_3,millicode
+ .import $$divU_5,millicode
+ .import $$divU_6,millicode
+ .import $$divU_7,millicode
+ .import $$divU_9,millicode
+ .import $$divU_10,millicode
+ .import $$divU_12,millicode
+ .import $$divU_14,millicode
+ .import $$divU_15,millicode
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$divU)
+/* The subtract is not nullified since it does no harm and can be used
+ by the two cases that branch back to "normal". */
+ ldo -1(arg1),temp /* is there at most one bit set ? */
+ and,= arg1,temp,r0 /* if so, denominator is power of 2 */
+ b LREF(regular_seq)
+ addit,= 0,arg1,0 /* trap for zero dvr */
+ copy arg0,retreg
+ extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
+ extru retreg,15,16,retreg /* retreg = retreg >> 16 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
+ ldi 0xcc,temp1 /* setup 0xcc in temp1 */
+ extru,= arg1,23,8,temp /* test denominator with 0xff00 */
+ extru retreg,23,24,retreg /* retreg = retreg >> 8 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
+ ldi 0xaa,temp /* setup 0xaa in temp */
+ extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
+ extru retreg,27,28,retreg /* retreg = retreg >> 4 */
+ and,= arg1,temp1,r0 /* test denominator with 0xcc */
+ extru retreg,29,30,retreg /* retreg = retreg >> 2 */
+ and,= arg1,temp,r0 /* test denominator with 0xaa */
+ extru retreg,30,31,retreg /* retreg = retreg >> 1 */
+ MILLIRETN
+ nop
+LSYM(regular_seq)
+ comib,>= 15,arg1,LREF(special_divisor)
+ subi 0,arg1,temp /* clear carry, negate the divisor */
+ ds r0,temp,r0 /* set V-bit to 1 */
+LSYM(normal)
+ add arg0,arg0,retreg /* shift msb bit into carry */
+ ds r0,arg1,temp /* 1st divide step, if no carry */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 2nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 3rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 4th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 5th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 6th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 7th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 8th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 9th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 10th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 11th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 12th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 13th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 14th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 15th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 16th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 17th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 18th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 19th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 20th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 21st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 22nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 23rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 24th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 25th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 26th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 27th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 28th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 29th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 30th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 31st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 32nd divide step, */
+ MILLIRET
+ addc retreg,retreg,retreg /* shift last retreg bit into retreg */
+
+/* Handle the cases where divisor is a small constant or has high bit on. */
+LSYM(special_divisor)
+/* blr arg1,r0 */
+/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */
+
+/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
+ generating such a blr, comib sequence. A problem in nullification. So I
+ rewrote this code. */
+
+#if defined(CONFIG_64BIT)
+/* Clear the upper 32 bits of the arg1 register. We are working with
+ small divisors (and 32-bit unsigned integers) We must not be mislead
+ by "1" bits left in the upper 32 bits. */
+ depd %r0,31,32,%r25
+#endif
+ comib,> 0,arg1,LREF(big_divisor)
+ nop
+ blr arg1,r0
+ nop
+
+LSYM(zero_divisor) /* this label is here to provide external visibility */
+ addit,= 0,arg1,0 /* trap for zero dvr */
+ nop
+ MILLIRET /* divisor == 1 */
+ copy arg0,retreg
+ MILLIRET /* divisor == 2 */
+ extru arg0,30,31,retreg
+ MILLI_BEN($$divU_3) /* divisor == 3 */
+ nop
+ MILLIRET /* divisor == 4 */
+ extru arg0,29,30,retreg
+ MILLI_BEN($$divU_5) /* divisor == 5 */
+ nop
+ MILLI_BEN($$divU_6) /* divisor == 6 */
+ nop
+ MILLI_BEN($$divU_7) /* divisor == 7 */
+ nop
+ MILLIRET /* divisor == 8 */
+ extru arg0,28,29,retreg
+ MILLI_BEN($$divU_9) /* divisor == 9 */
+ nop
+ MILLI_BEN($$divU_10) /* divisor == 10 */
+ nop
+ b LREF(normal) /* divisor == 11 */
+ ds r0,temp,r0 /* set V-bit to 1 */
+ MILLI_BEN($$divU_12) /* divisor == 12 */
+ nop
+ b LREF(normal) /* divisor == 13 */
+ ds r0,temp,r0 /* set V-bit to 1 */
+ MILLI_BEN($$divU_14) /* divisor == 14 */
+ nop
+ MILLI_BEN($$divU_15) /* divisor == 15 */
+ nop
+
+/* Handle the case where the high bit is on in the divisor.
+ Compute: if( dividend>=divisor) quotient=1; else quotient=0;
+ Note: dividend>==divisor iff dividend-divisor does not borrow
+ and not borrow iff carry. */
+LSYM(big_divisor)
+ sub arg0,arg1,r0
+ MILLIRET
+ addc r0,r0,retreg
+ .exit
+ .procend
+ .end
+#endif
diff --git a/arch/parisc/lib/milli/div_const.S b/arch/parisc/lib/milli/div_const.S
new file mode 100644
index 00000000000..dd660076e94
--- /dev/null
+++ b/arch/parisc/lib/milli/div_const.S
@@ -0,0 +1,682 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#include "milli.h"
+
+#ifdef L_div_const
+/* ROUTINE: $$divI_2
+ . $$divI_3 $$divU_3
+ . $$divI_4
+ . $$divI_5 $$divU_5
+ . $$divI_6 $$divU_6
+ . $$divI_7 $$divU_7
+ . $$divI_8
+ . $$divI_9 $$divU_9
+ . $$divI_10 $$divU_10
+ .
+ . $$divI_12 $$divU_12
+ .
+ . $$divI_14 $$divU_14
+ . $$divI_15 $$divU_15
+ . $$divI_16
+ . $$divI_17 $$divU_17
+ .
+ . Divide by selected constants for single precision binary integers.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = quotient
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions: NONE
+ . Changes memory at the following places: NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Does not create a stack frame.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Calls other millicode routines using mrp: NONE
+ . Calls other millicode routines: NONE */
+
+
+/* TRUNCATED DIVISION BY SMALL INTEGERS
+
+ We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
+ (with y fixed).
+
+ Let a = floor(z/y), for some choice of z. Note that z will be
+ chosen so that division by z is cheap.
+
+ Let r be the remainder(z/y). In other words, r = z - ay.
+
+ Now, our method is to choose a value for b such that
+
+ q'(x) = floor((ax+b)/z)
+
+ is equal to q(x) over as large a range of x as possible. If the
+ two are equal over a sufficiently large range, and if it is easy to
+ form the product (ax), and it is easy to divide by z, then we can
+ perform the division much faster than the general division algorithm.
+
+ So, we want the following to be true:
+
+ . For x in the following range:
+ .
+ . ky <= x < (k+1)y
+ .
+ . implies that
+ .
+ . k <= (ax+b)/z < (k+1)
+
+ We want to determine b such that this is true for all k in the
+ range {0..K} for some maximum K.
+
+ Since (ax+b) is an increasing function of x, we can take each
+ bound separately to determine the "best" value for b.
+
+ (ax+b)/z < (k+1) implies
+
+ (a((k+1)y-1)+b < (k+1)z implies
+
+ b < a + (k+1)(z-ay) implies
+
+ b < a + (k+1)r
+
+ This needs to be true for all k in the range {0..K}. In
+ particular, it is true for k = 0 and this leads to a maximum
+ acceptable value for b.
+
+ b < a+r or b <= a+r-1
+
+ Taking the other bound, we have
+
+ k <= (ax+b)/z implies
+
+ k <= (aky+b)/z implies
+
+ k(z-ay) <= b implies
+
+ kr <= b
+
+ Clearly, the largest range for k will be achieved by maximizing b,
+ when r is not zero. When r is zero, then the simplest choice for b
+ is 0. When r is not 0, set
+
+ . b = a+r-1
+
+ Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
+ for all x in the range:
+
+ . 0 <= x < (K+1)y
+
+ We need to determine what K is. Of our two bounds,
+
+ . b < a+(k+1)r is satisfied for all k >= 0, by construction.
+
+ The other bound is
+
+ . kr <= b
+
+ This is always true if r = 0. If r is not 0 (the usual case), then
+ K = floor((a+r-1)/r), is the maximum value for k.
+
+ Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
+ answer for q(x) = floor(x/y) when x is in the range
+
+ (0,(K+1)y-1) K = floor((a+r-1)/r)
+
+ To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
+ the formula for q'(x) yields the correct value of q(x) for all x
+ representable by a single word in HPPA.
+
+ We are also constrained in that computing the product (ax), adding
+ b, and dividing by z must all be done quickly, otherwise we will be
+ better off going through the general algorithm using the DS
+ instruction, which uses approximately 70 cycles.
+
+ For each y, there is a choice of z which satisfies the constraints
+ for (K+1)y >= 2**32. We may not, however, be able to satisfy the
+ timing constraints for arbitrary y. It seems that z being equal to
+ a power of 2 or a power of 2 minus 1 is as good as we can do, since
+ it minimizes the time to do division by z. We want the choice of z
+ to also result in a value for (a) that minimizes the computation of
+ the product (ax). This is best achieved if (a) has a regular bit
+ pattern (so the multiplication can be done with shifts and adds).
+ The value of (a) also needs to be less than 2**32 so the product is
+ always guaranteed to fit in 2 words.
+
+ In actual practice, the following should be done:
+
+ 1) For negative x, you should take the absolute value and remember
+ . the fact so that the result can be negated. This obviously does
+ . not apply in the unsigned case.
+ 2) For even y, you should factor out the power of 2 that divides y
+ . and divide x by it. You can then proceed by dividing by the
+ . odd factor of y.
+
+ Here is a table of some odd values of y, and corresponding choices
+ for z which are "good".
+
+ y z r a (hex) max x (hex)
+
+ 3 2**32 1 55555555 100000001
+ 5 2**32 1 33333333 100000003
+ 7 2**24-1 0 249249 (infinite)
+ 9 2**24-1 0 1c71c7 (infinite)
+ 11 2**20-1 0 1745d (infinite)
+ 13 2**24-1 0 13b13b (infinite)
+ 15 2**32 1 11111111 10000000d
+ 17 2**32 1 f0f0f0f 10000000f
+
+ If r is 1, then b = a+r-1 = a. This simplifies the computation
+ of (ax+b), since you can compute (x+1)(a) instead. If r is 0,
+ then b = 0 is ok to use which simplifies (ax+b).
+
+ The bit patterns for 55555555, 33333333, and 11111111 are obviously
+ very regular. The bit patterns for the other values of a above are:
+
+ y (hex) (binary)
+
+ 7 249249 001001001001001001001001 << regular >>
+ 9 1c71c7 000111000111000111000111 << regular >>
+ 11 1745d 000000010111010001011101 << irregular >>
+ 13 13b13b 000100111011000100111011 << irregular >>
+
+ The bit patterns for (a) corresponding to (y) of 11 and 13 may be
+ too irregular to warrant using this method.
+
+ When z is a power of 2 minus 1, then the division by z is slightly
+ more complicated, involving an iterative solution.
+
+ The code presented here solves division by 1 through 17, except for
+ 11 and 13. There are algorithms for both signed and unsigned
+ quantities given.
+
+ TIMINGS (cycles)
+
+ divisor positive negative unsigned
+
+ . 1 2 2 2
+ . 2 4 4 2
+ . 3 19 21 19
+ . 4 4 4 2
+ . 5 18 22 19
+ . 6 19 22 19
+ . 8 4 4 2
+ . 10 18 19 17
+ . 12 18 20 18
+ . 15 16 18 16
+ . 16 4 4 2
+ . 17 16 18 16
+
+ Now, the algorithm for 7, 9, and 14 is an iterative one. That is,
+ a loop body is executed until the tentative quotient is 0. The
+ number of times the loop body is executed varies depending on the
+ dividend, but is never more than two times. If the dividend is
+ less than the divisor, then the loop body is not executed at all.
+ Each iteration adds 4 cycles to the timings.
+
+ divisor positive negative unsigned
+
+ . 7 19+4n 20+4n 20+4n n = number of iterations
+ . 9 21+4n 22+4n 21+4n
+ . 14 21+4n 22+4n 20+4n
+
+ To give an idea of how the number of iterations varies, here is a
+ table of dividend versus number of iterations when dividing by 7.
+
+ smallest largest required
+ dividend dividend iterations
+
+ . 0 6 0
+ . 7 0x6ffffff 1
+ 0x1000006 0xffffffff 2
+
+ There is some overlap in the range of numbers requiring 1 and 2
+ iterations. */
+
+RDEFINE(t2,r1)
+RDEFINE(x2,arg0) /* r26 */
+RDEFINE(t1,arg1) /* r25 */
+RDEFINE(x1,ret1) /* r29 */
+
+ SUBSPA_MILLI_DIV
+ ATTR_MILLI
+
+ .proc
+ .callinfo millicode
+ .entry
+/* NONE of these routines require a stack frame
+ ALL of these routines are unwindable from millicode */
+
+GSYM($$divide_by_constant)
+ .export $$divide_by_constant,millicode
+/* Provides a "nice" label for the code covered by the unwind descriptor
+ for things like gprof. */
+
+/* DIVISION BY 2 (shift by 1) */
+GSYM($$divI_2)
+ .export $$divI_2,millicode
+ comclr,>= arg0,0,0
+ addi 1,arg0,arg0
+ MILLIRET
+ extrs arg0,30,31,ret1
+
+
+/* DIVISION BY 4 (shift by 2) */
+GSYM($$divI_4)
+ .export $$divI_4,millicode
+ comclr,>= arg0,0,0
+ addi 3,arg0,arg0
+ MILLIRET
+ extrs arg0,29,30,ret1
+
+
+/* DIVISION BY 8 (shift by 3) */
+GSYM($$divI_8)
+ .export $$divI_8,millicode
+ comclr,>= arg0,0,0
+ addi 7,arg0,arg0
+ MILLIRET
+ extrs arg0,28,29,ret1
+
+/* DIVISION BY 16 (shift by 4) */
+GSYM($$divI_16)
+ .export $$divI_16,millicode
+ comclr,>= arg0,0,0
+ addi 15,arg0,arg0
+ MILLIRET
+ extrs arg0,27,28,ret1
+
+/****************************************************************************
+*
+* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
+*
+* includes 3,5,15,17 and also 6,10,12
+*
+****************************************************************************/
+
+/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
+
+GSYM($$divI_3)
+ .export $$divI_3,millicode
+ comb,<,N x2,0,LREF(neg3)
+
+ addi 1,x2,x2 /* this cannot overflow */
+ extru x2,1,2,x1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(pos)
+ addc x1,0,x1
+
+LSYM(neg3)
+ subi 1,x2,x2 /* this cannot overflow */
+ extru x2,1,2,x1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(neg)
+ addc x1,0,x1
+
+GSYM($$divU_3)
+ .export $$divU_3,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ addc 0,0,x1
+ shd x1,x2,30,t1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(pos)
+ addc x1,t1,x1
+
+/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
+
+GSYM($$divI_5)
+ .export $$divI_5,millicode
+ comb,<,N x2,0,LREF(neg5)
+
+ addi 3,x2,t1 /* this cannot overflow */
+ sh1add x2,t1,x2 /* multiply by 3 to get started */
+ b LREF(pos)
+ addc 0,0,x1
+
+LSYM(neg5)
+ sub 0,x2,x2 /* negate x2 */
+ addi 1,x2,x2 /* this cannot overflow */
+ shd 0,x2,31,x1 /* get top bit (can be 1) */
+ sh1add x2,x2,x2 /* multiply by 3 to get started */
+ b LREF(neg)
+ addc x1,0,x1
+
+GSYM($$divU_5)
+ .export $$divU_5,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ addc 0,0,x1
+ shd x1,x2,31,t1 /* multiply by 3 to get started */
+ sh1add x2,x2,x2
+ b LREF(pos)
+ addc t1,x1,x1
+
+/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */
+GSYM($$divI_6)
+ .export $$divI_6,millicode
+ comb,<,N x2,0,LREF(neg6)
+ extru x2,30,31,x2 /* divide by 2 */
+ addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */
+ sh2add x2,t1,x2 /* multiply by 5 to get started */
+ b LREF(pos)
+ addc 0,0,x1
+
+LSYM(neg6)
+ subi 2,x2,x2 /* negate, divide by 2, and add 1 */
+ /* negation and adding 1 are done */
+ /* at the same time by the SUBI */
+ extru x2,30,31,x2
+ shd 0,x2,30,x1
+ sh2add x2,x2,x2 /* multiply by 5 to get started */
+ b LREF(neg)
+ addc x1,0,x1
+
+GSYM($$divU_6)
+ .export $$divU_6,millicode
+ extru x2,30,31,x2 /* divide by 2 */
+ addi 1,x2,x2 /* cannot carry */
+ shd 0,x2,30,x1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(pos)
+ addc x1,0,x1
+
+/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
+GSYM($$divU_10)
+ .export $$divU_10,millicode
+ extru x2,30,31,x2 /* divide by 2 */
+ addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */
+ sh1add x2,t1,x2 /* multiply by 3 to get started */
+ addc 0,0,x1
+LSYM(pos)
+ shd x1,x2,28,t1 /* multiply by 0x11 */
+ shd x2,0,28,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+LSYM(pos_for_17)
+ shd x1,x2,24,t1 /* multiply by 0x101 */
+ shd x2,0,24,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,16,t1 /* multiply by 0x10001 */
+ shd x2,0,16,t2
+ add x2,t2,x2
+ MILLIRET
+ addc x1,t1,x1
+
+GSYM($$divI_10)
+ .export $$divI_10,millicode
+ comb,< x2,0,LREF(neg10)
+ copy 0,x1
+ extru x2,30,31,x2 /* divide by 2 */
+ addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */
+ sh1add x2,x2,x2 /* multiply by 3 to get started */
+
+LSYM(neg10)
+ subi 2,x2,x2 /* negate, divide by 2, and add 1 */
+ /* negation and adding 1 are done */
+ /* at the same time by the SUBI */
+ extru x2,30,31,x2
+ sh1add x2,x2,x2 /* multiply by 3 to get started */
+LSYM(neg)
+ shd x1,x2,28,t1 /* multiply by 0x11 */
+ shd x2,0,28,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+LSYM(neg_for_17)
+ shd x1,x2,24,t1 /* multiply by 0x101 */
+ shd x2,0,24,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,16,t1 /* multiply by 0x10001 */
+ shd x2,0,16,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+ MILLIRET
+ sub 0,x1,x1
+
+/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
+GSYM($$divI_12)
+ .export $$divI_12,millicode
+ comb,< x2,0,LREF(neg12)
+ copy 0,x1
+ extru x2,29,30,x2 /* divide by 4 */
+ addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */
+ sh2add x2,x2,x2 /* multiply by 5 to get started */
+
+LSYM(neg12)
+ subi 4,x2,x2 /* negate, divide by 4, and add 1 */
+ /* negation and adding 1 are done */
+ /* at the same time by the SUBI */
+ extru x2,29,30,x2
+ b LREF(neg)
+ sh2add x2,x2,x2 /* multiply by 5 to get started */
+
+GSYM($$divU_12)
+ .export $$divU_12,millicode
+ extru x2,29,30,x2 /* divide by 4 */
+ addi 5,x2,t1 /* cannot carry */
+ sh2add x2,t1,x2 /* multiply by 5 to get started */
+ b LREF(pos)
+ addc 0,0,x1
+
+/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
+GSYM($$divI_15)
+ .export $$divI_15,millicode
+ comb,< x2,0,LREF(neg15)
+ copy 0,x1
+ addib,tr 1,x2,LREF(pos)+4
+ shd x1,x2,28,t1
+
+LSYM(neg15)
+ b LREF(neg)
+ subi 1,x2,x2
+
+GSYM($$divU_15)
+ .export $$divU_15,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ b LREF(pos)
+ addc 0,0,x1
+
+/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */
+GSYM($$divI_17)
+ .export $$divI_17,millicode
+ comb,<,n x2,0,LREF(neg17)
+ addi 1,x2,x2 /* this cannot overflow */
+ shd 0,x2,28,t1 /* multiply by 0xf to get started */
+ shd x2,0,28,t2
+ sub t2,x2,x2
+ b LREF(pos_for_17)
+ subb t1,0,x1
+
+LSYM(neg17)
+ subi 1,x2,x2 /* this cannot overflow */
+ shd 0,x2,28,t1 /* multiply by 0xf to get started */
+ shd x2,0,28,t2
+ sub t2,x2,x2
+ b LREF(neg_for_17)
+ subb t1,0,x1
+
+GSYM($$divU_17)
+ .export $$divU_17,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ addc 0,0,x1
+ shd x1,x2,28,t1 /* multiply by 0xf to get started */
+LSYM(u17)
+ shd x2,0,28,t2
+ sub t2,x2,x2
+ b LREF(pos_for_17)
+ subb t1,x1,x1
+
+
+/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
+ includes 7,9 and also 14
+
+
+ z = 2**24-1
+ r = z mod x = 0
+
+ so choose b = 0
+
+ Also, in order to divide by z = 2**24-1, we approximate by dividing
+ by (z+1) = 2**24 (which is easy), and then correcting.
+
+ (ax) = (z+1)q' + r
+ . = zq' + (q'+r)
+
+ So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
+ Then the true remainder of (ax)/z is (q'+r). Repeat the process
+ with this new remainder, adding the tentative quotients together,
+ until a tentative quotient is 0 (and then we are done). There is
+ one last correction to be done. It is possible that (q'+r) = z.
+ If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But,
+ in fact, we need to add 1 more to the quotient. Now, it turns
+ out that this happens if and only if the original value x is
+ an exact multiple of y. So, to avoid a three instruction test at
+ the end, instead use 1 instruction to add 1 to x at the beginning. */
+
+/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
+GSYM($$divI_7)
+ .export $$divI_7,millicode
+ comb,<,n x2,0,LREF(neg7)
+LSYM(7)
+ addi 1,x2,x2 /* cannot overflow */
+ shd 0,x2,29,x1
+ sh3add x2,x2,x2
+ addc x1,0,x1
+LSYM(pos7)
+ shd x1,x2,26,t1
+ shd x2,0,26,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,20,t1
+ shd x2,0,20,t2
+ add x2,t2,x2
+ addc x1,t1,t1
+
+ /* computed <t1,x2>. Now divide it by (2**24 - 1) */
+
+ copy 0,x1
+ shd,= t1,x2,24,t1 /* tentative quotient */
+LSYM(1)
+ addb,tr t1,x1,LREF(2) /* add to previous quotient */
+ extru x2,31,24,x2 /* new remainder (unadjusted) */
+
+ MILLIRETN
+
+LSYM(2)
+ addb,tr t1,x2,LREF(1) /* adjust remainder */
+ extru,= x2,7,8,t1 /* new quotient */
+
+LSYM(neg7)
+ subi 1,x2,x2 /* negate x2 and add 1 */
+LSYM(8)
+ shd 0,x2,29,x1
+ sh3add x2,x2,x2
+ addc x1,0,x1
+
+LSYM(neg7_shift)
+ shd x1,x2,26,t1
+ shd x2,0,26,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,20,t1
+ shd x2,0,20,t2
+ add x2,t2,x2
+ addc x1,t1,t1
+
+ /* computed <t1,x2>. Now divide it by (2**24 - 1) */
+
+ copy 0,x1
+ shd,= t1,x2,24,t1 /* tentative quotient */
+LSYM(3)
+ addb,tr t1,x1,LREF(4) /* add to previous quotient */
+ extru x2,31,24,x2 /* new remainder (unadjusted) */
+
+ MILLIRET
+ sub 0,x1,x1 /* negate result */
+
+LSYM(4)
+ addb,tr t1,x2,LREF(3) /* adjust remainder */
+ extru,= x2,7,8,t1 /* new quotient */
+
+GSYM($$divU_7)
+ .export $$divU_7,millicode
+ addi 1,x2,x2 /* can carry */
+ addc 0,0,x1
+ shd x1,x2,29,t1
+ sh3add x2,x2,x2
+ b LREF(pos7)
+ addc t1,x1,x1
+
+/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
+GSYM($$divI_9)
+ .export $$divI_9,millicode
+ comb,<,n x2,0,LREF(neg9)
+ addi 1,x2,x2 /* cannot overflow */
+ shd 0,x2,29,t1
+ shd x2,0,29,t2
+ sub t2,x2,x2
+ b LREF(pos7)
+ subb t1,0,x1
+
+LSYM(neg9)
+ subi 1,x2,x2 /* negate and add 1 */
+ shd 0,x2,29,t1
+ shd x2,0,29,t2
+ sub t2,x2,x2
+ b LREF(neg7_shift)
+ subb t1,0,x1
+
+GSYM($$divU_9)
+ .export $$divU_9,millicode
+ addi 1,x2,x2 /* can carry */
+ addc 0,0,x1
+ shd x1,x2,29,t1
+ shd x2,0,29,t2
+ sub t2,x2,x2
+ b LREF(pos7)
+ subb t1,x1,x1
+
+/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
+GSYM($$divI_14)
+ .export $$divI_14,millicode
+ comb,<,n x2,0,LREF(neg14)
+GSYM($$divU_14)
+ .export $$divU_14,millicode
+ b LREF(7) /* go to 7 case */
+ extru x2,30,31,x2 /* divide by 2 */
+
+LSYM(neg14)
+ subi 2,x2,x2 /* negate (and add 2) */
+ b LREF(8)
+ extru x2,30,31,x2 /* divide by 2 */
+ .exit
+ .procend
+ .end
+#endif
diff --git a/arch/parisc/lib/milli/dyncall.S b/arch/parisc/lib/milli/dyncall.S
new file mode 100644
index 00000000000..27f9ca558d0
--- /dev/null
+++ b/arch/parisc/lib/milli/dyncall.S
@@ -0,0 +1,32 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#include "milli.h"
+
+#ifdef L_dyncall
+ SUBSPA_MILLI
+ ATTR_DATA
+GSYM($$dyncall)
+ .export $$dyncall,millicode
+ .proc
+ .callinfo millicode
+ .entry
+ bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
+ depi 0,31,2,%r22 ; clear the two least significant bits
+ ldw 4(%r22),%r19 ; load new LTP value
+ ldw 0(%r22),%r22 ; load address of target
+LSYM(1)
+ bv %r0(%r22) ; branch to the real target
+ stw %r2,-24(%r30) ; save return address into frame marker
+ .exit
+ .procend
+#endif
diff --git a/arch/parisc/lib/milli/milli.S b/arch/parisc/lib/milli/milli.S
new file mode 100644
index 00000000000..47c6cde712e
--- /dev/null
+++ b/arch/parisc/lib/milli/milli.S
@@ -0,0 +1,2071 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#ifdef CONFIG_64BIT
+ .level 2.0w
+#endif
+
+/* Hardware General Registers. */
+r0: .reg %r0
+r1: .reg %r1
+r2: .reg %r2
+r3: .reg %r3
+r4: .reg %r4
+r5: .reg %r5
+r6: .reg %r6
+r7: .reg %r7
+r8: .reg %r8
+r9: .reg %r9
+r10: .reg %r10
+r11: .reg %r11
+r12: .reg %r12
+r13: .reg %r13
+r14: .reg %r14
+r15: .reg %r15
+r16: .reg %r16
+r17: .reg %r17
+r18: .reg %r18
+r19: .reg %r19
+r20: .reg %r20
+r21: .reg %r21
+r22: .reg %r22
+r23: .reg %r23
+r24: .reg %r24
+r25: .reg %r25
+r26: .reg %r26
+r27: .reg %r27
+r28: .reg %r28
+r29: .reg %r29
+r30: .reg %r30
+r31: .reg %r31
+
+/* Hardware Space Registers. */
+sr0: .reg %sr0
+sr1: .reg %sr1
+sr2: .reg %sr2
+sr3: .reg %sr3
+sr4: .reg %sr4
+sr5: .reg %sr5
+sr6: .reg %sr6
+sr7: .reg %sr7
+
+/* Hardware Floating Point Registers. */
+fr0: .reg %fr0
+fr1: .reg %fr1
+fr2: .reg %fr2
+fr3: .reg %fr3
+fr4: .reg %fr4
+fr5: .reg %fr5
+fr6: .reg %fr6
+fr7: .reg %fr7
+fr8: .reg %fr8
+fr9: .reg %fr9
+fr10: .reg %fr10
+fr11: .reg %fr11
+fr12: .reg %fr12
+fr13: .reg %fr13
+fr14: .reg %fr14
+fr15: .reg %fr15
+
+/* Hardware Control Registers. */
+cr11: .reg %cr11
+sar: .reg %cr11 /* Shift Amount Register */
+
+/* Software Architecture General Registers. */
+rp: .reg r2 /* return pointer */
+#ifdef CONFIG_64BIT
+mrp: .reg r2 /* millicode return pointer */
+#else
+mrp: .reg r31 /* millicode return pointer */
+#endif
+ret0: .reg r28 /* return value */
+ret1: .reg r29 /* return value (high part of double) */
+sp: .reg r30 /* stack pointer */
+dp: .reg r27 /* data pointer */
+arg0: .reg r26 /* argument */
+arg1: .reg r25 /* argument or high part of double argument */
+arg2: .reg r24 /* argument */
+arg3: .reg r23 /* argument or high part of double argument */
+
+/* Software Architecture Space Registers. */
+/* sr0 ; return link from BLE */
+sret: .reg sr1 /* return value */
+sarg: .reg sr1 /* argument */
+/* sr4 ; PC SPACE tracker */
+/* sr5 ; process private data */
+
+/* Frame Offsets (millicode convention!) Used when calling other
+ millicode routines. Stack unwinding is dependent upon these
+ definitions. */
+r31_slot: .equ -20 /* "current RP" slot */
+sr0_slot: .equ -16 /* "static link" slot */
+#if defined(CONFIG_64BIT)
+mrp_slot: .equ -16 /* "current RP" slot */
+psp_slot: .equ -8 /* "previous SP" slot */
+#else
+mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */
+#endif
+
+
+#define DEFINE(name,value)name: .EQU value
+#define RDEFINE(name,value)name: .REG value
+#ifdef milliext
+#define MILLI_BE(lbl) BE lbl(sr7,r0)
+#define MILLI_BEN(lbl) BE,n lbl(sr7,r0)
+#define MILLI_BLE(lbl) BLE lbl(sr7,r0)
+#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
+#define MILLIRETN BE,n 0(sr0,mrp)
+#define MILLIRET BE 0(sr0,mrp)
+#define MILLI_RETN BE,n 0(sr0,mrp)
+#define MILLI_RET BE 0(sr0,mrp)
+#else
+#define MILLI_BE(lbl) B lbl
+#define MILLI_BEN(lbl) B,n lbl
+#define MILLI_BLE(lbl) BL lbl,mrp
+#define MILLI_BLEN(lbl) BL,n lbl,mrp
+#define MILLIRETN BV,n 0(mrp)
+#define MILLIRET BV 0(mrp)
+#define MILLI_RETN BV,n 0(mrp)
+#define MILLI_RET BV 0(mrp)
+#endif
+
+#define CAT(a,b) a##b
+
+#define SUBSPA_MILLI .section .text
+#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
+#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
+#define ATTR_MILLI
+#define SUBSPA_DATA .section .data
+#define ATTR_DATA
+#define GLOBAL $global$
+#define GSYM(sym) !sym:
+#define LSYM(sym) !CAT(.L,sym:)
+#define LREF(sym) CAT(.L,sym)
+
+#ifdef L_dyncall
+ SUBSPA_MILLI
+ ATTR_DATA
+GSYM($$dyncall)
+ .export $$dyncall,millicode
+ .proc
+ .callinfo millicode
+ .entry
+ bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
+ depi 0,31,2,%r22 ; clear the two least significant bits
+ ldw 4(%r22),%r19 ; load new LTP value
+ ldw 0(%r22),%r22 ; load address of target
+LSYM(1)
+ bv %r0(%r22) ; branch to the real target
+ stw %r2,-24(%r30) ; save return address into frame marker
+ .exit
+ .procend
+#endif
+
+#ifdef L_divI
+/* ROUTINES: $$divI, $$divoI
+
+ Single precision divide for signed binary integers.
+
+ The quotient is truncated towards zero.
+ The sign of the quotient is the XOR of the signs of the dividend and
+ divisor.
+ Divide by zero is trapped.
+ Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = quotient
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions:
+ . divisor is zero (traps with ADDIT,= 0,25,0)
+ . dividend==-2**31 and divisor==-1 and routine is $$divoI
+ . (traps with ADDO 26,25,0)
+ . Changes memory at the following places:
+ . NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Branchs to other millicode routines using BE
+ . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
+ .
+ . For selected divisors, calls a divide by constant routine written by
+ . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13.
+ .
+ . The only overflow case is -2**31 divided by -1.
+ . Both routines return -2**31 but only $$divoI traps. */
+
+RDEFINE(temp,r1)
+RDEFINE(retreg,ret1) /* r29 */
+RDEFINE(temp1,arg0)
+ SUBSPA_MILLI_DIV
+ ATTR_MILLI
+ .import $$divI_2,millicode
+ .import $$divI_3,millicode
+ .import $$divI_4,millicode
+ .import $$divI_5,millicode
+ .import $$divI_6,millicode
+ .import $$divI_7,millicode
+ .import $$divI_8,millicode
+ .import $$divI_9,millicode
+ .import $$divI_10,millicode
+ .import $$divI_12,millicode
+ .import $$divI_14,millicode
+ .import $$divI_15,millicode
+ .export $$divI,millicode
+ .export $$divoI,millicode
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$divoI)
+ comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */
+GSYM($$divI)
+ ldo -1(arg1),temp /* is there at most one bit set ? */
+ and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */
+ addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */
+ b,n LREF(neg_denom)
+LSYM(pow2)
+ addi,>= 0,arg0,retreg /* if numerator is negative, add the */
+ add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */
+ extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
+ extrs retreg,15,16,retreg /* retreg = retreg >> 16 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
+ ldi 0xcc,temp1 /* setup 0xcc in temp1 */
+ extru,= arg1,23,8,temp /* test denominator with 0xff00 */
+ extrs retreg,23,24,retreg /* retreg = retreg >> 8 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
+ ldi 0xaa,temp /* setup 0xaa in temp */
+ extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
+ extrs retreg,27,28,retreg /* retreg = retreg >> 4 */
+ and,= arg1,temp1,r0 /* test denominator with 0xcc */
+ extrs retreg,29,30,retreg /* retreg = retreg >> 2 */
+ and,= arg1,temp,r0 /* test denominator with 0xaa */
+ extrs retreg,30,31,retreg /* retreg = retreg >> 1 */
+ MILLIRETN
+LSYM(neg_denom)
+ addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */
+ b,n LREF(regular_seq)
+ sub r0,arg1,temp /* make denominator positive */
+ comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */
+ ldo -1(temp),retreg /* is there at most one bit set ? */
+ and,= temp,retreg,r0 /* if so, the denominator is power of 2 */
+ b,n LREF(regular_seq)
+ sub r0,arg0,retreg /* negate numerator */
+ comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */
+ copy retreg,arg0 /* set up arg0, arg1 and temp */
+ copy temp,arg1 /* before branching to pow2 */
+ b LREF(pow2)
+ ldo -1(arg1),temp
+LSYM(regular_seq)
+ comib,>>=,n 15,arg1,LREF(small_divisor)
+ add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
+LSYM(normal)
+ subi 0,retreg,retreg /* make it positive */
+ sub 0,arg1,temp /* clear carry, */
+ /* negate the divisor */
+ ds 0,temp,0 /* set V-bit to the comple- */
+ /* ment of the divisor sign */
+ add retreg,retreg,retreg /* shift msb bit into carry */
+ ds r0,arg1,temp /* 1st divide step, if no carry */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 2nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 3rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 4th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 5th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 6th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 7th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 8th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 9th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 10th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 11th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 12th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 13th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 14th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 15th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 16th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 17th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 18th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 19th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 20th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 21st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 22nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 23rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 24th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 25th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 26th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 27th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 28th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 29th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 30th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 31st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 32nd divide step, */
+ addc retreg,retreg,retreg /* shift last retreg bit into retreg */
+ xor,>= arg0,arg1,0 /* get correct sign of quotient */
+ sub 0,retreg,retreg /* based on operand signs */
+ MILLIRETN
+ nop
+
+LSYM(small_divisor)
+
+#if defined(CONFIG_64BIT)
+/* Clear the upper 32 bits of the arg1 register. We are working with */
+/* small divisors (and 32-bit integers) We must not be mislead */
+/* by "1" bits left in the upper 32 bits. */
+ depd %r0,31,32,%r25
+#endif
+ blr,n arg1,r0
+ nop
+/* table for divisor == 0,1, ... ,15 */
+ addit,= 0,arg1,r0 /* trap if divisor == 0 */
+ nop
+ MILLIRET /* divisor == 1 */
+ copy arg0,retreg
+ MILLI_BEN($$divI_2) /* divisor == 2 */
+ nop
+ MILLI_BEN($$divI_3) /* divisor == 3 */
+ nop
+ MILLI_BEN($$divI_4) /* divisor == 4 */
+ nop
+ MILLI_BEN($$divI_5) /* divisor == 5 */
+ nop
+ MILLI_BEN($$divI_6) /* divisor == 6 */
+ nop
+ MILLI_BEN($$divI_7) /* divisor == 7 */
+ nop
+ MILLI_BEN($$divI_8) /* divisor == 8 */
+ nop
+ MILLI_BEN($$divI_9) /* divisor == 9 */
+ nop
+ MILLI_BEN($$divI_10) /* divisor == 10 */
+ nop
+ b LREF(normal) /* divisor == 11 */
+ add,>= 0,arg0,retreg
+ MILLI_BEN($$divI_12) /* divisor == 12 */
+ nop
+ b LREF(normal) /* divisor == 13 */
+ add,>= 0,arg0,retreg
+ MILLI_BEN($$divI_14) /* divisor == 14 */
+ nop
+ MILLI_BEN($$divI_15) /* divisor == 15 */
+ nop
+
+LSYM(negative1)
+ sub 0,arg0,retreg /* result is negation of dividend */
+ MILLIRET
+ addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */
+ .exit
+ .procend
+ .end
+#endif
+
+#ifdef L_divU
+/* ROUTINE: $$divU
+ .
+ . Single precision divide for unsigned integers.
+ .
+ . Quotient is truncated towards zero.
+ . Traps on divide by zero.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = quotient
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions:
+ . divisor is zero
+ . Changes memory at the following places:
+ . NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Does not create a stack frame.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Branchs to other millicode routines using BE:
+ . $$divU_# for 3,5,6,7,9,10,12,14,15
+ .
+ . For selected small divisors calls the special divide by constant
+ . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */
+
+RDEFINE(temp,r1)
+RDEFINE(retreg,ret1) /* r29 */
+RDEFINE(temp1,arg0)
+ SUBSPA_MILLI_DIV
+ ATTR_MILLI
+ .export $$divU,millicode
+ .import $$divU_3,millicode
+ .import $$divU_5,millicode
+ .import $$divU_6,millicode
+ .import $$divU_7,millicode
+ .import $$divU_9,millicode
+ .import $$divU_10,millicode
+ .import $$divU_12,millicode
+ .import $$divU_14,millicode
+ .import $$divU_15,millicode
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$divU)
+/* The subtract is not nullified since it does no harm and can be used
+ by the two cases that branch back to "normal". */
+ ldo -1(arg1),temp /* is there at most one bit set ? */
+ and,= arg1,temp,r0 /* if so, denominator is power of 2 */
+ b LREF(regular_seq)
+ addit,= 0,arg1,0 /* trap for zero dvr */
+ copy arg0,retreg
+ extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
+ extru retreg,15,16,retreg /* retreg = retreg >> 16 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
+ ldi 0xcc,temp1 /* setup 0xcc in temp1 */
+ extru,= arg1,23,8,temp /* test denominator with 0xff00 */
+ extru retreg,23,24,retreg /* retreg = retreg >> 8 */
+ or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
+ ldi 0xaa,temp /* setup 0xaa in temp */
+ extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
+ extru retreg,27,28,retreg /* retreg = retreg >> 4 */
+ and,= arg1,temp1,r0 /* test denominator with 0xcc */
+ extru retreg,29,30,retreg /* retreg = retreg >> 2 */
+ and,= arg1,temp,r0 /* test denominator with 0xaa */
+ extru retreg,30,31,retreg /* retreg = retreg >> 1 */
+ MILLIRETN
+ nop
+LSYM(regular_seq)
+ comib,>= 15,arg1,LREF(special_divisor)
+ subi 0,arg1,temp /* clear carry, negate the divisor */
+ ds r0,temp,r0 /* set V-bit to 1 */
+LSYM(normal)
+ add arg0,arg0,retreg /* shift msb bit into carry */
+ ds r0,arg1,temp /* 1st divide step, if no carry */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 2nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 3rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 4th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 5th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 6th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 7th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 8th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 9th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 10th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 11th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 12th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 13th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 14th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 15th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 16th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 17th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 18th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 19th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 20th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 21st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 22nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 23rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 24th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 25th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 26th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 27th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 28th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 29th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 30th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 31st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds temp,arg1,temp /* 32nd divide step, */
+ MILLIRET
+ addc retreg,retreg,retreg /* shift last retreg bit into retreg */
+
+/* Handle the cases where divisor is a small constant or has high bit on. */
+LSYM(special_divisor)
+/* blr arg1,r0 */
+/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */
+
+/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
+ generating such a blr, comib sequence. A problem in nullification. So I
+ rewrote this code. */
+
+#if defined(CONFIG_64BIT)
+/* Clear the upper 32 bits of the arg1 register. We are working with
+ small divisors (and 32-bit unsigned integers) We must not be mislead
+ by "1" bits left in the upper 32 bits. */
+ depd %r0,31,32,%r25
+#endif
+ comib,> 0,arg1,LREF(big_divisor)
+ nop
+ blr arg1,r0
+ nop
+
+LSYM(zero_divisor) /* this label is here to provide external visibility */
+ addit,= 0,arg1,0 /* trap for zero dvr */
+ nop
+ MILLIRET /* divisor == 1 */
+ copy arg0,retreg
+ MILLIRET /* divisor == 2 */
+ extru arg0,30,31,retreg
+ MILLI_BEN($$divU_3) /* divisor == 3 */
+ nop
+ MILLIRET /* divisor == 4 */
+ extru arg0,29,30,retreg
+ MILLI_BEN($$divU_5) /* divisor == 5 */
+ nop
+ MILLI_BEN($$divU_6) /* divisor == 6 */
+ nop
+ MILLI_BEN($$divU_7) /* divisor == 7 */
+ nop
+ MILLIRET /* divisor == 8 */
+ extru arg0,28,29,retreg
+ MILLI_BEN($$divU_9) /* divisor == 9 */
+ nop
+ MILLI_BEN($$divU_10) /* divisor == 10 */
+ nop
+ b LREF(normal) /* divisor == 11 */
+ ds r0,temp,r0 /* set V-bit to 1 */
+ MILLI_BEN($$divU_12) /* divisor == 12 */
+ nop
+ b LREF(normal) /* divisor == 13 */
+ ds r0,temp,r0 /* set V-bit to 1 */
+ MILLI_BEN($$divU_14) /* divisor == 14 */
+ nop
+ MILLI_BEN($$divU_15) /* divisor == 15 */
+ nop
+
+/* Handle the case where the high bit is on in the divisor.
+ Compute: if( dividend>=divisor) quotient=1; else quotient=0;
+ Note: dividend>==divisor iff dividend-divisor does not borrow
+ and not borrow iff carry. */
+LSYM(big_divisor)
+ sub arg0,arg1,r0
+ MILLIRET
+ addc r0,r0,retreg
+ .exit
+ .procend
+ .end
+#endif
+
+#ifdef L_remI
+/* ROUTINE: $$remI
+
+ DESCRIPTION:
+ . $$remI returns the remainder of the division of two signed 32-bit
+ . integers. The sign of the remainder is the same as the sign of
+ . the dividend.
+
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = destroyed
+ . arg1 = destroyed
+ . ret1 = remainder
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions: DIVIDE BY ZERO
+ . Changes memory at the following places: NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable
+ . Does not create a stack frame
+ . Is usable for internal or external microcode
+
+ DISCUSSION:
+ . Calls other millicode routines via mrp: NONE
+ . Calls other millicode routines: NONE */
+
+RDEFINE(tmp,r1)
+RDEFINE(retreg,ret1)
+
+ SUBSPA_MILLI
+ ATTR_MILLI
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$remI)
+GSYM($$remoI)
+ .export $$remI,MILLICODE
+ .export $$remoI,MILLICODE
+ ldo -1(arg1),tmp /* is there at most one bit set ? */
+ and,<> arg1,tmp,r0 /* if not, don't use power of 2 */
+ addi,> 0,arg1,r0 /* if denominator > 0, use power */
+ /* of 2 */
+ b,n LREF(neg_denom)
+LSYM(pow2)
+ comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */
+ and arg0,tmp,retreg /* get the result */
+ MILLIRETN
+LSYM(neg_num)
+ subi 0,arg0,arg0 /* negate numerator */
+ and arg0,tmp,retreg /* get the result */
+ subi 0,retreg,retreg /* negate result */
+ MILLIRETN
+LSYM(neg_denom)
+ addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */
+ /* of 2 */
+ b,n LREF(regular_seq)
+ sub r0,arg1,tmp /* make denominator positive */
+ comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */
+ ldo -1(tmp),retreg /* is there at most one bit set ? */
+ and,= tmp,retreg,r0 /* if not, go to regular_seq */
+ b,n LREF(regular_seq)
+ comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */
+ and arg0,retreg,retreg
+ MILLIRETN
+LSYM(neg_num_2)
+ subi 0,arg0,tmp /* test against 0x80000000 */
+ and tmp,retreg,retreg
+ subi 0,retreg,retreg
+ MILLIRETN
+LSYM(regular_seq)
+ addit,= 0,arg1,0 /* trap if div by zero */
+ add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
+ sub 0,retreg,retreg /* make it positive */
+ sub 0,arg1, tmp /* clear carry, */
+ /* negate the divisor */
+ ds 0, tmp,0 /* set V-bit to the comple- */
+ /* ment of the divisor sign */
+ or 0,0, tmp /* clear tmp */
+ add retreg,retreg,retreg /* shift msb bit into carry */
+ ds tmp,arg1, tmp /* 1st divide step, if no carry */
+ /* out, msb of quotient = 0 */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+LSYM(t1)
+ ds tmp,arg1, tmp /* 2nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 3rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 4th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 5th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 6th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 7th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 8th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 9th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 10th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 11th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 12th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 13th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 14th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 15th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 16th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 17th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 18th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 19th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 20th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 21st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 22nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 23rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 24th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 25th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 26th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 27th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 28th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 29th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 30th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 31st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 32nd divide step, */
+ addc retreg,retreg,retreg /* shift last bit into retreg */
+ movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */
+ add,< arg1,0,0 /* if arg1 > 0, add arg1 */
+ add,tr tmp,arg1,retreg /* for correcting remainder tmp */
+ sub tmp,arg1,retreg /* else add absolute value arg1 */
+LSYM(finish)
+ add,>= arg0,0,0 /* set sign of remainder */
+ sub 0,retreg,retreg /* to sign of dividend */
+ MILLIRET
+ nop
+ .exit
+ .procend
+#ifdef milliext
+ .origin 0x00000200
+#endif
+ .end
+#endif
+
+#ifdef L_remU
+/* ROUTINE: $$remU
+ . Single precision divide for remainder with unsigned binary integers.
+ .
+ . The remainder must be dividend-(dividend/divisor)*divisor.
+ . Divide by zero is trapped.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = remainder
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions: DIVIDE BY ZERO
+ . Changes memory at the following places: NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Does not create a stack frame.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Calls other millicode routines using mrp: NONE
+ . Calls other millicode routines: NONE */
+
+
+RDEFINE(temp,r1)
+RDEFINE(rmndr,ret1) /* r29 */
+ SUBSPA_MILLI
+ ATTR_MILLI
+ .export $$remU,millicode
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$remU)
+ ldo -1(arg1),temp /* is there at most one bit set ? */
+ and,= arg1,temp,r0 /* if not, don't use power of 2 */
+ b LREF(regular_seq)
+ addit,= 0,arg1,r0 /* trap on div by zero */
+ and arg0,temp,rmndr /* get the result for power of 2 */
+ MILLIRETN
+LSYM(regular_seq)
+ comib,>=,n 0,arg1,LREF(special_case)
+ subi 0,arg1,rmndr /* clear carry, negate the divisor */
+ ds r0,rmndr,r0 /* set V-bit to 1 */
+ add arg0,arg0,temp /* shift msb bit into carry */
+ ds r0,arg1,rmndr /* 1st divide step, if no carry */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 2nd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 3rd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 4th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 5th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 6th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 7th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 8th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 9th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 10th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 11th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 12th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 13th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 14th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 15th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 16th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 17th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 18th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 19th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 20th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 21st divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 22nd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 23rd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 24th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 25th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 26th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 27th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 28th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 29th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 30th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 31st divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 32nd divide step, */
+ comiclr,<= 0,rmndr,r0
+ add rmndr,arg1,rmndr /* correction */
+ MILLIRETN
+ nop
+
+/* Putting >= on the last DS and deleting COMICLR does not work! */
+LSYM(special_case)
+ sub,>>= arg0,arg1,rmndr
+ copy arg0,rmndr
+ MILLIRETN
+ nop
+ .exit
+ .procend
+ .end
+#endif
+
+#ifdef L_div_const
+/* ROUTINE: $$divI_2
+ . $$divI_3 $$divU_3
+ . $$divI_4
+ . $$divI_5 $$divU_5
+ . $$divI_6 $$divU_6
+ . $$divI_7 $$divU_7
+ . $$divI_8
+ . $$divI_9 $$divU_9
+ . $$divI_10 $$divU_10
+ .
+ . $$divI_12 $$divU_12
+ .
+ . $$divI_14 $$divU_14
+ . $$divI_15 $$divU_15
+ . $$divI_16
+ . $$divI_17 $$divU_17
+ .
+ . Divide by selected constants for single precision binary integers.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = quotient
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions: NONE
+ . Changes memory at the following places: NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Does not create a stack frame.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Calls other millicode routines using mrp: NONE
+ . Calls other millicode routines: NONE */
+
+
+/* TRUNCATED DIVISION BY SMALL INTEGERS
+
+ We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
+ (with y fixed).
+
+ Let a = floor(z/y), for some choice of z. Note that z will be
+ chosen so that division by z is cheap.
+
+ Let r be the remainder(z/y). In other words, r = z - ay.
+
+ Now, our method is to choose a value for b such that
+
+ q'(x) = floor((ax+b)/z)
+
+ is equal to q(x) over as large a range of x as possible. If the
+ two are equal over a sufficiently large range, and if it is easy to
+ form the product (ax), and it is easy to divide by z, then we can
+ perform the division much faster than the general division algorithm.
+
+ So, we want the following to be true:
+
+ . For x in the following range:
+ .
+ . ky <= x < (k+1)y
+ .
+ . implies that
+ .
+ . k <= (ax+b)/z < (k+1)
+
+ We want to determine b such that this is true for all k in the
+ range {0..K} for some maximum K.
+
+ Since (ax+b) is an increasing function of x, we can take each
+ bound separately to determine the "best" value for b.
+
+ (ax+b)/z < (k+1) implies
+
+ (a((k+1)y-1)+b < (k+1)z implies
+
+ b < a + (k+1)(z-ay) implies
+
+ b < a + (k+1)r
+
+ This needs to be true for all k in the range {0..K}. In
+ particular, it is true for k = 0 and this leads to a maximum
+ acceptable value for b.
+
+ b < a+r or b <= a+r-1
+
+ Taking the other bound, we have
+
+ k <= (ax+b)/z implies
+
+ k <= (aky+b)/z implies
+
+ k(z-ay) <= b implies
+
+ kr <= b
+
+ Clearly, the largest range for k will be achieved by maximizing b,
+ when r is not zero. When r is zero, then the simplest choice for b
+ is 0. When r is not 0, set
+
+ . b = a+r-1
+
+ Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
+ for all x in the range:
+
+ . 0 <= x < (K+1)y
+
+ We need to determine what K is. Of our two bounds,
+
+ . b < a+(k+1)r is satisfied for all k >= 0, by construction.
+
+ The other bound is
+
+ . kr <= b
+
+ This is always true if r = 0. If r is not 0 (the usual case), then
+ K = floor((a+r-1)/r), is the maximum value for k.
+
+ Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
+ answer for q(x) = floor(x/y) when x is in the range
+
+ (0,(K+1)y-1) K = floor((a+r-1)/r)
+
+ To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
+ the formula for q'(x) yields the correct value of q(x) for all x
+ representable by a single word in HPPA.
+
+ We are also constrained in that computing the product (ax), adding
+ b, and dividing by z must all be done quickly, otherwise we will be
+ better off going through the general algorithm using the DS
+ instruction, which uses approximately 70 cycles.
+
+ For each y, there is a choice of z which satisfies the constraints
+ for (K+1)y >= 2**32. We may not, however, be able to satisfy the
+ timing constraints for arbitrary y. It seems that z being equal to
+ a power of 2 or a power of 2 minus 1 is as good as we can do, since
+ it minimizes the time to do division by z. We want the choice of z
+ to also result in a value for (a) that minimizes the computation of
+ the product (ax). This is best achieved if (a) has a regular bit
+ pattern (so the multiplication can be done with shifts and adds).
+ The value of (a) also needs to be less than 2**32 so the product is
+ always guaranteed to fit in 2 words.
+
+ In actual practice, the following should be done:
+
+ 1) For negative x, you should take the absolute value and remember
+ . the fact so that the result can be negated. This obviously does
+ . not apply in the unsigned case.
+ 2) For even y, you should factor out the power of 2 that divides y
+ . and divide x by it. You can then proceed by dividing by the
+ . odd factor of y.
+
+ Here is a table of some odd values of y, and corresponding choices
+ for z which are "good".
+
+ y z r a (hex) max x (hex)
+
+ 3 2**32 1 55555555 100000001
+ 5 2**32 1 33333333 100000003
+ 7 2**24-1 0 249249 (infinite)
+ 9 2**24-1 0 1c71c7 (infinite)
+ 11 2**20-1 0 1745d (infinite)
+ 13 2**24-1 0 13b13b (infinite)
+ 15 2**32 1 11111111 10000000d
+ 17 2**32 1 f0f0f0f 10000000f
+
+ If r is 1, then b = a+r-1 = a. This simplifies the computation
+ of (ax+b), since you can compute (x+1)(a) instead. If r is 0,
+ then b = 0 is ok to use which simplifies (ax+b).
+
+ The bit patterns for 55555555, 33333333, and 11111111 are obviously
+ very regular. The bit patterns for the other values of a above are:
+
+ y (hex) (binary)
+
+ 7 249249 001001001001001001001001 << regular >>
+ 9 1c71c7 000111000111000111000111 << regular >>
+ 11 1745d 000000010111010001011101 << irregular >>
+ 13 13b13b 000100111011000100111011 << irregular >>
+
+ The bit patterns for (a) corresponding to (y) of 11 and 13 may be
+ too irregular to warrant using this method.
+
+ When z is a power of 2 minus 1, then the division by z is slightly
+ more complicated, involving an iterative solution.
+
+ The code presented here solves division by 1 through 17, except for
+ 11 and 13. There are algorithms for both signed and unsigned
+ quantities given.
+
+ TIMINGS (cycles)
+
+ divisor positive negative unsigned
+
+ . 1 2 2 2
+ . 2 4 4 2
+ . 3 19 21 19
+ . 4 4 4 2
+ . 5 18 22 19
+ . 6 19 22 19
+ . 8 4 4 2
+ . 10 18 19 17
+ . 12 18 20 18
+ . 15 16 18 16
+ . 16 4 4 2
+ . 17 16 18 16
+
+ Now, the algorithm for 7, 9, and 14 is an iterative one. That is,
+ a loop body is executed until the tentative quotient is 0. The
+ number of times the loop body is executed varies depending on the
+ dividend, but is never more than two times. If the dividend is
+ less than the divisor, then the loop body is not executed at all.
+ Each iteration adds 4 cycles to the timings.
+
+ divisor positive negative unsigned
+
+ . 7 19+4n 20+4n 20+4n n = number of iterations
+ . 9 21+4n 22+4n 21+4n
+ . 14 21+4n 22+4n 20+4n
+
+ To give an idea of how the number of iterations varies, here is a
+ table of dividend versus number of iterations when dividing by 7.
+
+ smallest largest required
+ dividend dividend iterations
+
+ . 0 6 0
+ . 7 0x6ffffff 1
+ 0x1000006 0xffffffff 2
+
+ There is some overlap in the range of numbers requiring 1 and 2
+ iterations. */
+
+RDEFINE(t2,r1)
+RDEFINE(x2,arg0) /* r26 */
+RDEFINE(t1,arg1) /* r25 */
+RDEFINE(x1,ret1) /* r29 */
+
+ SUBSPA_MILLI_DIV
+ ATTR_MILLI
+
+ .proc
+ .callinfo millicode
+ .entry
+/* NONE of these routines require a stack frame
+ ALL of these routines are unwindable from millicode */
+
+GSYM($$divide_by_constant)
+ .export $$divide_by_constant,millicode
+/* Provides a "nice" label for the code covered by the unwind descriptor
+ for things like gprof. */
+
+/* DIVISION BY 2 (shift by 1) */
+GSYM($$divI_2)
+ .export $$divI_2,millicode
+ comclr,>= arg0,0,0
+ addi 1,arg0,arg0
+ MILLIRET
+ extrs arg0,30,31,ret1
+
+
+/* DIVISION BY 4 (shift by 2) */
+GSYM($$divI_4)
+ .export $$divI_4,millicode
+ comclr,>= arg0,0,0
+ addi 3,arg0,arg0
+ MILLIRET
+ extrs arg0,29,30,ret1
+
+
+/* DIVISION BY 8 (shift by 3) */
+GSYM($$divI_8)
+ .export $$divI_8,millicode
+ comclr,>= arg0,0,0
+ addi 7,arg0,arg0
+ MILLIRET
+ extrs arg0,28,29,ret1
+
+/* DIVISION BY 16 (shift by 4) */
+GSYM($$divI_16)
+ .export $$divI_16,millicode
+ comclr,>= arg0,0,0
+ addi 15,arg0,arg0
+ MILLIRET
+ extrs arg0,27,28,ret1
+
+/****************************************************************************
+*
+* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
+*
+* includes 3,5,15,17 and also 6,10,12
+*
+****************************************************************************/
+
+/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
+
+GSYM($$divI_3)
+ .export $$divI_3,millicode
+ comb,<,N x2,0,LREF(neg3)
+
+ addi 1,x2,x2 /* this cannot overflow */
+ extru x2,1,2,x1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(pos)
+ addc x1,0,x1
+
+LSYM(neg3)
+ subi 1,x2,x2 /* this cannot overflow */
+ extru x2,1,2,x1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(neg)
+ addc x1,0,x1
+
+GSYM($$divU_3)
+ .export $$divU_3,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ addc 0,0,x1
+ shd x1,x2,30,t1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(pos)
+ addc x1,t1,x1
+
+/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
+
+GSYM($$divI_5)
+ .export $$divI_5,millicode
+ comb,<,N x2,0,LREF(neg5)
+
+ addi 3,x2,t1 /* this cannot overflow */
+ sh1add x2,t1,x2 /* multiply by 3 to get started */
+ b LREF(pos)
+ addc 0,0,x1
+
+LSYM(neg5)
+ sub 0,x2,x2 /* negate x2 */
+ addi 1,x2,x2 /* this cannot overflow */
+ shd 0,x2,31,x1 /* get top bit (can be 1) */
+ sh1add x2,x2,x2 /* multiply by 3 to get started */
+ b LREF(neg)
+ addc x1,0,x1
+
+GSYM($$divU_5)
+ .export $$divU_5,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ addc 0,0,x1
+ shd x1,x2,31,t1 /* multiply by 3 to get started */
+ sh1add x2,x2,x2
+ b LREF(pos)
+ addc t1,x1,x1
+
+/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */
+GSYM($$divI_6)
+ .export $$divI_6,millicode
+ comb,<,N x2,0,LREF(neg6)
+ extru x2,30,31,x2 /* divide by 2 */
+ addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */
+ sh2add x2,t1,x2 /* multiply by 5 to get started */
+ b LREF(pos)
+ addc 0,0,x1
+
+LSYM(neg6)
+ subi 2,x2,x2 /* negate, divide by 2, and add 1 */
+ /* negation and adding 1 are done */
+ /* at the same time by the SUBI */
+ extru x2,30,31,x2
+ shd 0,x2,30,x1
+ sh2add x2,x2,x2 /* multiply by 5 to get started */
+ b LREF(neg)
+ addc x1,0,x1
+
+GSYM($$divU_6)
+ .export $$divU_6,millicode
+ extru x2,30,31,x2 /* divide by 2 */
+ addi 1,x2,x2 /* cannot carry */
+ shd 0,x2,30,x1 /* multiply by 5 to get started */
+ sh2add x2,x2,x2
+ b LREF(pos)
+ addc x1,0,x1
+
+/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
+GSYM($$divU_10)
+ .export $$divU_10,millicode
+ extru x2,30,31,x2 /* divide by 2 */
+ addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */
+ sh1add x2,t1,x2 /* multiply by 3 to get started */
+ addc 0,0,x1
+LSYM(pos)
+ shd x1,x2,28,t1 /* multiply by 0x11 */
+ shd x2,0,28,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+LSYM(pos_for_17)
+ shd x1,x2,24,t1 /* multiply by 0x101 */
+ shd x2,0,24,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,16,t1 /* multiply by 0x10001 */
+ shd x2,0,16,t2
+ add x2,t2,x2
+ MILLIRET
+ addc x1,t1,x1
+
+GSYM($$divI_10)
+ .export $$divI_10,millicode
+ comb,< x2,0,LREF(neg10)
+ copy 0,x1
+ extru x2,30,31,x2 /* divide by 2 */
+ addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */
+ sh1add x2,x2,x2 /* multiply by 3 to get started */
+
+LSYM(neg10)
+ subi 2,x2,x2 /* negate, divide by 2, and add 1 */
+ /* negation and adding 1 are done */
+ /* at the same time by the SUBI */
+ extru x2,30,31,x2
+ sh1add x2,x2,x2 /* multiply by 3 to get started */
+LSYM(neg)
+ shd x1,x2,28,t1 /* multiply by 0x11 */
+ shd x2,0,28,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+LSYM(neg_for_17)
+ shd x1,x2,24,t1 /* multiply by 0x101 */
+ shd x2,0,24,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,16,t1 /* multiply by 0x10001 */
+ shd x2,0,16,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+ MILLIRET
+ sub 0,x1,x1
+
+/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
+GSYM($$divI_12)
+ .export $$divI_12,millicode
+ comb,< x2,0,LREF(neg12)
+ copy 0,x1
+ extru x2,29,30,x2 /* divide by 4 */
+ addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */
+ sh2add x2,x2,x2 /* multiply by 5 to get started */
+
+LSYM(neg12)
+ subi 4,x2,x2 /* negate, divide by 4, and add 1 */
+ /* negation and adding 1 are done */
+ /* at the same time by the SUBI */
+ extru x2,29,30,x2
+ b LREF(neg)
+ sh2add x2,x2,x2 /* multiply by 5 to get started */
+
+GSYM($$divU_12)
+ .export $$divU_12,millicode
+ extru x2,29,30,x2 /* divide by 4 */
+ addi 5,x2,t1 /* cannot carry */
+ sh2add x2,t1,x2 /* multiply by 5 to get started */
+ b LREF(pos)
+ addc 0,0,x1
+
+/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
+GSYM($$divI_15)
+ .export $$divI_15,millicode
+ comb,< x2,0,LREF(neg15)
+ copy 0,x1
+ addib,tr 1,x2,LREF(pos)+4
+ shd x1,x2,28,t1
+
+LSYM(neg15)
+ b LREF(neg)
+ subi 1,x2,x2
+
+GSYM($$divU_15)
+ .export $$divU_15,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ b LREF(pos)
+ addc 0,0,x1
+
+/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */
+GSYM($$divI_17)
+ .export $$divI_17,millicode
+ comb,<,n x2,0,LREF(neg17)
+ addi 1,x2,x2 /* this cannot overflow */
+ shd 0,x2,28,t1 /* multiply by 0xf to get started */
+ shd x2,0,28,t2
+ sub t2,x2,x2
+ b LREF(pos_for_17)
+ subb t1,0,x1
+
+LSYM(neg17)
+ subi 1,x2,x2 /* this cannot overflow */
+ shd 0,x2,28,t1 /* multiply by 0xf to get started */
+ shd x2,0,28,t2
+ sub t2,x2,x2
+ b LREF(neg_for_17)
+ subb t1,0,x1
+
+GSYM($$divU_17)
+ .export $$divU_17,millicode
+ addi 1,x2,x2 /* this CAN overflow */
+ addc 0,0,x1
+ shd x1,x2,28,t1 /* multiply by 0xf to get started */
+LSYM(u17)
+ shd x2,0,28,t2
+ sub t2,x2,x2
+ b LREF(pos_for_17)
+ subb t1,x1,x1
+
+
+/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
+ includes 7,9 and also 14
+
+
+ z = 2**24-1
+ r = z mod x = 0
+
+ so choose b = 0
+
+ Also, in order to divide by z = 2**24-1, we approximate by dividing
+ by (z+1) = 2**24 (which is easy), and then correcting.
+
+ (ax) = (z+1)q' + r
+ . = zq' + (q'+r)
+
+ So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
+ Then the true remainder of (ax)/z is (q'+r). Repeat the process
+ with this new remainder, adding the tentative quotients together,
+ until a tentative quotient is 0 (and then we are done). There is
+ one last correction to be done. It is possible that (q'+r) = z.
+ If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But,
+ in fact, we need to add 1 more to the quotient. Now, it turns
+ out that this happens if and only if the original value x is
+ an exact multiple of y. So, to avoid a three instruction test at
+ the end, instead use 1 instruction to add 1 to x at the beginning. */
+
+/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
+GSYM($$divI_7)
+ .export $$divI_7,millicode
+ comb,<,n x2,0,LREF(neg7)
+LSYM(7)
+ addi 1,x2,x2 /* cannot overflow */
+ shd 0,x2,29,x1
+ sh3add x2,x2,x2
+ addc x1,0,x1
+LSYM(pos7)
+ shd x1,x2,26,t1
+ shd x2,0,26,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,20,t1
+ shd x2,0,20,t2
+ add x2,t2,x2
+ addc x1,t1,t1
+
+ /* computed <t1,x2>. Now divide it by (2**24 - 1) */
+
+ copy 0,x1
+ shd,= t1,x2,24,t1 /* tentative quotient */
+LSYM(1)
+ addb,tr t1,x1,LREF(2) /* add to previous quotient */
+ extru x2,31,24,x2 /* new remainder (unadjusted) */
+
+ MILLIRETN
+
+LSYM(2)
+ addb,tr t1,x2,LREF(1) /* adjust remainder */
+ extru,= x2,7,8,t1 /* new quotient */
+
+LSYM(neg7)
+ subi 1,x2,x2 /* negate x2 and add 1 */
+LSYM(8)
+ shd 0,x2,29,x1
+ sh3add x2,x2,x2
+ addc x1,0,x1
+
+LSYM(neg7_shift)
+ shd x1,x2,26,t1
+ shd x2,0,26,t2
+ add x2,t2,x2
+ addc x1,t1,x1
+
+ shd x1,x2,20,t1
+ shd x2,0,20,t2
+ add x2,t2,x2
+ addc x1,t1,t1
+
+ /* computed <t1,x2>. Now divide it by (2**24 - 1) */
+
+ copy 0,x1
+ shd,= t1,x2,24,t1 /* tentative quotient */
+LSYM(3)
+ addb,tr t1,x1,LREF(4) /* add to previous quotient */
+ extru x2,31,24,x2 /* new remainder (unadjusted) */
+
+ MILLIRET
+ sub 0,x1,x1 /* negate result */
+
+LSYM(4)
+ addb,tr t1,x2,LREF(3) /* adjust remainder */
+ extru,= x2,7,8,t1 /* new quotient */
+
+GSYM($$divU_7)
+ .export $$divU_7,millicode
+ addi 1,x2,x2 /* can carry */
+ addc 0,0,x1
+ shd x1,x2,29,t1
+ sh3add x2,x2,x2
+ b LREF(pos7)
+ addc t1,x1,x1
+
+/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
+GSYM($$divI_9)
+ .export $$divI_9,millicode
+ comb,<,n x2,0,LREF(neg9)
+ addi 1,x2,x2 /* cannot overflow */
+ shd 0,x2,29,t1
+ shd x2,0,29,t2
+ sub t2,x2,x2
+ b LREF(pos7)
+ subb t1,0,x1
+
+LSYM(neg9)
+ subi 1,x2,x2 /* negate and add 1 */
+ shd 0,x2,29,t1
+ shd x2,0,29,t2
+ sub t2,x2,x2
+ b LREF(neg7_shift)
+ subb t1,0,x1
+
+GSYM($$divU_9)
+ .export $$divU_9,millicode
+ addi 1,x2,x2 /* can carry */
+ addc 0,0,x1
+ shd x1,x2,29,t1
+ shd x2,0,29,t2
+ sub t2,x2,x2
+ b LREF(pos7)
+ subb t1,x1,x1
+
+/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
+GSYM($$divI_14)
+ .export $$divI_14,millicode
+ comb,<,n x2,0,LREF(neg14)
+GSYM($$divU_14)
+ .export $$divU_14,millicode
+ b LREF(7) /* go to 7 case */
+ extru x2,30,31,x2 /* divide by 2 */
+
+LSYM(neg14)
+ subi 2,x2,x2 /* negate (and add 2) */
+ b LREF(8)
+ extru x2,30,31,x2 /* divide by 2 */
+ .exit
+ .procend
+ .end
+#endif
+
+#ifdef L_mulI
+/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
+/******************************************************************************
+This routine is used on PA2.0 processors when gcc -mno-fpregs is used
+
+ROUTINE: $$mulI
+
+
+DESCRIPTION:
+
+ $$mulI multiplies two single word integers, giving a single
+ word result.
+
+
+INPUT REGISTERS:
+
+ arg0 = Operand 1
+ arg1 = Operand 2
+ r31 == return pc
+ sr0 == return space when called externally
+
+
+OUTPUT REGISTERS:
+
+ arg0 = undefined
+ arg1 = undefined
+ ret1 = result
+
+OTHER REGISTERS AFFECTED:
+
+ r1 = undefined
+
+SIDE EFFECTS:
+
+ Causes a trap under the following conditions: NONE
+ Changes memory at the following places: NONE
+
+PERMISSIBLE CONTEXT:
+
+ Unwindable
+ Does not create a stack frame
+ Is usable for internal or external microcode
+
+DISCUSSION:
+
+ Calls other millicode routines via mrp: NONE
+ Calls other millicode routines: NONE
+
+***************************************************************************/
+
+
+#define a0 %arg0
+#define a1 %arg1
+#define t0 %r1
+#define r %ret1
+
+#define a0__128a0 zdep a0,24,25,a0
+#define a0__256a0 zdep a0,23,24,a0
+#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
+#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
+#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
+#define b_n_ret_t0 b,n LREF(ret_t0)
+#define b_e_shift b LREF(e_shift)
+#define b_e_t0ma0 b LREF(e_t0ma0)
+#define b_e_t0 b LREF(e_t0)
+#define b_e_t0a0 b LREF(e_t0a0)
+#define b_e_t02a0 b LREF(e_t02a0)
+#define b_e_t04a0 b LREF(e_t04a0)
+#define b_e_2t0 b LREF(e_2t0)
+#define b_e_2t0a0 b LREF(e_2t0a0)
+#define b_e_2t04a0 b LREF(e2t04a0)
+#define b_e_3t0 b LREF(e_3t0)
+#define b_e_4t0 b LREF(e_4t0)
+#define b_e_4t0a0 b LREF(e_4t0a0)
+#define b_e_4t08a0 b LREF(e4t08a0)
+#define b_e_5t0 b LREF(e_5t0)
+#define b_e_8t0 b LREF(e_8t0)
+#define b_e_8t0a0 b LREF(e_8t0a0)
+#define r__r_a0 add r,a0,r
+#define r__r_2a0 sh1add a0,r,r
+#define r__r_4a0 sh2add a0,r,r
+#define r__r_8a0 sh3add a0,r,r
+#define r__r_t0 add r,t0,r
+#define r__r_2t0 sh1add t0,r,r
+#define r__r_4t0 sh2add t0,r,r
+#define r__r_8t0 sh3add t0,r,r
+#define t0__3a0 sh1add a0,a0,t0
+#define t0__4a0 sh2add a0,0,t0
+#define t0__5a0 sh2add a0,a0,t0
+#define t0__8a0 sh3add a0,0,t0
+#define t0__9a0 sh3add a0,a0,t0
+#define t0__16a0 zdep a0,27,28,t0
+#define t0__32a0 zdep a0,26,27,t0
+#define t0__64a0 zdep a0,25,26,t0
+#define t0__128a0 zdep a0,24,25,t0
+#define t0__t0ma0 sub t0,a0,t0
+#define t0__t0_a0 add t0,a0,t0
+#define t0__t0_2a0 sh1add a0,t0,t0
+#define t0__t0_4a0 sh2add a0,t0,t0
+#define t0__t0_8a0 sh3add a0,t0,t0
+#define t0__2t0_a0 sh1add t0,a0,t0
+#define t0__3t0 sh1add t0,t0,t0
+#define t0__4t0 sh2add t0,0,t0
+#define t0__4t0_a0 sh2add t0,a0,t0
+#define t0__5t0 sh2add t0,t0,t0
+#define t0__8t0 sh3add t0,0,t0
+#define t0__8t0_a0 sh3add t0,a0,t0
+#define t0__9t0 sh3add t0,t0,t0
+#define t0__16t0 zdep t0,27,28,t0
+#define t0__32t0 zdep t0,26,27,t0
+#define t0__256a0 zdep a0,23,24,t0
+
+
+ SUBSPA_MILLI
+ ATTR_MILLI
+ .align 16
+ .proc
+ .callinfo millicode
+ .export $$mulI,millicode
+GSYM($$mulI)
+ combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
+ copy 0,r /* zero out the result */
+ xor a0,a1,a0 /* swap a0 & a1 using the */
+ xor a0,a1,a1 /* old xor trick */
+ xor a0,a1,a0
+LSYM(l4)
+ combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
+ zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
+ sub,> 0,a1,t0 /* otherwise negate both and */
+ combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
+ sub 0,a0,a1
+ movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
+
+LSYM(l0) r__r_t0 /* add in this partial product */
+LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
+LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
+LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
+ extru a1,23,24,a1 /* a1 >>= 8 ****************** */
+
+/*16 insts before this. */
+/* a0 <<= 8 ************************** */
+LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
+LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
+LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
+LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
+LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
+LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
+LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
+LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
+LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
+LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
+LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
+LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
+LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
+LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
+LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
+LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
+LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
+LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
+LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
+LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
+LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
+LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
+LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
+LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
+LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
+LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
+LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
+LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
+LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
+LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
+LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
+LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
+LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
+LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
+LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
+LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
+LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
+LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
+LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
+LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
+LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
+LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
+LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
+LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
+LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
+LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
+LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
+LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
+LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
+LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
+LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
+LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
+LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
+LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
+LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
+LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
+LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
+LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
+LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
+LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
+LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
+LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
+LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
+LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
+LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
+LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
+LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
+LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
+LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
+LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
+LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
+LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
+LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
+LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
+LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
+LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
+LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
+LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
+LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
+LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
+LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
+LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
+LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
+LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
+LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
+LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
+LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
+LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
+LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
+LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
+LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
+LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
+LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
+LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
+LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
+LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
+LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
+LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
+LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
+LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
+LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
+LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
+LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
+LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
+LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
+LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
+LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
+LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
+LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
+LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
+LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
+LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
+LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
+LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
+LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
+LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
+LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
+LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
+LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
+LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
+LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
+LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
+LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
+LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
+LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
+LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
+LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
+LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
+LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
+LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
+LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
+LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
+LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
+LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
+LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
+LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
+LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
+LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
+LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
+LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
+LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
+LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
+LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
+LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
+LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
+LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
+LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
+LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+/*1040 insts before this. */
+LSYM(ret_t0) MILLIRET
+LSYM(e_t0) r__r_t0
+LSYM(e_shift) a1_ne_0_b_l2
+ a0__256a0 /* a0 <<= 8 *********** */
+ MILLIRETN
+LSYM(e_t0ma0) a1_ne_0_b_l0
+ t0__t0ma0
+ MILLIRET
+ r__r_t0
+LSYM(e_t0a0) a1_ne_0_b_l0
+ t0__t0_a0
+ MILLIRET
+ r__r_t0
+LSYM(e_t02a0) a1_ne_0_b_l0
+ t0__t0_2a0
+ MILLIRET
+ r__r_t0
+LSYM(e_t04a0) a1_ne_0_b_l0
+ t0__t0_4a0
+ MILLIRET
+ r__r_t0
+LSYM(e_2t0) a1_ne_0_b_l1
+ r__r_2t0
+ MILLIRETN
+LSYM(e_2t0a0) a1_ne_0_b_l0
+ t0__2t0_a0
+ MILLIRET
+ r__r_t0
+LSYM(e2t04a0) t0__t0_2a0
+ a1_ne_0_b_l1
+ r__r_2t0
+ MILLIRETN
+LSYM(e_3t0) a1_ne_0_b_l0
+ t0__3t0
+ MILLIRET
+ r__r_t0
+LSYM(e_4t0) a1_ne_0_b_l1
+ r__r_4t0
+ MILLIRETN
+LSYM(e_4t0a0) a1_ne_0_b_l0
+ t0__4t0_a0
+ MILLIRET
+ r__r_t0
+LSYM(e4t08a0) t0__t0_2a0
+ a1_ne_0_b_l1
+ r__r_4t0
+ MILLIRETN
+LSYM(e_5t0) a1_ne_0_b_l0
+ t0__5t0
+ MILLIRET
+ r__r_t0
+LSYM(e_8t0) a1_ne_0_b_l1
+ r__r_8t0
+ MILLIRETN
+LSYM(e_8t0a0) a1_ne_0_b_l0
+ t0__8t0_a0
+ MILLIRET
+ r__r_t0
+
+ .procend
+ .end
+#endif
diff --git a/arch/parisc/lib/milli/milli.h b/arch/parisc/lib/milli/milli.h
new file mode 100644
index 00000000000..19ac79f336d
--- /dev/null
+++ b/arch/parisc/lib/milli/milli.h
@@ -0,0 +1,165 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#ifndef _PA_MILLI_H_
+#define _PA_MILLI_H_
+
+#define L_dyncall
+#define L_divI
+#define L_divU
+#define L_remI
+#define L_remU
+#define L_div_const
+#define L_mulI
+
+#ifdef CONFIG_64BIT
+ .level 2.0w
+#endif
+
+/* Hardware General Registers. */
+r0: .reg %r0
+r1: .reg %r1
+r2: .reg %r2
+r3: .reg %r3
+r4: .reg %r4
+r5: .reg %r5
+r6: .reg %r6
+r7: .reg %r7
+r8: .reg %r8
+r9: .reg %r9
+r10: .reg %r10
+r11: .reg %r11
+r12: .reg %r12
+r13: .reg %r13
+r14: .reg %r14
+r15: .reg %r15
+r16: .reg %r16
+r17: .reg %r17
+r18: .reg %r18
+r19: .reg %r19
+r20: .reg %r20
+r21: .reg %r21
+r22: .reg %r22
+r23: .reg %r23
+r24: .reg %r24
+r25: .reg %r25
+r26: .reg %r26
+r27: .reg %r27
+r28: .reg %r28
+r29: .reg %r29
+r30: .reg %r30
+r31: .reg %r31
+
+/* Hardware Space Registers. */
+sr0: .reg %sr0
+sr1: .reg %sr1
+sr2: .reg %sr2
+sr3: .reg %sr3
+sr4: .reg %sr4
+sr5: .reg %sr5
+sr6: .reg %sr6
+sr7: .reg %sr7
+
+/* Hardware Floating Point Registers. */
+fr0: .reg %fr0
+fr1: .reg %fr1
+fr2: .reg %fr2
+fr3: .reg %fr3
+fr4: .reg %fr4
+fr5: .reg %fr5
+fr6: .reg %fr6
+fr7: .reg %fr7
+fr8: .reg %fr8
+fr9: .reg %fr9
+fr10: .reg %fr10
+fr11: .reg %fr11
+fr12: .reg %fr12
+fr13: .reg %fr13
+fr14: .reg %fr14
+fr15: .reg %fr15
+
+/* Hardware Control Registers. */
+cr11: .reg %cr11
+sar: .reg %cr11 /* Shift Amount Register */
+
+/* Software Architecture General Registers. */
+rp: .reg r2 /* return pointer */
+#ifdef CONFIG_64BIT
+mrp: .reg r2 /* millicode return pointer */
+#else
+mrp: .reg r31 /* millicode return pointer */
+#endif
+ret0: .reg r28 /* return value */
+ret1: .reg r29 /* return value (high part of double) */
+sp: .reg r30 /* stack pointer */
+dp: .reg r27 /* data pointer */
+arg0: .reg r26 /* argument */
+arg1: .reg r25 /* argument or high part of double argument */
+arg2: .reg r24 /* argument */
+arg3: .reg r23 /* argument or high part of double argument */
+
+/* Software Architecture Space Registers. */
+/* sr0 ; return link from BLE */
+sret: .reg sr1 /* return value */
+sarg: .reg sr1 /* argument */
+/* sr4 ; PC SPACE tracker */
+/* sr5 ; process private data */
+
+/* Frame Offsets (millicode convention!) Used when calling other
+ millicode routines. Stack unwinding is dependent upon these
+ definitions. */
+r31_slot: .equ -20 /* "current RP" slot */
+sr0_slot: .equ -16 /* "static link" slot */
+#if defined(CONFIG_64BIT)
+mrp_slot: .equ -16 /* "current RP" slot */
+psp_slot: .equ -8 /* "previous SP" slot */
+#else
+mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */
+#endif
+
+
+#define DEFINE(name,value)name: .EQU value
+#define RDEFINE(name,value)name: .REG value
+#ifdef milliext
+#define MILLI_BE(lbl) BE lbl(sr7,r0)
+#define MILLI_BEN(lbl) BE,n lbl(sr7,r0)
+#define MILLI_BLE(lbl) BLE lbl(sr7,r0)
+#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
+#define MILLIRETN BE,n 0(sr0,mrp)
+#define MILLIRET BE 0(sr0,mrp)
+#define MILLI_RETN BE,n 0(sr0,mrp)
+#define MILLI_RET BE 0(sr0,mrp)
+#else
+#define MILLI_BE(lbl) B lbl
+#define MILLI_BEN(lbl) B,n lbl
+#define MILLI_BLE(lbl) BL lbl,mrp
+#define MILLI_BLEN(lbl) BL,n lbl,mrp
+#define MILLIRETN BV,n 0(mrp)
+#define MILLIRET BV 0(mrp)
+#define MILLI_RETN BV,n 0(mrp)
+#define MILLI_RET BV 0(mrp)
+#endif
+
+#define CAT(a,b) a##b
+
+#define SUBSPA_MILLI .section .text
+#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
+#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
+#define ATTR_MILLI
+#define SUBSPA_DATA .section .data
+#define ATTR_DATA
+#define GLOBAL $global$
+#define GSYM(sym) !sym:
+#define LSYM(sym) !CAT(.L,sym:)
+#define LREF(sym) CAT(.L,sym)
+
+#endif /*_PA_MILLI_H_*/
diff --git a/arch/parisc/lib/milli/mulI.S b/arch/parisc/lib/milli/mulI.S
new file mode 100644
index 00000000000..4c7e0c36d15
--- /dev/null
+++ b/arch/parisc/lib/milli/mulI.S
@@ -0,0 +1,474 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#include "milli.h"
+
+#ifdef L_mulI
+/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
+/******************************************************************************
+This routine is used on PA2.0 processors when gcc -mno-fpregs is used
+
+ROUTINE: $$mulI
+
+
+DESCRIPTION:
+
+ $$mulI multiplies two single word integers, giving a single
+ word result.
+
+
+INPUT REGISTERS:
+
+ arg0 = Operand 1
+ arg1 = Operand 2
+ r31 == return pc
+ sr0 == return space when called externally
+
+
+OUTPUT REGISTERS:
+
+ arg0 = undefined
+ arg1 = undefined
+ ret1 = result
+
+OTHER REGISTERS AFFECTED:
+
+ r1 = undefined
+
+SIDE EFFECTS:
+
+ Causes a trap under the following conditions: NONE
+ Changes memory at the following places: NONE
+
+PERMISSIBLE CONTEXT:
+
+ Unwindable
+ Does not create a stack frame
+ Is usable for internal or external microcode
+
+DISCUSSION:
+
+ Calls other millicode routines via mrp: NONE
+ Calls other millicode routines: NONE
+
+***************************************************************************/
+
+
+#define a0 %arg0
+#define a1 %arg1
+#define t0 %r1
+#define r %ret1
+
+#define a0__128a0 zdep a0,24,25,a0
+#define a0__256a0 zdep a0,23,24,a0
+#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
+#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
+#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
+#define b_n_ret_t0 b,n LREF(ret_t0)
+#define b_e_shift b LREF(e_shift)
+#define b_e_t0ma0 b LREF(e_t0ma0)
+#define b_e_t0 b LREF(e_t0)
+#define b_e_t0a0 b LREF(e_t0a0)
+#define b_e_t02a0 b LREF(e_t02a0)
+#define b_e_t04a0 b LREF(e_t04a0)
+#define b_e_2t0 b LREF(e_2t0)
+#define b_e_2t0a0 b LREF(e_2t0a0)
+#define b_e_2t04a0 b LREF(e2t04a0)
+#define b_e_3t0 b LREF(e_3t0)
+#define b_e_4t0 b LREF(e_4t0)
+#define b_e_4t0a0 b LREF(e_4t0a0)
+#define b_e_4t08a0 b LREF(e4t08a0)
+#define b_e_5t0 b LREF(e_5t0)
+#define b_e_8t0 b LREF(e_8t0)
+#define b_e_8t0a0 b LREF(e_8t0a0)
+#define r__r_a0 add r,a0,r
+#define r__r_2a0 sh1add a0,r,r
+#define r__r_4a0 sh2add a0,r,r
+#define r__r_8a0 sh3add a0,r,r
+#define r__r_t0 add r,t0,r
+#define r__r_2t0 sh1add t0,r,r
+#define r__r_4t0 sh2add t0,r,r
+#define r__r_8t0 sh3add t0,r,r
+#define t0__3a0 sh1add a0,a0,t0
+#define t0__4a0 sh2add a0,0,t0
+#define t0__5a0 sh2add a0,a0,t0
+#define t0__8a0 sh3add a0,0,t0
+#define t0__9a0 sh3add a0,a0,t0
+#define t0__16a0 zdep a0,27,28,t0
+#define t0__32a0 zdep a0,26,27,t0
+#define t0__64a0 zdep a0,25,26,t0
+#define t0__128a0 zdep a0,24,25,t0
+#define t0__t0ma0 sub t0,a0,t0
+#define t0__t0_a0 add t0,a0,t0
+#define t0__t0_2a0 sh1add a0,t0,t0
+#define t0__t0_4a0 sh2add a0,t0,t0
+#define t0__t0_8a0 sh3add a0,t0,t0
+#define t0__2t0_a0 sh1add t0,a0,t0
+#define t0__3t0 sh1add t0,t0,t0
+#define t0__4t0 sh2add t0,0,t0
+#define t0__4t0_a0 sh2add t0,a0,t0
+#define t0__5t0 sh2add t0,t0,t0
+#define t0__8t0 sh3add t0,0,t0
+#define t0__8t0_a0 sh3add t0,a0,t0
+#define t0__9t0 sh3add t0,t0,t0
+#define t0__16t0 zdep t0,27,28,t0
+#define t0__32t0 zdep t0,26,27,t0
+#define t0__256a0 zdep a0,23,24,t0
+
+
+ SUBSPA_MILLI
+ ATTR_MILLI
+ .align 16
+ .proc
+ .callinfo millicode
+ .export $$mulI,millicode
+GSYM($$mulI)
+ combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
+ copy 0,r /* zero out the result */
+ xor a0,a1,a0 /* swap a0 & a1 using the */
+ xor a0,a1,a1 /* old xor trick */
+ xor a0,a1,a0
+LSYM(l4)
+ combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
+ zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
+ sub,> 0,a1,t0 /* otherwise negate both and */
+ combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
+ sub 0,a0,a1
+ movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
+
+LSYM(l0) r__r_t0 /* add in this partial product */
+LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
+LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
+LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
+ extru a1,23,24,a1 /* a1 >>= 8 ****************** */
+
+/*16 insts before this. */
+/* a0 <<= 8 ************************** */
+LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
+LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
+LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
+LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
+LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
+LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
+LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
+LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
+LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
+LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
+LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
+LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
+LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
+LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
+LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
+LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
+LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
+LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
+LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
+LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
+LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
+LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
+LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
+LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
+LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
+LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
+LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
+LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
+LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
+LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
+LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
+LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
+LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
+LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
+LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
+LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
+LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
+LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
+LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
+LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
+LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
+LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
+LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
+LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
+LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
+LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
+LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
+LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
+LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
+LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
+LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
+LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
+LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
+LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
+LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
+LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
+LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
+LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
+LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
+LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
+LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
+LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
+LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
+LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
+LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
+LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
+LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
+LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
+LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
+LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
+LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
+LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
+LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
+LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
+LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
+LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
+LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
+LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
+LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
+LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
+LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
+LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
+LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
+LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
+LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
+LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
+LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
+LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
+LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
+LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
+LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
+LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
+LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
+LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
+LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
+LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
+LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
+LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
+LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
+LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
+LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
+LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
+LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
+LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
+LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
+LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
+LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
+LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
+LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
+LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
+LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
+LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
+LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
+LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
+LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
+LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
+LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
+LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
+LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
+LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
+LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
+LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
+LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
+LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
+LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
+LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
+LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
+LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
+LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
+LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
+LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
+LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
+LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
+LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
+LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
+LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
+LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
+LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
+LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
+LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
+LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
+LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
+LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
+LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
+LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
+LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
+LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
+LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
+LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
+LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
+LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
+LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
+LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
+LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
+LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
+LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
+LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
+LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
+LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
+LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
+LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
+LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
+/*1040 insts before this. */
+LSYM(ret_t0) MILLIRET
+LSYM(e_t0) r__r_t0
+LSYM(e_shift) a1_ne_0_b_l2
+ a0__256a0 /* a0 <<= 8 *********** */
+ MILLIRETN
+LSYM(e_t0ma0) a1_ne_0_b_l0
+ t0__t0ma0
+ MILLIRET
+ r__r_t0
+LSYM(e_t0a0) a1_ne_0_b_l0
+ t0__t0_a0
+ MILLIRET
+ r__r_t0
+LSYM(e_t02a0) a1_ne_0_b_l0
+ t0__t0_2a0
+ MILLIRET
+ r__r_t0
+LSYM(e_t04a0) a1_ne_0_b_l0
+ t0__t0_4a0
+ MILLIRET
+ r__r_t0
+LSYM(e_2t0) a1_ne_0_b_l1
+ r__r_2t0
+ MILLIRETN
+LSYM(e_2t0a0) a1_ne_0_b_l0
+ t0__2t0_a0
+ MILLIRET
+ r__r_t0
+LSYM(e2t04a0) t0__t0_2a0
+ a1_ne_0_b_l1
+ r__r_2t0
+ MILLIRETN
+LSYM(e_3t0) a1_ne_0_b_l0
+ t0__3t0
+ MILLIRET
+ r__r_t0
+LSYM(e_4t0) a1_ne_0_b_l1
+ r__r_4t0
+ MILLIRETN
+LSYM(e_4t0a0) a1_ne_0_b_l0
+ t0__4t0_a0
+ MILLIRET
+ r__r_t0
+LSYM(e4t08a0) t0__t0_2a0
+ a1_ne_0_b_l1
+ r__r_4t0
+ MILLIRETN
+LSYM(e_5t0) a1_ne_0_b_l0
+ t0__5t0
+ MILLIRET
+ r__r_t0
+LSYM(e_8t0) a1_ne_0_b_l1
+ r__r_8t0
+ MILLIRETN
+LSYM(e_8t0a0) a1_ne_0_b_l0
+ t0__8t0_a0
+ MILLIRET
+ r__r_t0
+
+ .procend
+ .end
+#endif
diff --git a/arch/parisc/lib/milli/remI.S b/arch/parisc/lib/milli/remI.S
new file mode 100644
index 00000000000..63bc094471e
--- /dev/null
+++ b/arch/parisc/lib/milli/remI.S
@@ -0,0 +1,185 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#include "milli.h"
+
+#ifdef L_remI
+/* ROUTINE: $$remI
+
+ DESCRIPTION:
+ . $$remI returns the remainder of the division of two signed 32-bit
+ . integers. The sign of the remainder is the same as the sign of
+ . the dividend.
+
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = destroyed
+ . arg1 = destroyed
+ . ret1 = remainder
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions: DIVIDE BY ZERO
+ . Changes memory at the following places: NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable
+ . Does not create a stack frame
+ . Is usable for internal or external microcode
+
+ DISCUSSION:
+ . Calls other millicode routines via mrp: NONE
+ . Calls other millicode routines: NONE */
+
+RDEFINE(tmp,r1)
+RDEFINE(retreg,ret1)
+
+ SUBSPA_MILLI
+ ATTR_MILLI
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$remI)
+GSYM($$remoI)
+ .export $$remI,MILLICODE
+ .export $$remoI,MILLICODE
+ ldo -1(arg1),tmp /* is there at most one bit set ? */
+ and,<> arg1,tmp,r0 /* if not, don't use power of 2 */
+ addi,> 0,arg1,r0 /* if denominator > 0, use power */
+ /* of 2 */
+ b,n LREF(neg_denom)
+LSYM(pow2)
+ comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */
+ and arg0,tmp,retreg /* get the result */
+ MILLIRETN
+LSYM(neg_num)
+ subi 0,arg0,arg0 /* negate numerator */
+ and arg0,tmp,retreg /* get the result */
+ subi 0,retreg,retreg /* negate result */
+ MILLIRETN
+LSYM(neg_denom)
+ addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */
+ /* of 2 */
+ b,n LREF(regular_seq)
+ sub r0,arg1,tmp /* make denominator positive */
+ comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */
+ ldo -1(tmp),retreg /* is there at most one bit set ? */
+ and,= tmp,retreg,r0 /* if not, go to regular_seq */
+ b,n LREF(regular_seq)
+ comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */
+ and arg0,retreg,retreg
+ MILLIRETN
+LSYM(neg_num_2)
+ subi 0,arg0,tmp /* test against 0x80000000 */
+ and tmp,retreg,retreg
+ subi 0,retreg,retreg
+ MILLIRETN
+LSYM(regular_seq)
+ addit,= 0,arg1,0 /* trap if div by zero */
+ add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
+ sub 0,retreg,retreg /* make it positive */
+ sub 0,arg1, tmp /* clear carry, */
+ /* negate the divisor */
+ ds 0, tmp,0 /* set V-bit to the comple- */
+ /* ment of the divisor sign */
+ or 0,0, tmp /* clear tmp */
+ add retreg,retreg,retreg /* shift msb bit into carry */
+ ds tmp,arg1, tmp /* 1st divide step, if no carry */
+ /* out, msb of quotient = 0 */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+LSYM(t1)
+ ds tmp,arg1, tmp /* 2nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 3rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 4th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 5th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 6th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 7th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 8th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 9th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 10th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 11th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 12th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 13th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 14th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 15th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 16th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 17th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 18th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 19th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 20th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 21st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 22nd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 23rd divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 24th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 25th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 26th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 27th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 28th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 29th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 30th divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 31st divide step */
+ addc retreg,retreg,retreg /* shift retreg with/into carry */
+ ds tmp,arg1, tmp /* 32nd divide step, */
+ addc retreg,retreg,retreg /* shift last bit into retreg */
+ movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */
+ add,< arg1,0,0 /* if arg1 > 0, add arg1 */
+ add,tr tmp,arg1,retreg /* for correcting remainder tmp */
+ sub tmp,arg1,retreg /* else add absolute value arg1 */
+LSYM(finish)
+ add,>= arg0,0,0 /* set sign of remainder */
+ sub 0,retreg,retreg /* to sign of dividend */
+ MILLIRET
+ nop
+ .exit
+ .procend
+#ifdef milliext
+ .origin 0x00000200
+#endif
+ .end
+#endif
diff --git a/arch/parisc/lib/milli/remU.S b/arch/parisc/lib/milli/remU.S
new file mode 100644
index 00000000000..c0a2d6e247c
--- /dev/null
+++ b/arch/parisc/lib/milli/remU.S
@@ -0,0 +1,148 @@
+/* 32 and 64-bit millicode, original author Hewlett-Packard
+ adapted for gcc by Paul Bame <bame@debian.org>
+ and Alan Modra <alan@linuxcare.com.au>.
+
+ Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
+
+ This file is part of GCC and is released under the terms of
+ of the GNU General Public License as published by the Free Software
+ Foundation; either version 2, or (at your option) any later version.
+ See the file COPYING in the top-level GCC source directory for a copy
+ of the license. */
+
+#include "milli.h"
+
+#ifdef L_remU
+/* ROUTINE: $$remU
+ . Single precision divide for remainder with unsigned binary integers.
+ .
+ . The remainder must be dividend-(dividend/divisor)*divisor.
+ . Divide by zero is trapped.
+
+ INPUT REGISTERS:
+ . arg0 == dividend
+ . arg1 == divisor
+ . mrp == return pc
+ . sr0 == return space when called externally
+
+ OUTPUT REGISTERS:
+ . arg0 = undefined
+ . arg1 = undefined
+ . ret1 = remainder
+
+ OTHER REGISTERS AFFECTED:
+ . r1 = undefined
+
+ SIDE EFFECTS:
+ . Causes a trap under the following conditions: DIVIDE BY ZERO
+ . Changes memory at the following places: NONE
+
+ PERMISSIBLE CONTEXT:
+ . Unwindable.
+ . Does not create a stack frame.
+ . Suitable for internal or external millicode.
+ . Assumes the special millicode register conventions.
+
+ DISCUSSION:
+ . Calls other millicode routines using mrp: NONE
+ . Calls other millicode routines: NONE */
+
+
+RDEFINE(temp,r1)
+RDEFINE(rmndr,ret1) /* r29 */
+ SUBSPA_MILLI
+ ATTR_MILLI
+ .export $$remU,millicode
+ .proc
+ .callinfo millicode
+ .entry
+GSYM($$remU)
+ ldo -1(arg1),temp /* is there at most one bit set ? */
+ and,= arg1,temp,r0 /* if not, don't use power of 2 */
+ b LREF(regular_seq)
+ addit,= 0,arg1,r0 /* trap on div by zero */
+ and arg0,temp,rmndr /* get the result for power of 2 */
+ MILLIRETN
+LSYM(regular_seq)
+ comib,>=,n 0,arg1,LREF(special_case)
+ subi 0,arg1,rmndr /* clear carry, negate the divisor */
+ ds r0,rmndr,r0 /* set V-bit to 1 */
+ add arg0,arg0,temp /* shift msb bit into carry */
+ ds r0,arg1,rmndr /* 1st divide step, if no carry */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 2nd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 3rd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 4th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 5th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 6th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 7th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 8th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 9th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 10th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 11th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 12th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 13th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 14th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 15th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 16th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 17th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 18th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 19th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 20th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 21st divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 22nd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 23rd divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 24th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 25th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 26th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 27th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 28th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 29th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 30th divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 31st divide step */
+ addc temp,temp,temp /* shift temp with/into carry */
+ ds rmndr,arg1,rmndr /* 32nd divide step, */
+ comiclr,<= 0,rmndr,r0
+ add rmndr,arg1,rmndr /* correction */
+ MILLIRETN
+ nop
+
+/* Putting >= on the last DS and deleting COMICLR does not work! */
+LSYM(special_case)
+ sub,>>= arg0,arg1,rmndr
+ copy arg0,rmndr
+ MILLIRETN
+ nop
+ .exit
+ .procend
+ .end
+#endif