diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /arch/ppc/math-emu/op-2.h |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'arch/ppc/math-emu/op-2.h')
-rw-r--r-- | arch/ppc/math-emu/op-2.h | 433 |
1 files changed, 433 insertions, 0 deletions
diff --git a/arch/ppc/math-emu/op-2.h b/arch/ppc/math-emu/op-2.h new file mode 100644 index 00000000000..b9b06b4c6ea --- /dev/null +++ b/arch/ppc/math-emu/op-2.h @@ -0,0 +1,433 @@ +/* + * Basic two-word fraction declaration and manipulation. + */ + +#define _FP_FRAC_DECL_2(X) _FP_W_TYPE X##_f0, X##_f1 +#define _FP_FRAC_COPY_2(D,S) (D##_f0 = S##_f0, D##_f1 = S##_f1) +#define _FP_FRAC_SET_2(X,I) __FP_FRAC_SET_2(X, I) +#define _FP_FRAC_HIGH_2(X) (X##_f1) +#define _FP_FRAC_LOW_2(X) (X##_f0) +#define _FP_FRAC_WORD_2(X,w) (X##_f##w) + +#define _FP_FRAC_SLL_2(X,N) \ + do { \ + if ((N) < _FP_W_TYPE_SIZE) \ + { \ + if (__builtin_constant_p(N) && (N) == 1) \ + { \ + X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0); \ + X##_f0 += X##_f0; \ + } \ + else \ + { \ + X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \ + X##_f0 <<= (N); \ + } \ + } \ + else \ + { \ + X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \ + X##_f0 = 0; \ + } \ + } while (0) + +#define _FP_FRAC_SRL_2(X,N) \ + do { \ + if ((N) < _FP_W_TYPE_SIZE) \ + { \ + X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \ + X##_f1 >>= (N); \ + } \ + else \ + { \ + X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \ + X##_f1 = 0; \ + } \ + } while (0) + +/* Right shift with sticky-lsb. */ +#define _FP_FRAC_SRS_2(X,N,sz) \ + do { \ + if ((N) < _FP_W_TYPE_SIZE) \ + { \ + X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) | \ + (__builtin_constant_p(N) && (N) == 1 \ + ? X##_f0 & 1 \ + : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \ + X##_f1 >>= (N); \ + } \ + else \ + { \ + X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) | \ + (((X##_f1 << (sz - (N))) | X##_f0) != 0)); \ + X##_f1 = 0; \ + } \ + } while (0) + +#define _FP_FRAC_ADDI_2(X,I) \ + __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) + +#define _FP_FRAC_ADD_2(R,X,Y) \ + __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) + +#define _FP_FRAC_SUB_2(R,X,Y) \ + __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) + +#define _FP_FRAC_CLZ_2(R,X) \ + do { \ + if (X##_f1) \ + __FP_CLZ(R,X##_f1); \ + else \ + { \ + __FP_CLZ(R,X##_f0); \ + R += _FP_W_TYPE_SIZE; \ + } \ + } while(0) + +/* Predicates */ +#define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE)X##_f1 < 0) +#define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0) +#define _FP_FRAC_OVERP_2(fs,X) (X##_f1 & _FP_OVERFLOW_##fs) +#define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0) +#define _FP_FRAC_GT_2(X, Y) \ + ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) +#define _FP_FRAC_GE_2(X, Y) \ + ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) + +#define _FP_ZEROFRAC_2 0, 0 +#define _FP_MINFRAC_2 0, 1 + +/* + * Internals + */ + +#define __FP_FRAC_SET_2(X,I1,I0) (X##_f0 = I0, X##_f1 = I1) + +#define __FP_CLZ_2(R, xh, xl) \ + do { \ + if (xh) \ + __FP_CLZ(R,xl); \ + else \ + { \ + __FP_CLZ(R,xl); \ + R += _FP_W_TYPE_SIZE; \ + } \ + } while(0) + +#if 0 + +#ifndef __FP_FRAC_ADDI_2 +#define __FP_FRAC_ADDI_2(xh, xl, i) \ + (xh += ((xl += i) < i)) +#endif +#ifndef __FP_FRAC_ADD_2 +#define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ + (rh = xh + yh + ((rl = xl + yl) < xl)) +#endif +#ifndef __FP_FRAC_SUB_2 +#define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ + (rh = xh - yh - ((rl = xl - yl) > xl)) +#endif + +#else + +#undef __FP_FRAC_ADDI_2 +#define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa(xh, xl, xh, xl, 0, i) +#undef __FP_FRAC_ADD_2 +#define __FP_FRAC_ADD_2 add_ssaaaa +#undef __FP_FRAC_SUB_2 +#define __FP_FRAC_SUB_2 sub_ddmmss + +#endif + +/* + * Unpack the raw bits of a native fp value. Do not classify or + * normalize the data. + */ + +#define _FP_UNPACK_RAW_2(fs, X, val) \ + do { \ + union _FP_UNION_##fs _flo; _flo.flt = (val); \ + \ + X##_f0 = _flo.bits.frac0; \ + X##_f1 = _flo.bits.frac1; \ + X##_e = _flo.bits.exp; \ + X##_s = _flo.bits.sign; \ + } while (0) + + +/* + * Repack the raw bits of a native fp value. + */ + +#define _FP_PACK_RAW_2(fs, val, X) \ + do { \ + union _FP_UNION_##fs _flo; \ + \ + _flo.bits.frac0 = X##_f0; \ + _flo.bits.frac1 = X##_f1; \ + _flo.bits.exp = X##_e; \ + _flo.bits.sign = X##_s; \ + \ + (val) = _flo.flt; \ + } while (0) + + +/* + * Multiplication algorithms: + */ + +/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ + +#define _FP_MUL_MEAT_2_wide(fs, R, X, Y, doit) \ + do { \ + _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \ + \ + doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ + doit(_b_f1, _b_f0, X##_f0, Y##_f1); \ + doit(_c_f1, _c_f0, X##_f1, Y##_f0); \ + doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \ + \ + __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ + _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0), \ + 0, _b_f1, _b_f0, 0, \ + _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ + _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0)); \ + __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ + _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0), \ + 0, _c_f1, _c_f0, 0, \ + _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \ + _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0)); \ + \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_4(_z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs); \ + R##_f0 = _FP_FRAC_WORD_4(_z,0); \ + R##_f1 = _FP_FRAC_WORD_4(_z,1); \ + } while (0) + +/* This next macro appears to be totally broken. Fortunately nowhere + * seems to use it :-> The problem is that we define _z[4] but + * then use it in _FP_FRAC_SRS_4, which will attempt to access + * _z_f[n] which will cause an error. The fix probably involves + * declaring it with _FP_FRAC_DECL_4, see previous macro. -- PMM 02/1998 + */ +#define _FP_MUL_MEAT_2_gmp(fs, R, X, Y) \ + do { \ + _FP_W_TYPE _x[2], _y[2], _z[4]; \ + _x[0] = X##_f0; _x[1] = X##_f1; \ + _y[0] = Y##_f0; _y[1] = Y##_f1; \ + \ + mpn_mul_n(_z, _x, _y, 2); \ + \ + /* Normalize since we know where the msb of the multiplicands \ + were (bit B), we know that the msb of the of the product is \ + at either 2B or 2B-1. */ \ + _FP_FRAC_SRS_4(_z, _FP_WFRACBITS##_fs-1, 2*_FP_WFRACBITS_##fs); \ + R##_f0 = _z[0]; \ + R##_f1 = _z[1]; \ + } while (0) + + +/* + * Division algorithms: + * This seems to be giving me difficulties -- PMM + * Look, NetBSD seems to be able to comment algorithms. Can't you? + * I've thrown printks at the problem. + * This now appears to work, but I still don't really know why. + * Also, I don't think the result is properly normalised... + */ + +#define _FP_DIV_MEAT_2_udiv_64(fs, R, X, Y) \ + do { \ + extern void _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2], \ + _FP_W_TYPE n1, _FP_W_TYPE n0, \ + _FP_W_TYPE d1, _FP_W_TYPE d0); \ + _FP_W_TYPE _n_f3, _n_f2, _n_f1, _n_f0, _r_f1, _r_f0; \ + _FP_W_TYPE _q_f1, _q_f0, _m_f1, _m_f0; \ + _FP_W_TYPE _rmem[2], _qmem[2]; \ + /* I think this check is to ensure that the result is normalised. \ + * Assuming X,Y normalised (ie in [1.0,2.0)) X/Y will be in \ + * [0.5,2.0). Furthermore, it will be less than 1.0 iff X < Y. \ + * In this case we tweak things. (this is based on comments in \ + * the NetBSD FPU emulation code. ) \ + * We know X,Y are normalised because we ensure this as part of \ + * the unpacking process. -- PMM \ + */ \ + if (_FP_FRAC_GT_2(X, Y)) \ + { \ +/* R##_e++; */ \ + _n_f3 = X##_f1 >> 1; \ + _n_f2 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \ + _n_f1 = X##_f0 << (_FP_W_TYPE_SIZE - 1); \ + _n_f0 = 0; \ + } \ + else \ + { \ + R##_e--; \ + _n_f3 = X##_f1; \ + _n_f2 = X##_f0; \ + _n_f1 = _n_f0 = 0; \ + } \ + \ + /* Normalize, i.e. make the most significant bit of the \ + denominator set. CHANGED: - 1 to nothing -- PMM */ \ + _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs /* -1 */); \ + \ + /* Do the 256/128 bit division given the 128-bit _fp_udivmodtf4 \ + primitive snagged from libgcc2.c. */ \ + \ + _fp_udivmodti4(_qmem, _rmem, _n_f3, _n_f2, 0, Y##_f1); \ + _q_f1 = _qmem[0]; \ + umul_ppmm(_m_f1, _m_f0, _q_f1, Y##_f0); \ + _r_f1 = _rmem[0]; \ + _r_f0 = _n_f1; \ + if (_FP_FRAC_GT_2(_m, _r)) \ + { \ + _q_f1--; \ + _FP_FRAC_ADD_2(_r, _r, Y); \ + if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ + { \ + _q_f1--; \ + _FP_FRAC_ADD_2(_r, _r, Y); \ + } \ + } \ + _FP_FRAC_SUB_2(_r, _r, _m); \ + \ + _fp_udivmodti4(_qmem, _rmem, _r_f1, _r_f0, 0, Y##_f1); \ + _q_f0 = _qmem[0]; \ + umul_ppmm(_m_f1, _m_f0, _q_f0, Y##_f0); \ + _r_f1 = _rmem[0]; \ + _r_f0 = _n_f0; \ + if (_FP_FRAC_GT_2(_m, _r)) \ + { \ + _q_f0--; \ + _FP_FRAC_ADD_2(_r, _r, Y); \ + if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \ + { \ + _q_f0--; \ + _FP_FRAC_ADD_2(_r, _r, Y); \ + } \ + } \ + _FP_FRAC_SUB_2(_r, _r, _m); \ + \ + R##_f1 = _q_f1; \ + R##_f0 = _q_f0 | ((_r_f1 | _r_f0) != 0); \ + /* adjust so answer is normalized again. I'm not sure what the \ + * final sz param should be. In practice it's never used since \ + * N is 1 which is always going to be < _FP_W_TYPE_SIZE... \ + */ \ + /* _FP_FRAC_SRS_2(R,1,_FP_WFRACBITS_##fs); */ \ + } while (0) + + +#define _FP_DIV_MEAT_2_gmp(fs, R, X, Y) \ + do { \ + _FP_W_TYPE _x[4], _y[2], _z[4]; \ + _y[0] = Y##_f0; _y[1] = Y##_f1; \ + _x[0] = _x[3] = 0; \ + if (_FP_FRAC_GT_2(X, Y)) \ + { \ + R##_e++; \ + _x[1] = (X##_f0 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE) | \ + X##_f1 >> (_FP_W_TYPE_SIZE - \ + (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE))); \ + _x[2] = X##_f1 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE); \ + } \ + else \ + { \ + _x[1] = (X##_f0 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE) | \ + X##_f1 >> (_FP_W_TYPE_SIZE - \ + (_FP_WFRACBITS - _FP_W_TYPE_SIZE))); \ + _x[2] = X##_f1 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE); \ + } \ + \ + (void) mpn_divrem (_z, 0, _x, 4, _y, 2); \ + R##_f1 = _z[1]; \ + R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0); \ + } while (0) + + +/* + * Square root algorithms: + * We have just one right now, maybe Newton approximation + * should be added for those machines where division is fast. + */ + +#define _FP_SQRT_MEAT_2(R, S, T, X, q) \ + do { \ + while (q) \ + { \ + T##_f1 = S##_f1 + q; \ + if (T##_f1 <= X##_f1) \ + { \ + S##_f1 = T##_f1 + q; \ + X##_f1 -= T##_f1; \ + R##_f1 += q; \ + } \ + _FP_FRAC_SLL_2(X, 1); \ + q >>= 1; \ + } \ + q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \ + while (q) \ + { \ + T##_f0 = S##_f0 + q; \ + T##_f1 = S##_f1; \ + if (T##_f1 < X##_f1 || \ + (T##_f1 == X##_f1 && T##_f0 < X##_f0)) \ + { \ + S##_f0 = T##_f0 + q; \ + if (((_FP_WS_TYPE)T##_f0) < 0 && \ + ((_FP_WS_TYPE)S##_f0) >= 0) \ + S##_f1++; \ + _FP_FRAC_SUB_2(X, X, T); \ + R##_f0 += q; \ + } \ + _FP_FRAC_SLL_2(X, 1); \ + q >>= 1; \ + } \ + } while (0) + + +/* + * Assembly/disassembly for converting to/from integral types. + * No shifting or overflow handled here. + */ + +#define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \ + do { \ + if (rsize <= _FP_W_TYPE_SIZE) \ + r = X##_f0; \ + else \ + { \ + r = X##_f1; \ + r <<= _FP_W_TYPE_SIZE; \ + r += X##_f0; \ + } \ + } while (0) + +#define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \ + do { \ + X##_f0 = r; \ + X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \ + } while (0) + +/* + * Convert FP values between word sizes + */ + +#define _FP_FRAC_CONV_1_2(dfs, sfs, D, S) \ + do { \ + _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \ + _FP_WFRACBITS_##sfs); \ + D##_f = S##_f0; \ + } while (0) + +#define _FP_FRAC_CONV_2_1(dfs, sfs, D, S) \ + do { \ + D##_f0 = S##_f; \ + D##_f1 = 0; \ + _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \ + } while (0) + |