aboutsummaryrefslogtreecommitdiff
path: root/arch/powerpc/platforms/pseries
diff options
context:
space:
mode:
authorLinas Vepstas <linas@linas.org>2005-11-03 18:49:51 -0600
committerPaul Mackerras <paulus@samba.org>2005-11-10 11:37:59 +1100
commit7f79da7accd63a6adb84f4602f66779f6a701e7b (patch)
tree7429718eb0ff907ebb2b80c257dae54b493815ac /arch/powerpc/platforms/pseries
parentf8632c822719cce08cfb128859e354007744cbba (diff)
[PATCH] ppc64: move eeh.c to powerpc directory from ppc64
11-eeh-move-to-powerpc.patch Move arch/ppc64/kernel/eeh.c to arch//powerpc/platforms/pseries/eeh.c No other changes (except for Makefile to build it) Signed-off-by: Linas Vepstas <linas@austin.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'arch/powerpc/platforms/pseries')
-rw-r--r--arch/powerpc/platforms/pseries/Makefile1
-rw-r--r--arch/powerpc/platforms/pseries/eeh.c1093
2 files changed, 1094 insertions, 0 deletions
diff --git a/arch/powerpc/platforms/pseries/Makefile b/arch/powerpc/platforms/pseries/Makefile
index b9938fece78..dbdffb2fe42 100644
--- a/arch/powerpc/platforms/pseries/Makefile
+++ b/arch/powerpc/platforms/pseries/Makefile
@@ -3,3 +3,4 @@ obj-y := pci.o lpar.o hvCall.o nvram.o reconfig.o \
obj-$(CONFIG_SMP) += smp.o
obj-$(CONFIG_IBMVIO) += vio.o
obj-$(CONFIG_XICS) += xics.o
+obj-$(CONFIG_EEH) += eeh.o
diff --git a/arch/powerpc/platforms/pseries/eeh.c b/arch/powerpc/platforms/pseries/eeh.c
new file mode 100644
index 00000000000..9df1d501836
--- /dev/null
+++ b/arch/powerpc/platforms/pseries/eeh.c
@@ -0,0 +1,1093 @@
+/*
+ * eeh.c
+ * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/notifier.h>
+#include <linux/pci.h>
+#include <linux/proc_fs.h>
+#include <linux/rbtree.h>
+#include <linux/seq_file.h>
+#include <linux/spinlock.h>
+#include <asm/atomic.h>
+#include <asm/eeh.h>
+#include <asm/io.h>
+#include <asm/machdep.h>
+#include <asm/rtas.h>
+#include <asm/atomic.h>
+#include <asm/systemcfg.h>
+#include <asm/ppc-pci.h>
+
+#undef DEBUG
+
+/** Overview:
+ * EEH, or "Extended Error Handling" is a PCI bridge technology for
+ * dealing with PCI bus errors that can't be dealt with within the
+ * usual PCI framework, except by check-stopping the CPU. Systems
+ * that are designed for high-availability/reliability cannot afford
+ * to crash due to a "mere" PCI error, thus the need for EEH.
+ * An EEH-capable bridge operates by converting a detected error
+ * into a "slot freeze", taking the PCI adapter off-line, making
+ * the slot behave, from the OS'es point of view, as if the slot
+ * were "empty": all reads return 0xff's and all writes are silently
+ * ignored. EEH slot isolation events can be triggered by parity
+ * errors on the address or data busses (e.g. during posted writes),
+ * which in turn might be caused by low voltage on the bus, dust,
+ * vibration, humidity, radioactivity or plain-old failed hardware.
+ *
+ * Note, however, that one of the leading causes of EEH slot
+ * freeze events are buggy device drivers, buggy device microcode,
+ * or buggy device hardware. This is because any attempt by the
+ * device to bus-master data to a memory address that is not
+ * assigned to the device will trigger a slot freeze. (The idea
+ * is to prevent devices-gone-wild from corrupting system memory).
+ * Buggy hardware/drivers will have a miserable time co-existing
+ * with EEH.
+ *
+ * Ideally, a PCI device driver, when suspecting that an isolation
+ * event has occured (e.g. by reading 0xff's), will then ask EEH
+ * whether this is the case, and then take appropriate steps to
+ * reset the PCI slot, the PCI device, and then resume operations.
+ * However, until that day, the checking is done here, with the
+ * eeh_check_failure() routine embedded in the MMIO macros. If
+ * the slot is found to be isolated, an "EEH Event" is synthesized
+ * and sent out for processing.
+ */
+
+/* EEH event workqueue setup. */
+static DEFINE_SPINLOCK(eeh_eventlist_lock);
+LIST_HEAD(eeh_eventlist);
+static void eeh_event_handler(void *);
+DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
+
+static struct notifier_block *eeh_notifier_chain;
+
+/* If a device driver keeps reading an MMIO register in an interrupt
+ * handler after a slot isolation event has occurred, we assume it
+ * is broken and panic. This sets the threshold for how many read
+ * attempts we allow before panicking.
+ */
+#define EEH_MAX_FAILS 100000
+
+/* RTAS tokens */
+static int ibm_set_eeh_option;
+static int ibm_set_slot_reset;
+static int ibm_read_slot_reset_state;
+static int ibm_read_slot_reset_state2;
+static int ibm_slot_error_detail;
+
+static int eeh_subsystem_enabled;
+
+/* Lock to avoid races due to multiple reports of an error */
+static DEFINE_SPINLOCK(confirm_error_lock);
+
+/* Buffer for reporting slot-error-detail rtas calls */
+static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
+static DEFINE_SPINLOCK(slot_errbuf_lock);
+static int eeh_error_buf_size;
+
+/* System monitoring statistics */
+static DEFINE_PER_CPU(unsigned long, no_device);
+static DEFINE_PER_CPU(unsigned long, no_dn);
+static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
+static DEFINE_PER_CPU(unsigned long, ignored_check);
+static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
+static DEFINE_PER_CPU(unsigned long, false_positives);
+static DEFINE_PER_CPU(unsigned long, ignored_failures);
+static DEFINE_PER_CPU(unsigned long, slot_resets);
+
+/**
+ * The pci address cache subsystem. This subsystem places
+ * PCI device address resources into a red-black tree, sorted
+ * according to the address range, so that given only an i/o
+ * address, the corresponding PCI device can be **quickly**
+ * found. It is safe to perform an address lookup in an interrupt
+ * context; this ability is an important feature.
+ *
+ * Currently, the only customer of this code is the EEH subsystem;
+ * thus, this code has been somewhat tailored to suit EEH better.
+ * In particular, the cache does *not* hold the addresses of devices
+ * for which EEH is not enabled.
+ *
+ * (Implementation Note: The RB tree seems to be better/faster
+ * than any hash algo I could think of for this problem, even
+ * with the penalty of slow pointer chases for d-cache misses).
+ */
+struct pci_io_addr_range
+{
+ struct rb_node rb_node;
+ unsigned long addr_lo;
+ unsigned long addr_hi;
+ struct pci_dev *pcidev;
+ unsigned int flags;
+};
+
+static struct pci_io_addr_cache
+{
+ struct rb_root rb_root;
+ spinlock_t piar_lock;
+} pci_io_addr_cache_root;
+
+static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
+{
+ struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
+
+ while (n) {
+ struct pci_io_addr_range *piar;
+ piar = rb_entry(n, struct pci_io_addr_range, rb_node);
+
+ if (addr < piar->addr_lo) {
+ n = n->rb_left;
+ } else {
+ if (addr > piar->addr_hi) {
+ n = n->rb_right;
+ } else {
+ pci_dev_get(piar->pcidev);
+ return piar->pcidev;
+ }
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ * pci_get_device_by_addr - Get device, given only address
+ * @addr: mmio (PIO) phys address or i/o port number
+ *
+ * Given an mmio phys address, or a port number, find a pci device
+ * that implements this address. Be sure to pci_dev_put the device
+ * when finished. I/O port numbers are assumed to be offset
+ * from zero (that is, they do *not* have pci_io_addr added in).
+ * It is safe to call this function within an interrupt.
+ */
+static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
+{
+ struct pci_dev *dev;
+ unsigned long flags;
+
+ spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
+ dev = __pci_get_device_by_addr(addr);
+ spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
+ return dev;
+}
+
+#ifdef DEBUG
+/*
+ * Handy-dandy debug print routine, does nothing more
+ * than print out the contents of our addr cache.
+ */
+static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
+{
+ struct rb_node *n;
+ int cnt = 0;
+
+ n = rb_first(&cache->rb_root);
+ while (n) {
+ struct pci_io_addr_range *piar;
+ piar = rb_entry(n, struct pci_io_addr_range, rb_node);
+ printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
+ (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
+ piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
+ cnt++;
+ n = rb_next(n);
+ }
+}
+#endif
+
+/* Insert address range into the rb tree. */
+static struct pci_io_addr_range *
+pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
+ unsigned long ahi, unsigned int flags)
+{
+ struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
+ struct rb_node *parent = NULL;
+ struct pci_io_addr_range *piar;
+
+ /* Walk tree, find a place to insert into tree */
+ while (*p) {
+ parent = *p;
+ piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
+ if (ahi < piar->addr_lo) {
+ p = &parent->rb_left;
+ } else if (alo > piar->addr_hi) {
+ p = &parent->rb_right;
+ } else {
+ if (dev != piar->pcidev ||
+ alo != piar->addr_lo || ahi != piar->addr_hi) {
+ printk(KERN_WARNING "PIAR: overlapping address range\n");
+ }
+ return piar;
+ }
+ }
+ piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
+ if (!piar)
+ return NULL;
+
+ piar->addr_lo = alo;
+ piar->addr_hi = ahi;
+ piar->pcidev = dev;
+ piar->flags = flags;
+
+#ifdef DEBUG
+ printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
+ alo, ahi, pci_name (dev));
+#endif
+
+ rb_link_node(&piar->rb_node, parent, p);
+ rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
+
+ return piar;
+}
+
+static void __pci_addr_cache_insert_device(struct pci_dev *dev)
+{
+ struct device_node *dn;
+ struct pci_dn *pdn;
+ int i;
+ int inserted = 0;
+
+ dn = pci_device_to_OF_node(dev);
+ if (!dn) {
+ printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
+ return;
+ }
+
+ /* Skip any devices for which EEH is not enabled. */
+ pdn = PCI_DN(dn);
+ if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
+ pdn->eeh_mode & EEH_MODE_NOCHECK) {
+#ifdef DEBUG
+ printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
+ pci_name(dev), pdn->node->full_name);
+#endif
+ return;
+ }
+
+ /* The cache holds a reference to the device... */
+ pci_dev_get(dev);
+
+ /* Walk resources on this device, poke them into the tree */
+ for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
+ unsigned long start = pci_resource_start(dev,i);
+ unsigned long end = pci_resource_end(dev,i);
+ unsigned int flags = pci_resource_flags(dev,i);
+
+ /* We are interested only bus addresses, not dma or other stuff */
+ if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
+ continue;
+ if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
+ continue;
+ pci_addr_cache_insert(dev, start, end, flags);
+ inserted = 1;
+ }
+
+ /* If there was nothing to add, the cache has no reference... */
+ if (!inserted)
+ pci_dev_put(dev);
+}
+
+/**
+ * pci_addr_cache_insert_device - Add a device to the address cache
+ * @dev: PCI device whose I/O addresses we are interested in.
+ *
+ * In order to support the fast lookup of devices based on addresses,
+ * we maintain a cache of devices that can be quickly searched.
+ * This routine adds a device to that cache.
+ */
+static void pci_addr_cache_insert_device(struct pci_dev *dev)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
+ __pci_addr_cache_insert_device(dev);
+ spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
+}
+
+static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
+{
+ struct rb_node *n;
+ int removed = 0;
+
+restart:
+ n = rb_first(&pci_io_addr_cache_root.rb_root);
+ while (n) {
+ struct pci_io_addr_range *piar;
+ piar = rb_entry(n, struct pci_io_addr_range, rb_node);
+
+ if (piar->pcidev == dev) {
+ rb_erase(n, &pci_io_addr_cache_root.rb_root);
+ removed = 1;
+ kfree(piar);
+ goto restart;
+ }
+ n = rb_next(n);
+ }
+
+ /* The cache no longer holds its reference to this device... */
+ if (removed)
+ pci_dev_put(dev);
+}
+
+/**
+ * pci_addr_cache_remove_device - remove pci device from addr cache
+ * @dev: device to remove
+ *
+ * Remove a device from the addr-cache tree.
+ * This is potentially expensive, since it will walk
+ * the tree multiple times (once per resource).
+ * But so what; device removal doesn't need to be that fast.
+ */
+static void pci_addr_cache_remove_device(struct pci_dev *dev)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
+ __pci_addr_cache_remove_device(dev);
+ spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
+}
+
+/**
+ * pci_addr_cache_build - Build a cache of I/O addresses
+ *
+ * Build a cache of pci i/o addresses. This cache will be used to
+ * find the pci device that corresponds to a given address.
+ * This routine scans all pci busses to build the cache.
+ * Must be run late in boot process, after the pci controllers
+ * have been scaned for devices (after all device resources are known).
+ */
+void __init pci_addr_cache_build(void)
+{
+ struct pci_dev *dev = NULL;
+
+ if (!eeh_subsystem_enabled)
+ return;
+
+ spin_lock_init(&pci_io_addr_cache_root.piar_lock);
+
+ while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
+ /* Ignore PCI bridges ( XXX why ??) */
+ if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
+ continue;
+ }
+ pci_addr_cache_insert_device(dev);
+ }
+
+#ifdef DEBUG
+ /* Verify tree built up above, echo back the list of addrs. */
+ pci_addr_cache_print(&pci_io_addr_cache_root);
+#endif
+}
+
+/* --------------------------------------------------------------- */
+/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
+
+void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
+{
+ unsigned long flags;
+ int rc;
+
+ /* Log the error with the rtas logger */
+ spin_lock_irqsave(&slot_errbuf_lock, flags);
+ memset(slot_errbuf, 0, eeh_error_buf_size);
+
+ rc = rtas_call(ibm_slot_error_detail,
+ 8, 1, NULL, pdn->eeh_config_addr,
+ BUID_HI(pdn->phb->buid),
+ BUID_LO(pdn->phb->buid), NULL, 0,
+ virt_to_phys(slot_errbuf),
+ eeh_error_buf_size,
+ severity);
+
+ if (rc == 0)
+ log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
+ spin_unlock_irqrestore(&slot_errbuf_lock, flags);
+}
+
+/**
+ * eeh_register_notifier - Register to find out about EEH events.
+ * @nb: notifier block to callback on events
+ */
+int eeh_register_notifier(struct notifier_block *nb)
+{
+ return notifier_chain_register(&eeh_notifier_chain, nb);
+}
+
+/**
+ * eeh_unregister_notifier - Unregister to an EEH event notifier.
+ * @nb: notifier block to callback on events
+ */
+int eeh_unregister_notifier(struct notifier_block *nb)
+{
+ return notifier_chain_unregister(&eeh_notifier_chain, nb);
+}
+
+/**
+ * read_slot_reset_state - Read the reset state of a device node's slot
+ * @dn: device node to read
+ * @rets: array to return results in
+ */
+static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
+{
+ int token, outputs;
+
+ if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
+ token = ibm_read_slot_reset_state2;
+ outputs = 4;
+ } else {
+ token = ibm_read_slot_reset_state;
+ rets[2] = 0; /* fake PE Unavailable info */
+ outputs = 3;
+ }
+
+ return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
+ BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
+}
+
+/**
+ * eeh_panic - call panic() for an eeh event that cannot be handled.
+ * The philosophy of this routine is that it is better to panic and
+ * halt the OS than it is to risk possible data corruption by
+ * oblivious device drivers that don't know better.
+ *
+ * @dev pci device that had an eeh event
+ * @reset_state current reset state of the device slot
+ */
+static void eeh_panic(struct pci_dev *dev, int reset_state)
+{
+ /*
+ * XXX We should create a separate sysctl for this.
+ *
+ * Since the panic_on_oops sysctl is used to halt the system
+ * in light of potential corruption, we can use it here.
+ */
+ if (panic_on_oops) {
+ struct device_node *dn = pci_device_to_OF_node(dev);
+ eeh_slot_error_detail (PCI_DN(dn), 2 /* Permanent Error */);
+ panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
+ pci_name(dev));
+ }
+ else {
+ __get_cpu_var(ignored_failures)++;
+ printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
+ reset_state, pci_name(dev));
+ }
+}
+
+/**
+ * eeh_event_handler - dispatch EEH events. The detection of a frozen
+ * slot can occur inside an interrupt, where it can be hard to do
+ * anything about it. The goal of this routine is to pull these
+ * detection events out of the context of the interrupt handler, and
+ * re-dispatch them for processing at a later time in a normal context.
+ *
+ * @dummy - unused
+ */
+static void eeh_event_handler(void *dummy)
+{
+ unsigned long flags;
+ struct eeh_event *event;
+
+ while (1) {
+ spin_lock_irqsave(&eeh_eventlist_lock, flags);
+ event = NULL;
+ if (!list_empty(&eeh_eventlist)) {
+ event = list_entry(eeh_eventlist.next, struct eeh_event, list);
+ list_del(&event->list);
+ }
+ spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
+ if (event == NULL)
+ break;
+
+ printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
+ "%s\n", event->reset_state,
+ pci_name(event->dev));
+
+ notifier_call_chain (&eeh_notifier_chain,
+ EEH_NOTIFY_FREEZE, event);
+
+ pci_dev_put(event->dev);
+ kfree(event);
+ }
+}
+
+/**
+ * eeh_token_to_phys - convert EEH address token to phys address
+ * @token i/o token, should be address in the form 0xA....
+ */
+static inline unsigned long eeh_token_to_phys(unsigned long token)
+{
+ pte_t *ptep;
+ unsigned long pa;
+
+ ptep = find_linux_pte(init_mm.pgd, token);
+ if (!ptep)
+ return token;
+ pa = pte_pfn(*ptep) << PAGE_SHIFT;
+
+ return pa | (token & (PAGE_SIZE-1));
+}
+
+/**
+ * Return the "partitionable endpoint" (pe) under which this device lies
+ */
+static struct device_node * find_device_pe(struct device_node *dn)
+{
+ while ((dn->parent) && PCI_DN(dn->parent) &&
+ (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
+ dn = dn->parent;
+ }
+ return dn;
+}
+
+/** Mark all devices that are peers of this device as failed.
+ * Mark the device driver too, so that it can see the failure
+ * immediately; this is critical, since some drivers poll
+ * status registers in interrupts ... If a driver is polling,
+ * and the slot is frozen, then the driver can deadlock in
+ * an interrupt context, which is bad.
+ */
+
+static inline void __eeh_mark_slot (struct device_node *dn)
+{
+ while (dn) {
+ PCI_DN(dn)->eeh_mode |= EEH_MODE_ISOLATED;
+
+ if (dn->child)
+ __eeh_mark_slot (dn->child);
+ dn = dn->sibling;
+ }
+}
+
+static inline void __eeh_clear_slot (struct device_node *dn)
+{
+ while (dn) {
+ PCI_DN(dn)->eeh_mode &= ~EEH_MODE_ISOLATED;
+ if (dn->child)
+ __eeh_clear_slot (dn->child);
+ dn = dn->sibling;
+ }
+}
+
+static inline void eeh_clear_slot (struct device_node *dn)
+{
+ unsigned long flags;
+ spin_lock_irqsave(&confirm_error_lock, flags);
+ __eeh_clear_slot (dn);
+ spin_unlock_irqrestore(&confirm_error_lock, flags);
+}
+
+/**
+ * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
+ * @dn device node
+ * @dev pci device, if known
+ *
+ * Check for an EEH failure for the given device node. Call this
+ * routine if the result of a read was all 0xff's and you want to
+ * find out if this is due to an EEH slot freeze. This routine
+ * will query firmware for the EEH status.
+ *
+ * Returns 0 if there has not been an EEH error; otherwise returns
+ * a non-zero value and queues up a slot isolation event notification.
+ *
+ * It is safe to call this routine in an interrupt context.
+ */
+int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
+{
+ int ret;
+ int rets[3];
+ unsigned long flags;
+ int reset_state;
+ struct eeh_event *event;
+ struct pci_dn *pdn;
+ struct device_node *pe_dn;
+ int rc = 0;
+
+ __get_cpu_var(total_mmio_ffs)++;
+
+ if (!eeh_subsystem_enabled)
+ return 0;
+
+ if (!dn) {
+ __get_cpu_var(no_dn)++;
+ return 0;
+ }
+ pdn = PCI_DN(dn);
+
+ /* Access to IO BARs might get this far and still not want checking. */
+ if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
+ pdn->eeh_mode & EEH_MODE_NOCHECK) {
+ __get_cpu_var(ignored_check)++;
+#ifdef DEBUG
+ printk ("EEH:ignored check (%x) for %s %s\n",
+ pdn->eeh_mode, pci_name (dev), dn->full_name);
+#endif
+ return 0;
+ }
+
+ if (!pdn->eeh_config_addr) {
+ __get_cpu_var(no_cfg_addr)++;
+ return 0;
+ }
+
+ /* If we already have a pending isolation event for this
+ * slot, we know it's bad already, we don't need to check.
+ * Do this checking under a lock; as multiple PCI devices
+ * in one slot might report errors simultaneously, and we
+ * only want one error recovery routine running.
+ */
+ spin_lock_irqsave(&confirm_error_lock, flags);
+ rc = 1;
+ if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
+ pdn->eeh_check_count ++;
+ if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
+ printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
+ pdn->eeh_check_count);
+ dump_stack();
+
+ /* re-read the slot reset state */
+ if (read_slot_reset_state(pdn, rets) != 0)
+ rets[0] = -1; /* reset state unknown */
+
+ /* If we are here, then we hit an infinite loop. Stop. */
+ panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
+ }
+ goto dn_unlock;
+ }
+
+ /*
+ * Now test for an EEH failure. This is VERY expensive.
+ * Note that the eeh_config_addr may be a parent device
+ * in the case of a device behind a bridge, or it may be
+ * function zero of a multi-function device.
+ * In any case they must share a common PHB.
+ */
+ ret = read_slot_reset_state(pdn, rets);
+
+ /* If the call to firmware failed, punt */
+ if (ret != 0) {
+ printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
+ ret, dn->full_name);
+ __get_cpu_var(false_positives)++;
+ rc = 0;
+ goto dn_unlock;
+ }
+
+ /* If EEH is not supported on this device, punt. */
+ if (rets[1] != 1) {
+ printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
+ ret, dn->full_name);
+ __get_cpu_var(false_positives)++;
+ rc = 0;
+ goto dn_unlock;
+ }
+
+ /* If not the kind of error we know about, punt. */
+ if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
+ __get_cpu_var(false_positives)++;
+ rc = 0;
+ goto dn_unlock;
+ }
+
+ /* Note that config-io to empty slots may fail;
+ * we recognize empty because they don't have children. */
+ if ((rets[0] == 5) && (dn->child == NULL)) {
+ __get_cpu_var(false_positives)++;
+ rc = 0;
+ goto dn_unlock;
+ }
+
+ __get_cpu_var(slot_resets)++;
+
+ /* Avoid repeated reports of this failure, including problems
+ * with other functions on this device, and functions under
+ * bridges. */
+ pe_dn = find_device_pe (dn);
+ __eeh_mark_slot (pe_dn);
+ spin_unlock_irqrestore(&confirm_error_lock, flags);
+
+ reset_state = rets[0];
+
+ eeh_slot_error_detail (pdn, 1 /* Temporary Error */);
+
+ printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
+ rets[0], dn->name, dn->full_name);
+ event = kmalloc(sizeof(*event), GFP_ATOMIC);
+ if (event == NULL) {
+ eeh_panic(dev, reset_state);
+ return 1;
+ }
+
+ event->dev = dev;
+ event->dn = dn;
+ event->reset_state = reset_state;
+
+ /* We may or may not be called in an interrupt context */
+ spin_lock_irqsave(&eeh_eventlist_lock, flags);
+ list_add(&event->list, &eeh_eventlist);
+ spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
+
+ /* Most EEH events are due to device driver bugs. Having
+ * a stack trace will help the device-driver authors figure
+ * out what happened. So print that out. */
+ if (rets[0] != 5) dump_stack();
+ schedule_work(&eeh_event_wq);
+
+ return 1;
+
+dn_unlock:
+ spin_unlock_irqrestore(&confirm_error_lock, flags);
+ return rc;
+}
+
+EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
+
+/**
+ * eeh_check_failure - check if all 1's data is due to EEH slot freeze
+ * @token i/o token, should be address in the form 0xA....
+ * @val value, should be all 1's (XXX why do we need this arg??)
+ *
+ * Check for an EEH failure at the given token address. Call this
+ * routine if the result of a read was all 0xff's and you want to
+ * find out if this is due to an EEH slot freeze event. This routine
+ * will query firmware for the EEH status.
+ *
+ * Note this routine is safe to call in an interrupt context.
+ */
+unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
+{
+ unsigned long addr;
+ struct pci_dev *dev;
+ struct device_node *dn;
+
+ /* Finding the phys addr + pci device; this is pretty quick. */
+ addr = eeh_token_to_phys((unsigned long __force) token);
+ dev = pci_get_device_by_addr(addr);
+ if (!dev) {
+ __get_cpu_var(no_device)++;
+ return val;
+ }
+
+ dn = pci_device_to_OF_node(dev);
+ eeh_dn_check_failure (dn, dev);
+
+ pci_dev_put(dev);
+ return val;
+}
+
+EXPORT_SYMBOL(eeh_check_failure);
+
+struct eeh_early_enable_info {
+ unsigned int buid_hi;
+ unsigned int buid_lo;
+};
+
+/* Enable eeh for the given device node. */
+static void *early_enable_eeh(struct device_node *dn, void *data)
+{
+ struct eeh_early_enable_info *info = data;
+ int ret;
+ char *status = get_property(dn, "status", NULL);
+ u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
+ u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
+ u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
+ u32 *regs;
+ int enable;
+ struct pci_dn *pdn = PCI_DN(dn);
+
+ pdn->eeh_mode = 0;
+ pdn->eeh_check_count = 0;
+ pdn->eeh_freeze_count = 0;
+
+ if (status && strcmp(status, "ok") != 0)
+ return NULL; /* ignore devices with bad status */
+
+ /* Ignore bad nodes. */
+ if (!class_code || !vendor_id || !device_id)
+ return NULL;
+
+ /* There is nothing to check on PCI to ISA bridges */
+ if (dn->type && !strcmp(dn->type, "isa")) {
+ pdn->eeh_mode |= EEH_MODE_NOCHECK;
+ return NULL;
+ }
+
+ /*
+ * Now decide if we are going to "Disable" EEH checking
+ * for this device. We still run with the EEH hardware active,
+ * but we won't be checking for ff's. This means a driver
+ * could return bad data (very bad!), an interrupt handler could
+ * hang waiting on status bits that won't change, etc.
+ * But there are a few cases like display devices that make sense.
+ */
+ enable = 1; /* i.e. we will do checking */
+ if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
+ enable = 0;
+
+ if (!enable)
+ pdn->eeh_mode |= EEH_MODE_NOCHECK;
+
+ /* Ok... see if this device supports EEH. Some do, some don't,
+ * and the only way to find out is to check each and every one. */
+ regs = (u32 *)get_property(dn, "reg", NULL);
+ if (regs) {
+ /* First register entry is addr (00BBSS00) */
+ /* Try to enable eeh */
+ ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
+ regs[0], info->buid_hi, info->buid_lo,
+ EEH_ENABLE);
+ if (ret == 0) {
+ eeh_subsystem_enabled = 1;
+ pdn->eeh_mode |= EEH_MODE_SUPPORTED;
+ pdn->eeh_config_addr = regs[0];
+#ifdef DEBUG
+ printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
+#endif
+ } else {
+
+ /* This device doesn't support EEH, but it may have an
+ * EEH parent, in which case we mark it as supported. */
+ if (dn->parent && PCI_DN(dn->parent)
+ && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
+ /* Parent supports EEH. */
+ pdn->eeh_mode |= EEH_MODE_SUPPORTED;
+ pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
+ return NULL;
+ }
+ }
+ } else {
+ printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
+ dn->full_name);
+ }
+
+ return NULL;
+}
+
+/*
+ * Initialize EEH by trying to enable it for all of the adapters in the system.
+ * As a side effect we can determine here if eeh is supported at all.
+ * Note that we leave EEH on so failed config cycles won't cause a machine
+ * check. If a user turns off EEH for a particular adapter they are really
+ * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
+ * grant access to a slot if EEH isn't enabled, and so we always enable
+ * EEH for all slots/all devices.
+ *
+ * The eeh-force-off option disables EEH checking globally, for all slots.
+ * Even if force-off is set, the EEH hardware is still enabled, so that
+ * newer systems can boot.
+ */
+void __init eeh_init(void)
+{
+ struct device_node *phb, *np;
+ struct eeh_early_enable_info info;
+
+ spin_lock_init(&confirm_error_lock);
+ spin_lock_init(&slot_errbuf_lock);
+
+ np = of_find_node_by_path("/rtas");
+ if (np == NULL)
+ return;
+
+ ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
+ ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
+ ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
+ ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
+ ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
+
+ if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
+ return;
+
+ eeh_error_buf_size = rtas_token("rtas-error-log-max");
+ if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
+ eeh_error_buf_size = 1024;
+ }
+ if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
+ printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
+ "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
+ eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
+ }
+
+ /* Enable EEH for all adapters. Note that eeh requires buid's */
+ for (phb = of_find_node_by_name(NULL, "pci"); phb;
+ phb = of_find_node_by_name(phb, "pci")) {
+ unsigned long buid;
+
+ buid = get_phb_buid(phb);
+ if (buid == 0 || PCI_DN(phb) == NULL)
+ continue;
+
+ info.buid_lo = BUID_LO(buid);
+ info.buid_hi = BUID_HI(buid);
+ traverse_pci_devices(phb, early_enable_eeh, &info);
+ }
+
+ if (eeh_subsystem_enabled)
+ printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
+ else
+ printk(KERN_WARNING "EEH: No capable adapters found\n");
+}
+
+/**
+ * eeh_add_device_early - enable EEH for the indicated device_node
+ * @dn: device node for which to set up EEH
+ *
+ * This routine must be used to perform EEH initialization for PCI
+ * devices that were added after system boot (e.g. hotplug, dlpar).
+ * This routine must be called before any i/o is performed to the
+ * adapter (inluding any config-space i/o).
+ * Whether this actually enables EEH or not for this device depends
+ * on the CEC architecture, type of the device, on earlier boot
+ * command-line arguments & etc.
+ */
+void eeh_add_device_early(struct device_node *dn)
+{
+ struct pci_controller *phb;
+ struct eeh_early_enable_info info;
+
+ if (!dn || !PCI_DN(dn))
+ return;
+ phb = PCI_DN(dn)->phb;
+ if (NULL == phb || 0 == phb->buid) {
+ printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
+ dn->full_name);
+ dump_stack();
+ return;
+ }
+
+ info.buid_hi = BUID_HI(phb->buid);
+ info.buid_lo = BUID_LO(phb->buid);
+ early_enable_eeh(dn, &info);
+}
+EXPORT_SYMBOL_GPL(eeh_add_device_early);
+
+/**
+ * eeh_add_device_late - perform EEH initialization for the indicated pci device
+ * @dev: pci device for which to set up EEH
+ *
+ * This routine must be used to complete EEH initialization for PCI
+ * devices that were added after system boot (e.g. hotplug, dlpar).
+ */
+void eeh_add_device_late(struct pci_dev *dev)
+{
+ struct device_node *dn;
+
+ if (!dev || !eeh_subsystem_enabled)
+ return;
+
+#ifdef DEBUG
+ printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
+#endif
+
+ pci_dev_get (dev);
+ dn = pci_device_to_OF_node(dev);
+ PCI_DN(dn)->pcidev = dev;
+
+ pci_addr_cache_insert_device (dev);
+}
+EXPORT_SYMBOL_GPL(eeh_add_device_late);
+
+/**
+ * eeh_remove_device - undo EEH setup for the indicated pci device
+ * @dev: pci device to be removed
+ *
+ * This routine should be when a device is removed from a running
+ * system (e.g. by hotplug or dlpar).
+ */
+void eeh_remove_device(struct pci_dev *dev)
+{
+ struct device_node *dn;
+ if (!dev || !eeh_subsystem_enabled)
+ return;
+
+ /* Unregister the device with the EEH/PCI address search system */
+#ifdef DEBUG
+ printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
+#endif
+ pci_addr_cache_remove_device(dev);
+
+ dn = pci_device_to_OF_node(dev);
+ PCI_DN(dn)->pcidev = NULL;
+ pci_dev_put (dev);
+}
+EXPORT_SYMBOL_GPL(eeh_remove_device);
+
+static int proc_eeh_show(struct seq_file *m, void *v)
+{
+ unsigned int cpu;
+ unsigned long ffs = 0, positives = 0, failures = 0;
+ unsigned long resets = 0;
+ unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
+
+ for_each_cpu(cpu) {
+ ffs += per_cpu(total_mmio_ffs, cpu);
+ positives += per_cpu(false_positives, cpu);
+ failures += per_cpu(ignored_failures, cpu);
+ resets += per_cpu(slot_resets, cpu);
+ no_dev += per_cpu(no_device, cpu);
+ no_dn += per_cpu(no_dn, cpu);
+ no_cfg += per_cpu(no_cfg_addr, cpu);
+ no_check += per_cpu(ignored_check, cpu);
+ }
+
+ if (0 == eeh_subsystem_enabled) {
+ seq_printf(m, "EEH Subsystem is globally disabled\n");
+ seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
+ } else {
+ seq_printf(m, "EEH Subsystem is enabled\n");
+ seq_printf(m,
+ "no device=%ld\n"
+ "no device node=%ld\n"
+ "no config address=%ld\n"
+ "check not wanted=%ld\n"
+ "eeh_total_mmio_ffs=%ld\n"
+ "eeh_false_positives=%ld\n"
+ "eeh_ignored_failures=%ld\n"
+ "eeh_slot_resets=%ld\n",
+ no_dev, no_dn, no_cfg, no_check,
+ ffs, positives, failures, resets);
+ }
+
+ return 0;
+}
+
+static int proc_eeh_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, proc_eeh_show, NULL);
+}
+
+static struct file_operations proc_eeh_operations = {
+ .open = proc_eeh_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int __init eeh_init_proc(void)
+{
+ struct proc_dir_entry *e;
+
+ if (systemcfg->platform & PLATFORM_PSERIES) {
+ e = create_proc_entry("ppc64/eeh", 0, NULL);
+ if (e)
+ e->proc_fops = &proc_eeh_operations;
+ }
+
+ return 0;
+}
+__initcall(eeh_init_proc);