diff options
31 files changed, 24 insertions, 4628 deletions
diff --git a/arch/parisc/Makefile b/arch/parisc/Makefile index ae4a9b3d4fd..e574de4efb3 100644 --- a/arch/parisc/Makefile +++ b/arch/parisc/Makefile @@ -70,7 +70,7 @@ kernel-y := mm/ kernel/ math-emu/ kernel/init_task.o kernel-$(CONFIG_HPUX) += hpux/ core-y += $(addprefix arch/parisc/, $(kernel-y)) -libs-y += arch/parisc/lib/ +libs-y += arch/parisc/lib/ `$(CC) -print-libgcc-file-name` drivers-$(CONFIG_OPROFILE) += arch/parisc/oprofile/ diff --git a/arch/parisc/kernel/parisc_ksyms.c b/arch/parisc/kernel/parisc_ksyms.c index 671ee5b9950..7aca704e96f 100644 --- a/arch/parisc/kernel/parisc_ksyms.c +++ b/arch/parisc/kernel/parisc_ksyms.c @@ -122,9 +122,31 @@ EXPORT_SYMBOL($$divI_12); EXPORT_SYMBOL($$divI_14); EXPORT_SYMBOL($$divI_15); +extern void __ashrdi3(void); +extern void __ashldi3(void); +extern void __lshrdi3(void); +extern void __muldi3(void); + +EXPORT_SYMBOL(__ashrdi3); +EXPORT_SYMBOL(__ashldi3); +EXPORT_SYMBOL(__lshrdi3); +EXPORT_SYMBOL(__muldi3); + asmlinkage void * __canonicalize_funcptr_for_compare(void *); EXPORT_SYMBOL(__canonicalize_funcptr_for_compare); +#ifdef CONFIG_64BIT +extern void __divdi3(void); +extern void __udivdi3(void); +extern void __umoddi3(void); +extern void __moddi3(void); + +EXPORT_SYMBOL(__divdi3); +EXPORT_SYMBOL(__udivdi3); +EXPORT_SYMBOL(__umoddi3); +EXPORT_SYMBOL(__moddi3); +#endif + #ifndef CONFIG_64BIT extern void $$dyncall(void); EXPORT_SYMBOL($$dyncall); diff --git a/arch/parisc/lib/Makefile b/arch/parisc/lib/Makefile index 7ce406c7daf..5f2e6904d14 100644 --- a/arch/parisc/lib/Makefile +++ b/arch/parisc/lib/Makefile @@ -4,4 +4,4 @@ lib-y := lusercopy.o bitops.o checksum.o io.o memset.o fixup.o memcpy.o -obj-y := libgcc/ milli/ iomap.o +obj-y := iomap.o diff --git a/arch/parisc/lib/libgcc/Makefile b/arch/parisc/lib/libgcc/Makefile deleted file mode 100644 index b67a85ad9c8..00000000000 --- a/arch/parisc/lib/libgcc/Makefile +++ /dev/null @@ -1,4 +0,0 @@ -obj-y := __ashldi3.o __ashrdi3.o __clzsi2.o __divdi3.o __divsi3.o \ - __lshrdi3.o __moddi3.o __modsi3.o __udivdi3.o \ - __udivmoddi4.o __udivmodsi4.o __udivsi3.o \ - __umoddi3.o __umodsi3.o __muldi3.o __umulsidi3.o diff --git a/arch/parisc/lib/libgcc/__ashldi3.c b/arch/parisc/lib/libgcc/__ashldi3.c deleted file mode 100644 index a14a257abb2..00000000000 --- a/arch/parisc/lib/libgcc/__ashldi3.c +++ /dev/null @@ -1,19 +0,0 @@ -#include "libgcc.h" - -u64 __ashldi3(u64 v, int cnt) -{ - int c = cnt & 31; - u32 vl = (u32) v; - u32 vh = (u32) (v >> 32); - - if (cnt & 32) { - vh = (vl << c); - vl = 0; - } else { - vh = (vh << c) + (vl >> (32 - c)); - vl = (vl << c); - } - - return ((u64) vh << 32) + vl; -} -EXPORT_SYMBOL(__ashldi3); diff --git a/arch/parisc/lib/libgcc/__ashrdi3.c b/arch/parisc/lib/libgcc/__ashrdi3.c deleted file mode 100644 index 8636a5aa4f7..00000000000 --- a/arch/parisc/lib/libgcc/__ashrdi3.c +++ /dev/null @@ -1,19 +0,0 @@ -#include "libgcc.h" - -u64 __ashrdi3(u64 v, int cnt) -{ - int c = cnt & 31; - u32 vl = (u32) v; - u32 vh = (u32) (v >> 32); - - if (cnt & 32) { - vl = ((s32) vh >> c); - vh = (s32) vh >> 31; - } else { - vl = (vl >> c) + (vh << (32 - c)); - vh = ((s32) vh >> c); - } - - return ((u64) vh << 32) + vl; -} -EXPORT_SYMBOL(__ashrdi3); diff --git a/arch/parisc/lib/libgcc/__clzsi2.c b/arch/parisc/lib/libgcc/__clzsi2.c deleted file mode 100644 index a7aa2f55a9c..00000000000 --- a/arch/parisc/lib/libgcc/__clzsi2.c +++ /dev/null @@ -1,30 +0,0 @@ -#include "libgcc.h" - -u32 __clzsi2(u32 v) -{ - int p = 31; - - if (v & 0xffff0000) { - p -= 16; - v >>= 16; - } - if (v & 0xff00) { - p -= 8; - v >>= 8; - } - if (v & 0xf0) { - p -= 4; - v >>= 4; - } - if (v & 0xc) { - p -= 2; - v >>= 2; - } - if (v & 0x2) { - p -= 1; - v >>= 1; - } - - return p; -} -EXPORT_SYMBOL(__clzsi2); diff --git a/arch/parisc/lib/libgcc/__divdi3.c b/arch/parisc/lib/libgcc/__divdi3.c deleted file mode 100644 index f23c6fe2838..00000000000 --- a/arch/parisc/lib/libgcc/__divdi3.c +++ /dev/null @@ -1,23 +0,0 @@ -#include "libgcc.h" - -s64 __divdi3(s64 num, s64 den) -{ - int minus = 0; - s64 v; - - if (num < 0) { - num = -num; - minus = 1; - } - if (den < 0) { - den = -den; - minus ^= 1; - } - - v = __udivmoddi4(num, den, NULL); - if (minus) - v = -v; - - return v; -} -EXPORT_SYMBOL(__divdi3); diff --git a/arch/parisc/lib/libgcc/__divsi3.c b/arch/parisc/lib/libgcc/__divsi3.c deleted file mode 100644 index 730fb530680..00000000000 --- a/arch/parisc/lib/libgcc/__divsi3.c +++ /dev/null @@ -1,23 +0,0 @@ -#include "libgcc.h" - -s32 __divsi3(s32 num, s32 den) -{ - int minus = 0; - s32 v; - - if (num < 0) { - num = -num; - minus = 1; - } - if (den < 0) { - den = -den; - minus ^= 1; - } - - v = __udivmodsi4(num, den, NULL); - if (minus) - v = -v; - - return v; -} -EXPORT_SYMBOL(__divsi3); diff --git a/arch/parisc/lib/libgcc/__lshrdi3.c b/arch/parisc/lib/libgcc/__lshrdi3.c deleted file mode 100644 index 4a820708ec5..00000000000 --- a/arch/parisc/lib/libgcc/__lshrdi3.c +++ /dev/null @@ -1,19 +0,0 @@ -#include "libgcc.h" - -u64 __lshrdi3(u64 v, int cnt) -{ - int c = cnt & 31; - u32 vl = (u32) v; - u32 vh = (u32) (v >> 32); - - if (cnt & 32) { - vl = (vh >> c); - vh = 0; - } else { - vl = (vl >> c) + (vh << (32 - c)); - vh = (vh >> c); - } - - return ((u64) vh << 32) + vl; -} -EXPORT_SYMBOL(__lshrdi3); diff --git a/arch/parisc/lib/libgcc/__moddi3.c b/arch/parisc/lib/libgcc/__moddi3.c deleted file mode 100644 index ed64bbafc98..00000000000 --- a/arch/parisc/lib/libgcc/__moddi3.c +++ /dev/null @@ -1,23 +0,0 @@ -#include "libgcc.h" - -s64 __moddi3(s64 num, s64 den) -{ - int minus = 0; - s64 v; - - if (num < 0) { - num = -num; - minus = 1; - } - if (den < 0) { - den = -den; - minus ^= 1; - } - - (void)__udivmoddi4(num, den, (u64 *) & v); - if (minus) - v = -v; - - return v; -} -EXPORT_SYMBOL(__moddi3); diff --git a/arch/parisc/lib/libgcc/__modsi3.c b/arch/parisc/lib/libgcc/__modsi3.c deleted file mode 100644 index 62f773efaee..00000000000 --- a/arch/parisc/lib/libgcc/__modsi3.c +++ /dev/null @@ -1,23 +0,0 @@ -#include "libgcc.h" - -s32 __modsi3(s32 num, s32 den) -{ - int minus = 0; - s32 v; - - if (num < 0) { - num = -num; - minus = 1; - } - if (den < 0) { - den = -den; - minus ^= 1; - } - - (void)__udivmodsi4(num, den, (u32 *) & v); - if (minus) - v = -v; - - return v; -} -EXPORT_SYMBOL(__modsi3); diff --git a/arch/parisc/lib/libgcc/__muldi3.c b/arch/parisc/lib/libgcc/__muldi3.c deleted file mode 100644 index 3308abdd558..00000000000 --- a/arch/parisc/lib/libgcc/__muldi3.c +++ /dev/null @@ -1,22 +0,0 @@ -#include "libgcc.h" - -union DWunion { - struct { - s32 high; - s32 low; - } s; - s64 ll; -}; - -s64 __muldi3(s64 u, s64 v) -{ - const union DWunion uu = { .ll = u }; - const union DWunion vv = { .ll = v }; - union DWunion w = { .ll = __umulsidi3(uu.s.low, vv.s.low) }; - - w.s.high += ((u32)uu.s.low * (u32)vv.s.high - + (u32)uu.s.high * (u32)vv.s.low); - - return w.ll; -} -EXPORT_SYMBOL(__muldi3); diff --git a/arch/parisc/lib/libgcc/__udivdi3.c b/arch/parisc/lib/libgcc/__udivdi3.c deleted file mode 100644 index 740023d690f..00000000000 --- a/arch/parisc/lib/libgcc/__udivdi3.c +++ /dev/null @@ -1,7 +0,0 @@ -#include "libgcc.h" - -u64 __udivdi3(u64 num, u64 den) -{ - return __udivmoddi4(num, den, NULL); -} -EXPORT_SYMBOL(__udivdi3); diff --git a/arch/parisc/lib/libgcc/__udivmoddi4.c b/arch/parisc/lib/libgcc/__udivmoddi4.c deleted file mode 100644 index 2df0caa5a7d..00000000000 --- a/arch/parisc/lib/libgcc/__udivmoddi4.c +++ /dev/null @@ -1,31 +0,0 @@ -#include "libgcc.h" - -u64 __udivmoddi4(u64 num, u64 den, u64 * rem_p) -{ - u64 quot = 0, qbit = 1; - - if (den == 0) { - BUG(); - } - - /* Left-justify denominator and count shift */ - while ((s64) den >= 0) { - den <<= 1; - qbit <<= 1; - } - - while (qbit) { - if (den <= num) { - num -= den; - quot += qbit; - } - den >>= 1; - qbit >>= 1; - } - - if (rem_p) - *rem_p = num; - - return quot; -} -EXPORT_SYMBOL(__udivmoddi4); diff --git a/arch/parisc/lib/libgcc/__udivmodsi4.c b/arch/parisc/lib/libgcc/__udivmodsi4.c deleted file mode 100644 index 2a2fc28b202..00000000000 --- a/arch/parisc/lib/libgcc/__udivmodsi4.c +++ /dev/null @@ -1,31 +0,0 @@ -#include "libgcc.h" - -u32 __udivmodsi4(u32 num, u32 den, u32 * rem_p) -{ - u32 quot = 0, qbit = 1; - - if (den == 0) { - BUG(); - } - - /* Left-justify denominator and count shift */ - while ((s32) den >= 0) { - den <<= 1; - qbit <<= 1; - } - - while (qbit) { - if (den <= num) { - num -= den; - quot += qbit; - } - den >>= 1; - qbit >>= 1; - } - - if (rem_p) - *rem_p = num; - - return quot; -} -EXPORT_SYMBOL(__udivmodsi4); diff --git a/arch/parisc/lib/libgcc/__udivsi3.c b/arch/parisc/lib/libgcc/__udivsi3.c deleted file mode 100644 index 756a44164e9..00000000000 --- a/arch/parisc/lib/libgcc/__udivsi3.c +++ /dev/null @@ -1,7 +0,0 @@ -#include "libgcc.h" - -u32 __udivsi3(u32 num, u32 den) -{ - return __udivmodsi4(num, den, NULL); -} -EXPORT_SYMBOL(__udivsi3); diff --git a/arch/parisc/lib/libgcc/__umoddi3.c b/arch/parisc/lib/libgcc/__umoddi3.c deleted file mode 100644 index ac744e948bc..00000000000 --- a/arch/parisc/lib/libgcc/__umoddi3.c +++ /dev/null @@ -1,10 +0,0 @@ -#include "libgcc.h" - -u64 __umoddi3(u64 num, u64 den) -{ - u64 v; - - (void)__udivmoddi4(num, den, &v); - return v; -} -EXPORT_SYMBOL(__umoddi3); diff --git a/arch/parisc/lib/libgcc/__umodsi3.c b/arch/parisc/lib/libgcc/__umodsi3.c deleted file mode 100644 index 51f55aa89f9..00000000000 --- a/arch/parisc/lib/libgcc/__umodsi3.c +++ /dev/null @@ -1,10 +0,0 @@ -#include "libgcc.h" - -u32 __umodsi3(u32 num, u32 den) -{ - u32 v; - - (void)__udivmodsi4(num, den, &v); - return v; -} -EXPORT_SYMBOL(__umodsi3); diff --git a/arch/parisc/lib/libgcc/__umulsidi3.c b/arch/parisc/lib/libgcc/__umulsidi3.c deleted file mode 100644 index 396f669164d..00000000000 --- a/arch/parisc/lib/libgcc/__umulsidi3.c +++ /dev/null @@ -1,46 +0,0 @@ -#include "libgcc.h" - -#define __ll_B ((u32) 1 << (32 / 2)) -#define __ll_lowpart(t) ((u32) (t) & (__ll_B - 1)) -#define __ll_highpart(t) ((u32) (t) >> 16) - -#define umul_ppmm(w1, w0, u, v) \ - do { \ - u32 __x0, __x1, __x2, __x3; \ - u16 __ul, __vl, __uh, __vh; \ - \ - __ul = __ll_lowpart (u); \ - __uh = __ll_highpart (u); \ - __vl = __ll_lowpart (v); \ - __vh = __ll_highpart (v); \ - \ - __x0 = (u32) __ul * __vl; \ - __x1 = (u32) __ul * __vh; \ - __x2 = (u32) __uh * __vl; \ - __x3 = (u32) __uh * __vh; \ - \ - __x1 += __ll_highpart (__x0);/* this can't give carry */ \ - __x1 += __x2; /* but this indeed can */ \ - if (__x1 < __x2) /* did we get it? */ \ - __x3 += __ll_B; /* yes, add it in the proper pos. */ \ - \ - (w1) = __x3 + __ll_highpart (__x1); \ - (w0) = __ll_lowpart (__x1) * __ll_B + __ll_lowpart (__x0); \ - } while (0) - -union DWunion { - struct { - s32 high; - s32 low; - } s; - s64 ll; -}; - -u64 __umulsidi3(u32 u, u32 v) -{ - union DWunion __w; - - umul_ppmm(__w.s.high, __w.s.low, u, v); - - return __w.ll; -} diff --git a/arch/parisc/lib/libgcc/libgcc.h b/arch/parisc/lib/libgcc/libgcc.h deleted file mode 100644 index 5a6f7a510fb..00000000000 --- a/arch/parisc/lib/libgcc/libgcc.h +++ /dev/null @@ -1,32 +0,0 @@ -#ifndef _PA_LIBGCC_H_ -#define _PA_LIBGCC_H_ - -#include <linux/types.h> -#include <linux/module.h> - -/* Cribbed from klibc/libgcc/ */ -u64 __ashldi3(u64 v, int cnt); -u64 __ashrdi3(u64 v, int cnt); - -u32 __clzsi2(u32 v); - -s64 __divdi3(s64 num, s64 den); -s32 __divsi3(s32 num, s32 den); - -u64 __lshrdi3(u64 v, int cnt); - -s64 __moddi3(s64 num, s64 den); -s32 __modsi3(s32 num, s32 den); - -u64 __udivdi3(u64 num, u64 den); -u32 __udivsi3(u32 num, u32 den); - -u64 __udivmoddi4(u64 num, u64 den, u64 * rem_p); -u32 __udivmodsi4(u32 num, u32 den, u32 * rem_p); - -u64 __umulsidi3(u32 u, u32 v); - -u64 __umoddi3(u64 num, u64 den); -u32 __umodsi3(u32 num, u32 den); - -#endif /*_PA_LIBGCC_H_*/ diff --git a/arch/parisc/lib/milli/Makefile b/arch/parisc/lib/milli/Makefile deleted file mode 100644 index 9b24e9b1f3c..00000000000 --- a/arch/parisc/lib/milli/Makefile +++ /dev/null @@ -1 +0,0 @@ -obj-y := dyncall.o divI.o divU.o remI.o remU.o div_const.o mulI.o diff --git a/arch/parisc/lib/milli/divI.S b/arch/parisc/lib/milli/divI.S deleted file mode 100644 index ac106b7b6f2..00000000000 --- a/arch/parisc/lib/milli/divI.S +++ /dev/null @@ -1,254 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#include "milli.h" - -#ifdef L_divI -/* ROUTINES: $$divI, $$divoI - - Single precision divide for signed binary integers. - - The quotient is truncated towards zero. - The sign of the quotient is the XOR of the signs of the dividend and - divisor. - Divide by zero is trapped. - Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI. - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = quotient - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: - . divisor is zero (traps with ADDIT,= 0,25,0) - . dividend==-2**31 and divisor==-1 and routine is $$divoI - . (traps with ADDO 26,25,0) - . Changes memory at the following places: - . NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Branchs to other millicode routines using BE - . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15 - . - . For selected divisors, calls a divide by constant routine written by - . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13. - . - . The only overflow case is -2**31 divided by -1. - . Both routines return -2**31 but only $$divoI traps. */ - -RDEFINE(temp,r1) -RDEFINE(retreg,ret1) /* r29 */ -RDEFINE(temp1,arg0) - SUBSPA_MILLI_DIV - ATTR_MILLI - .import $$divI_2,millicode - .import $$divI_3,millicode - .import $$divI_4,millicode - .import $$divI_5,millicode - .import $$divI_6,millicode - .import $$divI_7,millicode - .import $$divI_8,millicode - .import $$divI_9,millicode - .import $$divI_10,millicode - .import $$divI_12,millicode - .import $$divI_14,millicode - .import $$divI_15,millicode - .export $$divI,millicode - .export $$divoI,millicode - .proc - .callinfo millicode - .entry -GSYM($$divoI) - comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */ -GSYM($$divI) - ldo -1(arg1),temp /* is there at most one bit set ? */ - and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */ - addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */ - b,n LREF(neg_denom) -LSYM(pow2) - addi,>= 0,arg0,retreg /* if numerator is negative, add the */ - add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */ - extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ - extrs retreg,15,16,retreg /* retreg = retreg >> 16 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ - ldi 0xcc,temp1 /* setup 0xcc in temp1 */ - extru,= arg1,23,8,temp /* test denominator with 0xff00 */ - extrs retreg,23,24,retreg /* retreg = retreg >> 8 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ - ldi 0xaa,temp /* setup 0xaa in temp */ - extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ - extrs retreg,27,28,retreg /* retreg = retreg >> 4 */ - and,= arg1,temp1,r0 /* test denominator with 0xcc */ - extrs retreg,29,30,retreg /* retreg = retreg >> 2 */ - and,= arg1,temp,r0 /* test denominator with 0xaa */ - extrs retreg,30,31,retreg /* retreg = retreg >> 1 */ - MILLIRETN -LSYM(neg_denom) - addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */ - b,n LREF(regular_seq) - sub r0,arg1,temp /* make denominator positive */ - comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */ - ldo -1(temp),retreg /* is there at most one bit set ? */ - and,= temp,retreg,r0 /* if so, the denominator is power of 2 */ - b,n LREF(regular_seq) - sub r0,arg0,retreg /* negate numerator */ - comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */ - copy retreg,arg0 /* set up arg0, arg1 and temp */ - copy temp,arg1 /* before branching to pow2 */ - b LREF(pow2) - ldo -1(arg1),temp -LSYM(regular_seq) - comib,>>=,n 15,arg1,LREF(small_divisor) - add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ -LSYM(normal) - subi 0,retreg,retreg /* make it positive */ - sub 0,arg1,temp /* clear carry, */ - /* negate the divisor */ - ds 0,temp,0 /* set V-bit to the comple- */ - /* ment of the divisor sign */ - add retreg,retreg,retreg /* shift msb bit into carry */ - ds r0,arg1,temp /* 1st divide step, if no carry */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 2nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 3rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 4th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 5th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 6th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 7th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 8th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 9th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 10th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 11th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 12th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 13th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 14th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 15th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 16th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 17th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 18th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 19th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 20th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 21st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 22nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 23rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 24th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 25th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 26th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 27th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 28th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 29th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 30th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 31st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 32nd divide step, */ - addc retreg,retreg,retreg /* shift last retreg bit into retreg */ - xor,>= arg0,arg1,0 /* get correct sign of quotient */ - sub 0,retreg,retreg /* based on operand signs */ - MILLIRETN - nop - -LSYM(small_divisor) - -#if defined(CONFIG_64BIT) -/* Clear the upper 32 bits of the arg1 register. We are working with */ -/* small divisors (and 32-bit integers) We must not be mislead */ -/* by "1" bits left in the upper 32 bits. */ - depd %r0,31,32,%r25 -#endif - blr,n arg1,r0 - nop -/* table for divisor == 0,1, ... ,15 */ - addit,= 0,arg1,r0 /* trap if divisor == 0 */ - nop - MILLIRET /* divisor == 1 */ - copy arg0,retreg - MILLI_BEN($$divI_2) /* divisor == 2 */ - nop - MILLI_BEN($$divI_3) /* divisor == 3 */ - nop - MILLI_BEN($$divI_4) /* divisor == 4 */ - nop - MILLI_BEN($$divI_5) /* divisor == 5 */ - nop - MILLI_BEN($$divI_6) /* divisor == 6 */ - nop - MILLI_BEN($$divI_7) /* divisor == 7 */ - nop - MILLI_BEN($$divI_8) /* divisor == 8 */ - nop - MILLI_BEN($$divI_9) /* divisor == 9 */ - nop - MILLI_BEN($$divI_10) /* divisor == 10 */ - nop - b LREF(normal) /* divisor == 11 */ - add,>= 0,arg0,retreg - MILLI_BEN($$divI_12) /* divisor == 12 */ - nop - b LREF(normal) /* divisor == 13 */ - add,>= 0,arg0,retreg - MILLI_BEN($$divI_14) /* divisor == 14 */ - nop - MILLI_BEN($$divI_15) /* divisor == 15 */ - nop - -LSYM(negative1) - sub 0,arg0,retreg /* result is negation of dividend */ - MILLIRET - addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */ - .exit - .procend - .end -#endif diff --git a/arch/parisc/lib/milli/divU.S b/arch/parisc/lib/milli/divU.S deleted file mode 100644 index 9287fe2546f..00000000000 --- a/arch/parisc/lib/milli/divU.S +++ /dev/null @@ -1,235 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#include "milli.h" - -#ifdef L_divU -/* ROUTINE: $$divU - . - . Single precision divide for unsigned integers. - . - . Quotient is truncated towards zero. - . Traps on divide by zero. - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = quotient - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: - . divisor is zero - . Changes memory at the following places: - . NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Does not create a stack frame. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Branchs to other millicode routines using BE: - . $$divU_# for 3,5,6,7,9,10,12,14,15 - . - . For selected small divisors calls the special divide by constant - . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */ - -RDEFINE(temp,r1) -RDEFINE(retreg,ret1) /* r29 */ -RDEFINE(temp1,arg0) - SUBSPA_MILLI_DIV - ATTR_MILLI - .export $$divU,millicode - .import $$divU_3,millicode - .import $$divU_5,millicode - .import $$divU_6,millicode - .import $$divU_7,millicode - .import $$divU_9,millicode - .import $$divU_10,millicode - .import $$divU_12,millicode - .import $$divU_14,millicode - .import $$divU_15,millicode - .proc - .callinfo millicode - .entry -GSYM($$divU) -/* The subtract is not nullified since it does no harm and can be used - by the two cases that branch back to "normal". */ - ldo -1(arg1),temp /* is there at most one bit set ? */ - and,= arg1,temp,r0 /* if so, denominator is power of 2 */ - b LREF(regular_seq) - addit,= 0,arg1,0 /* trap for zero dvr */ - copy arg0,retreg - extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ - extru retreg,15,16,retreg /* retreg = retreg >> 16 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ - ldi 0xcc,temp1 /* setup 0xcc in temp1 */ - extru,= arg1,23,8,temp /* test denominator with 0xff00 */ - extru retreg,23,24,retreg /* retreg = retreg >> 8 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ - ldi 0xaa,temp /* setup 0xaa in temp */ - extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ - extru retreg,27,28,retreg /* retreg = retreg >> 4 */ - and,= arg1,temp1,r0 /* test denominator with 0xcc */ - extru retreg,29,30,retreg /* retreg = retreg >> 2 */ - and,= arg1,temp,r0 /* test denominator with 0xaa */ - extru retreg,30,31,retreg /* retreg = retreg >> 1 */ - MILLIRETN - nop -LSYM(regular_seq) - comib,>= 15,arg1,LREF(special_divisor) - subi 0,arg1,temp /* clear carry, negate the divisor */ - ds r0,temp,r0 /* set V-bit to 1 */ -LSYM(normal) - add arg0,arg0,retreg /* shift msb bit into carry */ - ds r0,arg1,temp /* 1st divide step, if no carry */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 2nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 3rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 4th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 5th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 6th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 7th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 8th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 9th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 10th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 11th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 12th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 13th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 14th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 15th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 16th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 17th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 18th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 19th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 20th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 21st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 22nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 23rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 24th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 25th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 26th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 27th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 28th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 29th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 30th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 31st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 32nd divide step, */ - MILLIRET - addc retreg,retreg,retreg /* shift last retreg bit into retreg */ - -/* Handle the cases where divisor is a small constant or has high bit on. */ -LSYM(special_divisor) -/* blr arg1,r0 */ -/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */ - -/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from - generating such a blr, comib sequence. A problem in nullification. So I - rewrote this code. */ - -#if defined(CONFIG_64BIT) -/* Clear the upper 32 bits of the arg1 register. We are working with - small divisors (and 32-bit unsigned integers) We must not be mislead - by "1" bits left in the upper 32 bits. */ - depd %r0,31,32,%r25 -#endif - comib,> 0,arg1,LREF(big_divisor) - nop - blr arg1,r0 - nop - -LSYM(zero_divisor) /* this label is here to provide external visibility */ - addit,= 0,arg1,0 /* trap for zero dvr */ - nop - MILLIRET /* divisor == 1 */ - copy arg0,retreg - MILLIRET /* divisor == 2 */ - extru arg0,30,31,retreg - MILLI_BEN($$divU_3) /* divisor == 3 */ - nop - MILLIRET /* divisor == 4 */ - extru arg0,29,30,retreg - MILLI_BEN($$divU_5) /* divisor == 5 */ - nop - MILLI_BEN($$divU_6) /* divisor == 6 */ - nop - MILLI_BEN($$divU_7) /* divisor == 7 */ - nop - MILLIRET /* divisor == 8 */ - extru arg0,28,29,retreg - MILLI_BEN($$divU_9) /* divisor == 9 */ - nop - MILLI_BEN($$divU_10) /* divisor == 10 */ - nop - b LREF(normal) /* divisor == 11 */ - ds r0,temp,r0 /* set V-bit to 1 */ - MILLI_BEN($$divU_12) /* divisor == 12 */ - nop - b LREF(normal) /* divisor == 13 */ - ds r0,temp,r0 /* set V-bit to 1 */ - MILLI_BEN($$divU_14) /* divisor == 14 */ - nop - MILLI_BEN($$divU_15) /* divisor == 15 */ - nop - -/* Handle the case where the high bit is on in the divisor. - Compute: if( dividend>=divisor) quotient=1; else quotient=0; - Note: dividend>==divisor iff dividend-divisor does not borrow - and not borrow iff carry. */ -LSYM(big_divisor) - sub arg0,arg1,r0 - MILLIRET - addc r0,r0,retreg - .exit - .procend - .end -#endif diff --git a/arch/parisc/lib/milli/div_const.S b/arch/parisc/lib/milli/div_const.S deleted file mode 100644 index dd660076e94..00000000000 --- a/arch/parisc/lib/milli/div_const.S +++ /dev/null @@ -1,682 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#include "milli.h" - -#ifdef L_div_const -/* ROUTINE: $$divI_2 - . $$divI_3 $$divU_3 - . $$divI_4 - . $$divI_5 $$divU_5 - . $$divI_6 $$divU_6 - . $$divI_7 $$divU_7 - . $$divI_8 - . $$divI_9 $$divU_9 - . $$divI_10 $$divU_10 - . - . $$divI_12 $$divU_12 - . - . $$divI_14 $$divU_14 - . $$divI_15 $$divU_15 - . $$divI_16 - . $$divI_17 $$divU_17 - . - . Divide by selected constants for single precision binary integers. - - INPUT REGISTERS: - . arg0 == dividend - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = quotient - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: NONE - . Changes memory at the following places: NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Does not create a stack frame. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Calls other millicode routines using mrp: NONE - . Calls other millicode routines: NONE */ - - -/* TRUNCATED DIVISION BY SMALL INTEGERS - - We are interested in q(x) = floor(x/y), where x >= 0 and y > 0 - (with y fixed). - - Let a = floor(z/y), for some choice of z. Note that z will be - chosen so that division by z is cheap. - - Let r be the remainder(z/y). In other words, r = z - ay. - - Now, our method is to choose a value for b such that - - q'(x) = floor((ax+b)/z) - - is equal to q(x) over as large a range of x as possible. If the - two are equal over a sufficiently large range, and if it is easy to - form the product (ax), and it is easy to divide by z, then we can - perform the division much faster than the general division algorithm. - - So, we want the following to be true: - - . For x in the following range: - . - . ky <= x < (k+1)y - . - . implies that - . - . k <= (ax+b)/z < (k+1) - - We want to determine b such that this is true for all k in the - range {0..K} for some maximum K. - - Since (ax+b) is an increasing function of x, we can take each - bound separately to determine the "best" value for b. - - (ax+b)/z < (k+1) implies - - (a((k+1)y-1)+b < (k+1)z implies - - b < a + (k+1)(z-ay) implies - - b < a + (k+1)r - - This needs to be true for all k in the range {0..K}. In - particular, it is true for k = 0 and this leads to a maximum - acceptable value for b. - - b < a+r or b <= a+r-1 - - Taking the other bound, we have - - k <= (ax+b)/z implies - - k <= (aky+b)/z implies - - k(z-ay) <= b implies - - kr <= b - - Clearly, the largest range for k will be achieved by maximizing b, - when r is not zero. When r is zero, then the simplest choice for b - is 0. When r is not 0, set - - . b = a+r-1 - - Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y) - for all x in the range: - - . 0 <= x < (K+1)y - - We need to determine what K is. Of our two bounds, - - . b < a+(k+1)r is satisfied for all k >= 0, by construction. - - The other bound is - - . kr <= b - - This is always true if r = 0. If r is not 0 (the usual case), then - K = floor((a+r-1)/r), is the maximum value for k. - - Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct - answer for q(x) = floor(x/y) when x is in the range - - (0,(K+1)y-1) K = floor((a+r-1)/r) - - To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that - the formula for q'(x) yields the correct value of q(x) for all x - representable by a single word in HPPA. - - We are also constrained in that computing the product (ax), adding - b, and dividing by z must all be done quickly, otherwise we will be - better off going through the general algorithm using the DS - instruction, which uses approximately 70 cycles. - - For each y, there is a choice of z which satisfies the constraints - for (K+1)y >= 2**32. We may not, however, be able to satisfy the - timing constraints for arbitrary y. It seems that z being equal to - a power of 2 or a power of 2 minus 1 is as good as we can do, since - it minimizes the time to do division by z. We want the choice of z - to also result in a value for (a) that minimizes the computation of - the product (ax). This is best achieved if (a) has a regular bit - pattern (so the multiplication can be done with shifts and adds). - The value of (a) also needs to be less than 2**32 so the product is - always guaranteed to fit in 2 words. - - In actual practice, the following should be done: - - 1) For negative x, you should take the absolute value and remember - . the fact so that the result can be negated. This obviously does - . not apply in the unsigned case. - 2) For even y, you should factor out the power of 2 that divides y - . and divide x by it. You can then proceed by dividing by the - . odd factor of y. - - Here is a table of some odd values of y, and corresponding choices - for z which are "good". - - y z r a (hex) max x (hex) - - 3 2**32 1 55555555 100000001 - 5 2**32 1 33333333 100000003 - 7 2**24-1 0 249249 (infinite) - 9 2**24-1 0 1c71c7 (infinite) - 11 2**20-1 0 1745d (infinite) - 13 2**24-1 0 13b13b (infinite) - 15 2**32 1 11111111 10000000d - 17 2**32 1 f0f0f0f 10000000f - - If r is 1, then b = a+r-1 = a. This simplifies the computation - of (ax+b), since you can compute (x+1)(a) instead. If r is 0, - then b = 0 is ok to use which simplifies (ax+b). - - The bit patterns for 55555555, 33333333, and 11111111 are obviously - very regular. The bit patterns for the other values of a above are: - - y (hex) (binary) - - 7 249249 001001001001001001001001 << regular >> - 9 1c71c7 000111000111000111000111 << regular >> - 11 1745d 000000010111010001011101 << irregular >> - 13 13b13b 000100111011000100111011 << irregular >> - - The bit patterns for (a) corresponding to (y) of 11 and 13 may be - too irregular to warrant using this method. - - When z is a power of 2 minus 1, then the division by z is slightly - more complicated, involving an iterative solution. - - The code presented here solves division by 1 through 17, except for - 11 and 13. There are algorithms for both signed and unsigned - quantities given. - - TIMINGS (cycles) - - divisor positive negative unsigned - - . 1 2 2 2 - . 2 4 4 2 - . 3 19 21 19 - . 4 4 4 2 - . 5 18 22 19 - . 6 19 22 19 - . 8 4 4 2 - . 10 18 19 17 - . 12 18 20 18 - . 15 16 18 16 - . 16 4 4 2 - . 17 16 18 16 - - Now, the algorithm for 7, 9, and 14 is an iterative one. That is, - a loop body is executed until the tentative quotient is 0. The - number of times the loop body is executed varies depending on the - dividend, but is never more than two times. If the dividend is - less than the divisor, then the loop body is not executed at all. - Each iteration adds 4 cycles to the timings. - - divisor positive negative unsigned - - . 7 19+4n 20+4n 20+4n n = number of iterations - . 9 21+4n 22+4n 21+4n - . 14 21+4n 22+4n 20+4n - - To give an idea of how the number of iterations varies, here is a - table of dividend versus number of iterations when dividing by 7. - - smallest largest required - dividend dividend iterations - - . 0 6 0 - . 7 0x6ffffff 1 - 0x1000006 0xffffffff 2 - - There is some overlap in the range of numbers requiring 1 and 2 - iterations. */ - -RDEFINE(t2,r1) -RDEFINE(x2,arg0) /* r26 */ -RDEFINE(t1,arg1) /* r25 */ -RDEFINE(x1,ret1) /* r29 */ - - SUBSPA_MILLI_DIV - ATTR_MILLI - - .proc - .callinfo millicode - .entry -/* NONE of these routines require a stack frame - ALL of these routines are unwindable from millicode */ - -GSYM($$divide_by_constant) - .export $$divide_by_constant,millicode -/* Provides a "nice" label for the code covered by the unwind descriptor - for things like gprof. */ - -/* DIVISION BY 2 (shift by 1) */ -GSYM($$divI_2) - .export $$divI_2,millicode - comclr,>= arg0,0,0 - addi 1,arg0,arg0 - MILLIRET - extrs arg0,30,31,ret1 - - -/* DIVISION BY 4 (shift by 2) */ -GSYM($$divI_4) - .export $$divI_4,millicode - comclr,>= arg0,0,0 - addi 3,arg0,arg0 - MILLIRET - extrs arg0,29,30,ret1 - - -/* DIVISION BY 8 (shift by 3) */ -GSYM($$divI_8) - .export $$divI_8,millicode - comclr,>= arg0,0,0 - addi 7,arg0,arg0 - MILLIRET - extrs arg0,28,29,ret1 - -/* DIVISION BY 16 (shift by 4) */ -GSYM($$divI_16) - .export $$divI_16,millicode - comclr,>= arg0,0,0 - addi 15,arg0,arg0 - MILLIRET - extrs arg0,27,28,ret1 - -/**************************************************************************** -* -* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these -* -* includes 3,5,15,17 and also 6,10,12 -* -****************************************************************************/ - -/* DIVISION BY 3 (use z = 2**32; a = 55555555) */ - -GSYM($$divI_3) - .export $$divI_3,millicode - comb,<,N x2,0,LREF(neg3) - - addi 1,x2,x2 /* this cannot overflow */ - extru x2,1,2,x1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(pos) - addc x1,0,x1 - -LSYM(neg3) - subi 1,x2,x2 /* this cannot overflow */ - extru x2,1,2,x1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(neg) - addc x1,0,x1 - -GSYM($$divU_3) - .export $$divU_3,millicode - addi 1,x2,x2 /* this CAN overflow */ - addc 0,0,x1 - shd x1,x2,30,t1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(pos) - addc x1,t1,x1 - -/* DIVISION BY 5 (use z = 2**32; a = 33333333) */ - -GSYM($$divI_5) - .export $$divI_5,millicode - comb,<,N x2,0,LREF(neg5) - - addi 3,x2,t1 /* this cannot overflow */ - sh1add x2,t1,x2 /* multiply by 3 to get started */ - b LREF(pos) - addc 0,0,x1 - -LSYM(neg5) - sub 0,x2,x2 /* negate x2 */ - addi 1,x2,x2 /* this cannot overflow */ - shd 0,x2,31,x1 /* get top bit (can be 1) */ - sh1add x2,x2,x2 /* multiply by 3 to get started */ - b LREF(neg) - addc x1,0,x1 - -GSYM($$divU_5) - .export $$divU_5,millicode - addi 1,x2,x2 /* this CAN overflow */ - addc 0,0,x1 - shd x1,x2,31,t1 /* multiply by 3 to get started */ - sh1add x2,x2,x2 - b LREF(pos) - addc t1,x1,x1 - -/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */ -GSYM($$divI_6) - .export $$divI_6,millicode - comb,<,N x2,0,LREF(neg6) - extru x2,30,31,x2 /* divide by 2 */ - addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */ - sh2add x2,t1,x2 /* multiply by 5 to get started */ - b LREF(pos) - addc 0,0,x1 - -LSYM(neg6) - subi 2,x2,x2 /* negate, divide by 2, and add 1 */ - /* negation and adding 1 are done */ - /* at the same time by the SUBI */ - extru x2,30,31,x2 - shd 0,x2,30,x1 - sh2add x2,x2,x2 /* multiply by 5 to get started */ - b LREF(neg) - addc x1,0,x1 - -GSYM($$divU_6) - .export $$divU_6,millicode - extru x2,30,31,x2 /* divide by 2 */ - addi 1,x2,x2 /* cannot carry */ - shd 0,x2,30,x1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(pos) - addc x1,0,x1 - -/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */ -GSYM($$divU_10) - .export $$divU_10,millicode - extru x2,30,31,x2 /* divide by 2 */ - addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */ - sh1add x2,t1,x2 /* multiply by 3 to get started */ - addc 0,0,x1 -LSYM(pos) - shd x1,x2,28,t1 /* multiply by 0x11 */ - shd x2,0,28,t2 - add x2,t2,x2 - addc x1,t1,x1 -LSYM(pos_for_17) - shd x1,x2,24,t1 /* multiply by 0x101 */ - shd x2,0,24,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,16,t1 /* multiply by 0x10001 */ - shd x2,0,16,t2 - add x2,t2,x2 - MILLIRET - addc x1,t1,x1 - -GSYM($$divI_10) - .export $$divI_10,millicode - comb,< x2,0,LREF(neg10) - copy 0,x1 - extru x2,30,31,x2 /* divide by 2 */ - addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */ - sh1add x2,x2,x2 /* multiply by 3 to get started */ - -LSYM(neg10) - subi 2,x2,x2 /* negate, divide by 2, and add 1 */ - /* negation and adding 1 are done */ - /* at the same time by the SUBI */ - extru x2,30,31,x2 - sh1add x2,x2,x2 /* multiply by 3 to get started */ -LSYM(neg) - shd x1,x2,28,t1 /* multiply by 0x11 */ - shd x2,0,28,t2 - add x2,t2,x2 - addc x1,t1,x1 -LSYM(neg_for_17) - shd x1,x2,24,t1 /* multiply by 0x101 */ - shd x2,0,24,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,16,t1 /* multiply by 0x10001 */ - shd x2,0,16,t2 - add x2,t2,x2 - addc x1,t1,x1 - MILLIRET - sub 0,x1,x1 - -/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */ -GSYM($$divI_12) - .export $$divI_12,millicode - comb,< x2,0,LREF(neg12) - copy 0,x1 - extru x2,29,30,x2 /* divide by 4 */ - addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */ - sh2add x2,x2,x2 /* multiply by 5 to get started */ - -LSYM(neg12) - subi 4,x2,x2 /* negate, divide by 4, and add 1 */ - /* negation and adding 1 are done */ - /* at the same time by the SUBI */ - extru x2,29,30,x2 - b LREF(neg) - sh2add x2,x2,x2 /* multiply by 5 to get started */ - -GSYM($$divU_12) - .export $$divU_12,millicode - extru x2,29,30,x2 /* divide by 4 */ - addi 5,x2,t1 /* cannot carry */ - sh2add x2,t1,x2 /* multiply by 5 to get started */ - b LREF(pos) - addc 0,0,x1 - -/* DIVISION BY 15 (use z = 2**32; a = 11111111) */ -GSYM($$divI_15) - .export $$divI_15,millicode - comb,< x2,0,LREF(neg15) - copy 0,x1 - addib,tr 1,x2,LREF(pos)+4 - shd x1,x2,28,t1 - -LSYM(neg15) - b LREF(neg) - subi 1,x2,x2 - -GSYM($$divU_15) - .export $$divU_15,millicode - addi 1,x2,x2 /* this CAN overflow */ - b LREF(pos) - addc 0,0,x1 - -/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */ -GSYM($$divI_17) - .export $$divI_17,millicode - comb,<,n x2,0,LREF(neg17) - addi 1,x2,x2 /* this cannot overflow */ - shd 0,x2,28,t1 /* multiply by 0xf to get started */ - shd x2,0,28,t2 - sub t2,x2,x2 - b LREF(pos_for_17) - subb t1,0,x1 - -LSYM(neg17) - subi 1,x2,x2 /* this cannot overflow */ - shd 0,x2,28,t1 /* multiply by 0xf to get started */ - shd x2,0,28,t2 - sub t2,x2,x2 - b LREF(neg_for_17) - subb t1,0,x1 - -GSYM($$divU_17) - .export $$divU_17,millicode - addi 1,x2,x2 /* this CAN overflow */ - addc 0,0,x1 - shd x1,x2,28,t1 /* multiply by 0xf to get started */ -LSYM(u17) - shd x2,0,28,t2 - sub t2,x2,x2 - b LREF(pos_for_17) - subb t1,x1,x1 - - -/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these - includes 7,9 and also 14 - - - z = 2**24-1 - r = z mod x = 0 - - so choose b = 0 - - Also, in order to divide by z = 2**24-1, we approximate by dividing - by (z+1) = 2**24 (which is easy), and then correcting. - - (ax) = (z+1)q' + r - . = zq' + (q'+r) - - So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1) - Then the true remainder of (ax)/z is (q'+r). Repeat the process - with this new remainder, adding the tentative quotients together, - until a tentative quotient is 0 (and then we are done). There is - one last correction to be done. It is possible that (q'+r) = z. - If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But, - in fact, we need to add 1 more to the quotient. Now, it turns - out that this happens if and only if the original value x is - an exact multiple of y. So, to avoid a three instruction test at - the end, instead use 1 instruction to add 1 to x at the beginning. */ - -/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */ -GSYM($$divI_7) - .export $$divI_7,millicode - comb,<,n x2,0,LREF(neg7) -LSYM(7) - addi 1,x2,x2 /* cannot overflow */ - shd 0,x2,29,x1 - sh3add x2,x2,x2 - addc x1,0,x1 -LSYM(pos7) - shd x1,x2,26,t1 - shd x2,0,26,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,20,t1 - shd x2,0,20,t2 - add x2,t2,x2 - addc x1,t1,t1 - - /* computed <t1,x2>. Now divide it by (2**24 - 1) */ - - copy 0,x1 - shd,= t1,x2,24,t1 /* tentative quotient */ -LSYM(1) - addb,tr t1,x1,LREF(2) /* add to previous quotient */ - extru x2,31,24,x2 /* new remainder (unadjusted) */ - - MILLIRETN - -LSYM(2) - addb,tr t1,x2,LREF(1) /* adjust remainder */ - extru,= x2,7,8,t1 /* new quotient */ - -LSYM(neg7) - subi 1,x2,x2 /* negate x2 and add 1 */ -LSYM(8) - shd 0,x2,29,x1 - sh3add x2,x2,x2 - addc x1,0,x1 - -LSYM(neg7_shift) - shd x1,x2,26,t1 - shd x2,0,26,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,20,t1 - shd x2,0,20,t2 - add x2,t2,x2 - addc x1,t1,t1 - - /* computed <t1,x2>. Now divide it by (2**24 - 1) */ - - copy 0,x1 - shd,= t1,x2,24,t1 /* tentative quotient */ -LSYM(3) - addb,tr t1,x1,LREF(4) /* add to previous quotient */ - extru x2,31,24,x2 /* new remainder (unadjusted) */ - - MILLIRET - sub 0,x1,x1 /* negate result */ - -LSYM(4) - addb,tr t1,x2,LREF(3) /* adjust remainder */ - extru,= x2,7,8,t1 /* new quotient */ - -GSYM($$divU_7) - .export $$divU_7,millicode - addi 1,x2,x2 /* can carry */ - addc 0,0,x1 - shd x1,x2,29,t1 - sh3add x2,x2,x2 - b LREF(pos7) - addc t1,x1,x1 - -/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */ -GSYM($$divI_9) - .export $$divI_9,millicode - comb,<,n x2,0,LREF(neg9) - addi 1,x2,x2 /* cannot overflow */ - shd 0,x2,29,t1 - shd x2,0,29,t2 - sub t2,x2,x2 - b LREF(pos7) - subb t1,0,x1 - -LSYM(neg9) - subi 1,x2,x2 /* negate and add 1 */ - shd 0,x2,29,t1 - shd x2,0,29,t2 - sub t2,x2,x2 - b LREF(neg7_shift) - subb t1,0,x1 - -GSYM($$divU_9) - .export $$divU_9,millicode - addi 1,x2,x2 /* can carry */ - addc 0,0,x1 - shd x1,x2,29,t1 - shd x2,0,29,t2 - sub t2,x2,x2 - b LREF(pos7) - subb t1,x1,x1 - -/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */ -GSYM($$divI_14) - .export $$divI_14,millicode - comb,<,n x2,0,LREF(neg14) -GSYM($$divU_14) - .export $$divU_14,millicode - b LREF(7) /* go to 7 case */ - extru x2,30,31,x2 /* divide by 2 */ - -LSYM(neg14) - subi 2,x2,x2 /* negate (and add 2) */ - b LREF(8) - extru x2,30,31,x2 /* divide by 2 */ - .exit - .procend - .end -#endif diff --git a/arch/parisc/lib/milli/dyncall.S b/arch/parisc/lib/milli/dyncall.S deleted file mode 100644 index 27f9ca558d0..00000000000 --- a/arch/parisc/lib/milli/dyncall.S +++ /dev/null @@ -1,32 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#include "milli.h" - -#ifdef L_dyncall - SUBSPA_MILLI - ATTR_DATA -GSYM($$dyncall) - .export $$dyncall,millicode - .proc - .callinfo millicode - .entry - bb,>=,n %r22,30,LREF(1) ; branch if not plabel address - depi 0,31,2,%r22 ; clear the two least significant bits - ldw 4(%r22),%r19 ; load new LTP value - ldw 0(%r22),%r22 ; load address of target -LSYM(1) - bv %r0(%r22) ; branch to the real target - stw %r2,-24(%r30) ; save return address into frame marker - .exit - .procend -#endif diff --git a/arch/parisc/lib/milli/milli.S b/arch/parisc/lib/milli/milli.S deleted file mode 100644 index 47c6cde712e..00000000000 --- a/arch/parisc/lib/milli/milli.S +++ /dev/null @@ -1,2071 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#ifdef CONFIG_64BIT - .level 2.0w -#endif - -/* Hardware General Registers. */ -r0: .reg %r0 -r1: .reg %r1 -r2: .reg %r2 -r3: .reg %r3 -r4: .reg %r4 -r5: .reg %r5 -r6: .reg %r6 -r7: .reg %r7 -r8: .reg %r8 -r9: .reg %r9 -r10: .reg %r10 -r11: .reg %r11 -r12: .reg %r12 -r13: .reg %r13 -r14: .reg %r14 -r15: .reg %r15 -r16: .reg %r16 -r17: .reg %r17 -r18: .reg %r18 -r19: .reg %r19 -r20: .reg %r20 -r21: .reg %r21 -r22: .reg %r22 -r23: .reg %r23 -r24: .reg %r24 -r25: .reg %r25 -r26: .reg %r26 -r27: .reg %r27 -r28: .reg %r28 -r29: .reg %r29 -r30: .reg %r30 -r31: .reg %r31 - -/* Hardware Space Registers. */ -sr0: .reg %sr0 -sr1: .reg %sr1 -sr2: .reg %sr2 -sr3: .reg %sr3 -sr4: .reg %sr4 -sr5: .reg %sr5 -sr6: .reg %sr6 -sr7: .reg %sr7 - -/* Hardware Floating Point Registers. */ -fr0: .reg %fr0 -fr1: .reg %fr1 -fr2: .reg %fr2 -fr3: .reg %fr3 -fr4: .reg %fr4 -fr5: .reg %fr5 -fr6: .reg %fr6 -fr7: .reg %fr7 -fr8: .reg %fr8 -fr9: .reg %fr9 -fr10: .reg %fr10 -fr11: .reg %fr11 -fr12: .reg %fr12 -fr13: .reg %fr13 -fr14: .reg %fr14 -fr15: .reg %fr15 - -/* Hardware Control Registers. */ -cr11: .reg %cr11 -sar: .reg %cr11 /* Shift Amount Register */ - -/* Software Architecture General Registers. */ -rp: .reg r2 /* return pointer */ -#ifdef CONFIG_64BIT -mrp: .reg r2 /* millicode return pointer */ -#else -mrp: .reg r31 /* millicode return pointer */ -#endif -ret0: .reg r28 /* return value */ -ret1: .reg r29 /* return value (high part of double) */ -sp: .reg r30 /* stack pointer */ -dp: .reg r27 /* data pointer */ -arg0: .reg r26 /* argument */ -arg1: .reg r25 /* argument or high part of double argument */ -arg2: .reg r24 /* argument */ -arg3: .reg r23 /* argument or high part of double argument */ - -/* Software Architecture Space Registers. */ -/* sr0 ; return link from BLE */ -sret: .reg sr1 /* return value */ -sarg: .reg sr1 /* argument */ -/* sr4 ; PC SPACE tracker */ -/* sr5 ; process private data */ - -/* Frame Offsets (millicode convention!) Used when calling other - millicode routines. Stack unwinding is dependent upon these - definitions. */ -r31_slot: .equ -20 /* "current RP" slot */ -sr0_slot: .equ -16 /* "static link" slot */ -#if defined(CONFIG_64BIT) -mrp_slot: .equ -16 /* "current RP" slot */ -psp_slot: .equ -8 /* "previous SP" slot */ -#else -mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */ -#endif - - -#define DEFINE(name,value)name: .EQU value -#define RDEFINE(name,value)name: .REG value -#ifdef milliext -#define MILLI_BE(lbl) BE lbl(sr7,r0) -#define MILLI_BEN(lbl) BE,n lbl(sr7,r0) -#define MILLI_BLE(lbl) BLE lbl(sr7,r0) -#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0) -#define MILLIRETN BE,n 0(sr0,mrp) -#define MILLIRET BE 0(sr0,mrp) -#define MILLI_RETN BE,n 0(sr0,mrp) -#define MILLI_RET BE 0(sr0,mrp) -#else -#define MILLI_BE(lbl) B lbl -#define MILLI_BEN(lbl) B,n lbl -#define MILLI_BLE(lbl) BL lbl,mrp -#define MILLI_BLEN(lbl) BL,n lbl,mrp -#define MILLIRETN BV,n 0(mrp) -#define MILLIRET BV 0(mrp) -#define MILLI_RETN BV,n 0(mrp) -#define MILLI_RET BV 0(mrp) -#endif - -#define CAT(a,b) a##b - -#define SUBSPA_MILLI .section .text -#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16 -#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16 -#define ATTR_MILLI -#define SUBSPA_DATA .section .data -#define ATTR_DATA -#define GLOBAL $global$ -#define GSYM(sym) !sym: -#define LSYM(sym) !CAT(.L,sym:) -#define LREF(sym) CAT(.L,sym) - -#ifdef L_dyncall - SUBSPA_MILLI - ATTR_DATA -GSYM($$dyncall) - .export $$dyncall,millicode - .proc - .callinfo millicode - .entry - bb,>=,n %r22,30,LREF(1) ; branch if not plabel address - depi 0,31,2,%r22 ; clear the two least significant bits - ldw 4(%r22),%r19 ; load new LTP value - ldw 0(%r22),%r22 ; load address of target -LSYM(1) - bv %r0(%r22) ; branch to the real target - stw %r2,-24(%r30) ; save return address into frame marker - .exit - .procend -#endif - -#ifdef L_divI -/* ROUTINES: $$divI, $$divoI - - Single precision divide for signed binary integers. - - The quotient is truncated towards zero. - The sign of the quotient is the XOR of the signs of the dividend and - divisor. - Divide by zero is trapped. - Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI. - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = quotient - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: - . divisor is zero (traps with ADDIT,= 0,25,0) - . dividend==-2**31 and divisor==-1 and routine is $$divoI - . (traps with ADDO 26,25,0) - . Changes memory at the following places: - . NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Branchs to other millicode routines using BE - . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15 - . - . For selected divisors, calls a divide by constant routine written by - . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13. - . - . The only overflow case is -2**31 divided by -1. - . Both routines return -2**31 but only $$divoI traps. */ - -RDEFINE(temp,r1) -RDEFINE(retreg,ret1) /* r29 */ -RDEFINE(temp1,arg0) - SUBSPA_MILLI_DIV - ATTR_MILLI - .import $$divI_2,millicode - .import $$divI_3,millicode - .import $$divI_4,millicode - .import $$divI_5,millicode - .import $$divI_6,millicode - .import $$divI_7,millicode - .import $$divI_8,millicode - .import $$divI_9,millicode - .import $$divI_10,millicode - .import $$divI_12,millicode - .import $$divI_14,millicode - .import $$divI_15,millicode - .export $$divI,millicode - .export $$divoI,millicode - .proc - .callinfo millicode - .entry -GSYM($$divoI) - comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */ -GSYM($$divI) - ldo -1(arg1),temp /* is there at most one bit set ? */ - and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */ - addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */ - b,n LREF(neg_denom) -LSYM(pow2) - addi,>= 0,arg0,retreg /* if numerator is negative, add the */ - add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */ - extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ - extrs retreg,15,16,retreg /* retreg = retreg >> 16 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ - ldi 0xcc,temp1 /* setup 0xcc in temp1 */ - extru,= arg1,23,8,temp /* test denominator with 0xff00 */ - extrs retreg,23,24,retreg /* retreg = retreg >> 8 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ - ldi 0xaa,temp /* setup 0xaa in temp */ - extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ - extrs retreg,27,28,retreg /* retreg = retreg >> 4 */ - and,= arg1,temp1,r0 /* test denominator with 0xcc */ - extrs retreg,29,30,retreg /* retreg = retreg >> 2 */ - and,= arg1,temp,r0 /* test denominator with 0xaa */ - extrs retreg,30,31,retreg /* retreg = retreg >> 1 */ - MILLIRETN -LSYM(neg_denom) - addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */ - b,n LREF(regular_seq) - sub r0,arg1,temp /* make denominator positive */ - comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */ - ldo -1(temp),retreg /* is there at most one bit set ? */ - and,= temp,retreg,r0 /* if so, the denominator is power of 2 */ - b,n LREF(regular_seq) - sub r0,arg0,retreg /* negate numerator */ - comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */ - copy retreg,arg0 /* set up arg0, arg1 and temp */ - copy temp,arg1 /* before branching to pow2 */ - b LREF(pow2) - ldo -1(arg1),temp -LSYM(regular_seq) - comib,>>=,n 15,arg1,LREF(small_divisor) - add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ -LSYM(normal) - subi 0,retreg,retreg /* make it positive */ - sub 0,arg1,temp /* clear carry, */ - /* negate the divisor */ - ds 0,temp,0 /* set V-bit to the comple- */ - /* ment of the divisor sign */ - add retreg,retreg,retreg /* shift msb bit into carry */ - ds r0,arg1,temp /* 1st divide step, if no carry */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 2nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 3rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 4th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 5th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 6th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 7th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 8th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 9th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 10th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 11th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 12th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 13th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 14th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 15th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 16th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 17th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 18th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 19th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 20th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 21st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 22nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 23rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 24th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 25th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 26th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 27th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 28th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 29th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 30th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 31st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 32nd divide step, */ - addc retreg,retreg,retreg /* shift last retreg bit into retreg */ - xor,>= arg0,arg1,0 /* get correct sign of quotient */ - sub 0,retreg,retreg /* based on operand signs */ - MILLIRETN - nop - -LSYM(small_divisor) - -#if defined(CONFIG_64BIT) -/* Clear the upper 32 bits of the arg1 register. We are working with */ -/* small divisors (and 32-bit integers) We must not be mislead */ -/* by "1" bits left in the upper 32 bits. */ - depd %r0,31,32,%r25 -#endif - blr,n arg1,r0 - nop -/* table for divisor == 0,1, ... ,15 */ - addit,= 0,arg1,r0 /* trap if divisor == 0 */ - nop - MILLIRET /* divisor == 1 */ - copy arg0,retreg - MILLI_BEN($$divI_2) /* divisor == 2 */ - nop - MILLI_BEN($$divI_3) /* divisor == 3 */ - nop - MILLI_BEN($$divI_4) /* divisor == 4 */ - nop - MILLI_BEN($$divI_5) /* divisor == 5 */ - nop - MILLI_BEN($$divI_6) /* divisor == 6 */ - nop - MILLI_BEN($$divI_7) /* divisor == 7 */ - nop - MILLI_BEN($$divI_8) /* divisor == 8 */ - nop - MILLI_BEN($$divI_9) /* divisor == 9 */ - nop - MILLI_BEN($$divI_10) /* divisor == 10 */ - nop - b LREF(normal) /* divisor == 11 */ - add,>= 0,arg0,retreg - MILLI_BEN($$divI_12) /* divisor == 12 */ - nop - b LREF(normal) /* divisor == 13 */ - add,>= 0,arg0,retreg - MILLI_BEN($$divI_14) /* divisor == 14 */ - nop - MILLI_BEN($$divI_15) /* divisor == 15 */ - nop - -LSYM(negative1) - sub 0,arg0,retreg /* result is negation of dividend */ - MILLIRET - addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */ - .exit - .procend - .end -#endif - -#ifdef L_divU -/* ROUTINE: $$divU - . - . Single precision divide for unsigned integers. - . - . Quotient is truncated towards zero. - . Traps on divide by zero. - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = quotient - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: - . divisor is zero - . Changes memory at the following places: - . NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Does not create a stack frame. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Branchs to other millicode routines using BE: - . $$divU_# for 3,5,6,7,9,10,12,14,15 - . - . For selected small divisors calls the special divide by constant - . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */ - -RDEFINE(temp,r1) -RDEFINE(retreg,ret1) /* r29 */ -RDEFINE(temp1,arg0) - SUBSPA_MILLI_DIV - ATTR_MILLI - .export $$divU,millicode - .import $$divU_3,millicode - .import $$divU_5,millicode - .import $$divU_6,millicode - .import $$divU_7,millicode - .import $$divU_9,millicode - .import $$divU_10,millicode - .import $$divU_12,millicode - .import $$divU_14,millicode - .import $$divU_15,millicode - .proc - .callinfo millicode - .entry -GSYM($$divU) -/* The subtract is not nullified since it does no harm and can be used - by the two cases that branch back to "normal". */ - ldo -1(arg1),temp /* is there at most one bit set ? */ - and,= arg1,temp,r0 /* if so, denominator is power of 2 */ - b LREF(regular_seq) - addit,= 0,arg1,0 /* trap for zero dvr */ - copy arg0,retreg - extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ - extru retreg,15,16,retreg /* retreg = retreg >> 16 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ - ldi 0xcc,temp1 /* setup 0xcc in temp1 */ - extru,= arg1,23,8,temp /* test denominator with 0xff00 */ - extru retreg,23,24,retreg /* retreg = retreg >> 8 */ - or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ - ldi 0xaa,temp /* setup 0xaa in temp */ - extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ - extru retreg,27,28,retreg /* retreg = retreg >> 4 */ - and,= arg1,temp1,r0 /* test denominator with 0xcc */ - extru retreg,29,30,retreg /* retreg = retreg >> 2 */ - and,= arg1,temp,r0 /* test denominator with 0xaa */ - extru retreg,30,31,retreg /* retreg = retreg >> 1 */ - MILLIRETN - nop -LSYM(regular_seq) - comib,>= 15,arg1,LREF(special_divisor) - subi 0,arg1,temp /* clear carry, negate the divisor */ - ds r0,temp,r0 /* set V-bit to 1 */ -LSYM(normal) - add arg0,arg0,retreg /* shift msb bit into carry */ - ds r0,arg1,temp /* 1st divide step, if no carry */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 2nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 3rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 4th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 5th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 6th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 7th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 8th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 9th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 10th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 11th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 12th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 13th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 14th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 15th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 16th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 17th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 18th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 19th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 20th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 21st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 22nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 23rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 24th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 25th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 26th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 27th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 28th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 29th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 30th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 31st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds temp,arg1,temp /* 32nd divide step, */ - MILLIRET - addc retreg,retreg,retreg /* shift last retreg bit into retreg */ - -/* Handle the cases where divisor is a small constant or has high bit on. */ -LSYM(special_divisor) -/* blr arg1,r0 */ -/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */ - -/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from - generating such a blr, comib sequence. A problem in nullification. So I - rewrote this code. */ - -#if defined(CONFIG_64BIT) -/* Clear the upper 32 bits of the arg1 register. We are working with - small divisors (and 32-bit unsigned integers) We must not be mislead - by "1" bits left in the upper 32 bits. */ - depd %r0,31,32,%r25 -#endif - comib,> 0,arg1,LREF(big_divisor) - nop - blr arg1,r0 - nop - -LSYM(zero_divisor) /* this label is here to provide external visibility */ - addit,= 0,arg1,0 /* trap for zero dvr */ - nop - MILLIRET /* divisor == 1 */ - copy arg0,retreg - MILLIRET /* divisor == 2 */ - extru arg0,30,31,retreg - MILLI_BEN($$divU_3) /* divisor == 3 */ - nop - MILLIRET /* divisor == 4 */ - extru arg0,29,30,retreg - MILLI_BEN($$divU_5) /* divisor == 5 */ - nop - MILLI_BEN($$divU_6) /* divisor == 6 */ - nop - MILLI_BEN($$divU_7) /* divisor == 7 */ - nop - MILLIRET /* divisor == 8 */ - extru arg0,28,29,retreg - MILLI_BEN($$divU_9) /* divisor == 9 */ - nop - MILLI_BEN($$divU_10) /* divisor == 10 */ - nop - b LREF(normal) /* divisor == 11 */ - ds r0,temp,r0 /* set V-bit to 1 */ - MILLI_BEN($$divU_12) /* divisor == 12 */ - nop - b LREF(normal) /* divisor == 13 */ - ds r0,temp,r0 /* set V-bit to 1 */ - MILLI_BEN($$divU_14) /* divisor == 14 */ - nop - MILLI_BEN($$divU_15) /* divisor == 15 */ - nop - -/* Handle the case where the high bit is on in the divisor. - Compute: if( dividend>=divisor) quotient=1; else quotient=0; - Note: dividend>==divisor iff dividend-divisor does not borrow - and not borrow iff carry. */ -LSYM(big_divisor) - sub arg0,arg1,r0 - MILLIRET - addc r0,r0,retreg - .exit - .procend - .end -#endif - -#ifdef L_remI -/* ROUTINE: $$remI - - DESCRIPTION: - . $$remI returns the remainder of the division of two signed 32-bit - . integers. The sign of the remainder is the same as the sign of - . the dividend. - - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = destroyed - . arg1 = destroyed - . ret1 = remainder - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: DIVIDE BY ZERO - . Changes memory at the following places: NONE - - PERMISSIBLE CONTEXT: - . Unwindable - . Does not create a stack frame - . Is usable for internal or external microcode - - DISCUSSION: - . Calls other millicode routines via mrp: NONE - . Calls other millicode routines: NONE */ - -RDEFINE(tmp,r1) -RDEFINE(retreg,ret1) - - SUBSPA_MILLI - ATTR_MILLI - .proc - .callinfo millicode - .entry -GSYM($$remI) -GSYM($$remoI) - .export $$remI,MILLICODE - .export $$remoI,MILLICODE - ldo -1(arg1),tmp /* is there at most one bit set ? */ - and,<> arg1,tmp,r0 /* if not, don't use power of 2 */ - addi,> 0,arg1,r0 /* if denominator > 0, use power */ - /* of 2 */ - b,n LREF(neg_denom) -LSYM(pow2) - comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */ - and arg0,tmp,retreg /* get the result */ - MILLIRETN -LSYM(neg_num) - subi 0,arg0,arg0 /* negate numerator */ - and arg0,tmp,retreg /* get the result */ - subi 0,retreg,retreg /* negate result */ - MILLIRETN -LSYM(neg_denom) - addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */ - /* of 2 */ - b,n LREF(regular_seq) - sub r0,arg1,tmp /* make denominator positive */ - comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */ - ldo -1(tmp),retreg /* is there at most one bit set ? */ - and,= tmp,retreg,r0 /* if not, go to regular_seq */ - b,n LREF(regular_seq) - comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */ - and arg0,retreg,retreg - MILLIRETN -LSYM(neg_num_2) - subi 0,arg0,tmp /* test against 0x80000000 */ - and tmp,retreg,retreg - subi 0,retreg,retreg - MILLIRETN -LSYM(regular_seq) - addit,= 0,arg1,0 /* trap if div by zero */ - add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ - sub 0,retreg,retreg /* make it positive */ - sub 0,arg1, tmp /* clear carry, */ - /* negate the divisor */ - ds 0, tmp,0 /* set V-bit to the comple- */ - /* ment of the divisor sign */ - or 0,0, tmp /* clear tmp */ - add retreg,retreg,retreg /* shift msb bit into carry */ - ds tmp,arg1, tmp /* 1st divide step, if no carry */ - /* out, msb of quotient = 0 */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ -LSYM(t1) - ds tmp,arg1, tmp /* 2nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 3rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 4th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 5th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 6th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 7th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 8th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 9th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 10th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 11th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 12th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 13th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 14th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 15th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 16th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 17th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 18th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 19th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 20th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 21st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 22nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 23rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 24th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 25th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 26th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 27th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 28th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 29th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 30th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 31st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 32nd divide step, */ - addc retreg,retreg,retreg /* shift last bit into retreg */ - movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */ - add,< arg1,0,0 /* if arg1 > 0, add arg1 */ - add,tr tmp,arg1,retreg /* for correcting remainder tmp */ - sub tmp,arg1,retreg /* else add absolute value arg1 */ -LSYM(finish) - add,>= arg0,0,0 /* set sign of remainder */ - sub 0,retreg,retreg /* to sign of dividend */ - MILLIRET - nop - .exit - .procend -#ifdef milliext - .origin 0x00000200 -#endif - .end -#endif - -#ifdef L_remU -/* ROUTINE: $$remU - . Single precision divide for remainder with unsigned binary integers. - . - . The remainder must be dividend-(dividend/divisor)*divisor. - . Divide by zero is trapped. - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = remainder - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: DIVIDE BY ZERO - . Changes memory at the following places: NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Does not create a stack frame. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Calls other millicode routines using mrp: NONE - . Calls other millicode routines: NONE */ - - -RDEFINE(temp,r1) -RDEFINE(rmndr,ret1) /* r29 */ - SUBSPA_MILLI - ATTR_MILLI - .export $$remU,millicode - .proc - .callinfo millicode - .entry -GSYM($$remU) - ldo -1(arg1),temp /* is there at most one bit set ? */ - and,= arg1,temp,r0 /* if not, don't use power of 2 */ - b LREF(regular_seq) - addit,= 0,arg1,r0 /* trap on div by zero */ - and arg0,temp,rmndr /* get the result for power of 2 */ - MILLIRETN -LSYM(regular_seq) - comib,>=,n 0,arg1,LREF(special_case) - subi 0,arg1,rmndr /* clear carry, negate the divisor */ - ds r0,rmndr,r0 /* set V-bit to 1 */ - add arg0,arg0,temp /* shift msb bit into carry */ - ds r0,arg1,rmndr /* 1st divide step, if no carry */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 2nd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 3rd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 4th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 5th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 6th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 7th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 8th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 9th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 10th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 11th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 12th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 13th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 14th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 15th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 16th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 17th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 18th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 19th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 20th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 21st divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 22nd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 23rd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 24th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 25th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 26th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 27th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 28th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 29th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 30th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 31st divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 32nd divide step, */ - comiclr,<= 0,rmndr,r0 - add rmndr,arg1,rmndr /* correction */ - MILLIRETN - nop - -/* Putting >= on the last DS and deleting COMICLR does not work! */ -LSYM(special_case) - sub,>>= arg0,arg1,rmndr - copy arg0,rmndr - MILLIRETN - nop - .exit - .procend - .end -#endif - -#ifdef L_div_const -/* ROUTINE: $$divI_2 - . $$divI_3 $$divU_3 - . $$divI_4 - . $$divI_5 $$divU_5 - . $$divI_6 $$divU_6 - . $$divI_7 $$divU_7 - . $$divI_8 - . $$divI_9 $$divU_9 - . $$divI_10 $$divU_10 - . - . $$divI_12 $$divU_12 - . - . $$divI_14 $$divU_14 - . $$divI_15 $$divU_15 - . $$divI_16 - . $$divI_17 $$divU_17 - . - . Divide by selected constants for single precision binary integers. - - INPUT REGISTERS: - . arg0 == dividend - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = quotient - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: NONE - . Changes memory at the following places: NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Does not create a stack frame. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Calls other millicode routines using mrp: NONE - . Calls other millicode routines: NONE */ - - -/* TRUNCATED DIVISION BY SMALL INTEGERS - - We are interested in q(x) = floor(x/y), where x >= 0 and y > 0 - (with y fixed). - - Let a = floor(z/y), for some choice of z. Note that z will be - chosen so that division by z is cheap. - - Let r be the remainder(z/y). In other words, r = z - ay. - - Now, our method is to choose a value for b such that - - q'(x) = floor((ax+b)/z) - - is equal to q(x) over as large a range of x as possible. If the - two are equal over a sufficiently large range, and if it is easy to - form the product (ax), and it is easy to divide by z, then we can - perform the division much faster than the general division algorithm. - - So, we want the following to be true: - - . For x in the following range: - . - . ky <= x < (k+1)y - . - . implies that - . - . k <= (ax+b)/z < (k+1) - - We want to determine b such that this is true for all k in the - range {0..K} for some maximum K. - - Since (ax+b) is an increasing function of x, we can take each - bound separately to determine the "best" value for b. - - (ax+b)/z < (k+1) implies - - (a((k+1)y-1)+b < (k+1)z implies - - b < a + (k+1)(z-ay) implies - - b < a + (k+1)r - - This needs to be true for all k in the range {0..K}. In - particular, it is true for k = 0 and this leads to a maximum - acceptable value for b. - - b < a+r or b <= a+r-1 - - Taking the other bound, we have - - k <= (ax+b)/z implies - - k <= (aky+b)/z implies - - k(z-ay) <= b implies - - kr <= b - - Clearly, the largest range for k will be achieved by maximizing b, - when r is not zero. When r is zero, then the simplest choice for b - is 0. When r is not 0, set - - . b = a+r-1 - - Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y) - for all x in the range: - - . 0 <= x < (K+1)y - - We need to determine what K is. Of our two bounds, - - . b < a+(k+1)r is satisfied for all k >= 0, by construction. - - The other bound is - - . kr <= b - - This is always true if r = 0. If r is not 0 (the usual case), then - K = floor((a+r-1)/r), is the maximum value for k. - - Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct - answer for q(x) = floor(x/y) when x is in the range - - (0,(K+1)y-1) K = floor((a+r-1)/r) - - To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that - the formula for q'(x) yields the correct value of q(x) for all x - representable by a single word in HPPA. - - We are also constrained in that computing the product (ax), adding - b, and dividing by z must all be done quickly, otherwise we will be - better off going through the general algorithm using the DS - instruction, which uses approximately 70 cycles. - - For each y, there is a choice of z which satisfies the constraints - for (K+1)y >= 2**32. We may not, however, be able to satisfy the - timing constraints for arbitrary y. It seems that z being equal to - a power of 2 or a power of 2 minus 1 is as good as we can do, since - it minimizes the time to do division by z. We want the choice of z - to also result in a value for (a) that minimizes the computation of - the product (ax). This is best achieved if (a) has a regular bit - pattern (so the multiplication can be done with shifts and adds). - The value of (a) also needs to be less than 2**32 so the product is - always guaranteed to fit in 2 words. - - In actual practice, the following should be done: - - 1) For negative x, you should take the absolute value and remember - . the fact so that the result can be negated. This obviously does - . not apply in the unsigned case. - 2) For even y, you should factor out the power of 2 that divides y - . and divide x by it. You can then proceed by dividing by the - . odd factor of y. - - Here is a table of some odd values of y, and corresponding choices - for z which are "good". - - y z r a (hex) max x (hex) - - 3 2**32 1 55555555 100000001 - 5 2**32 1 33333333 100000003 - 7 2**24-1 0 249249 (infinite) - 9 2**24-1 0 1c71c7 (infinite) - 11 2**20-1 0 1745d (infinite) - 13 2**24-1 0 13b13b (infinite) - 15 2**32 1 11111111 10000000d - 17 2**32 1 f0f0f0f 10000000f - - If r is 1, then b = a+r-1 = a. This simplifies the computation - of (ax+b), since you can compute (x+1)(a) instead. If r is 0, - then b = 0 is ok to use which simplifies (ax+b). - - The bit patterns for 55555555, 33333333, and 11111111 are obviously - very regular. The bit patterns for the other values of a above are: - - y (hex) (binary) - - 7 249249 001001001001001001001001 << regular >> - 9 1c71c7 000111000111000111000111 << regular >> - 11 1745d 000000010111010001011101 << irregular >> - 13 13b13b 000100111011000100111011 << irregular >> - - The bit patterns for (a) corresponding to (y) of 11 and 13 may be - too irregular to warrant using this method. - - When z is a power of 2 minus 1, then the division by z is slightly - more complicated, involving an iterative solution. - - The code presented here solves division by 1 through 17, except for - 11 and 13. There are algorithms for both signed and unsigned - quantities given. - - TIMINGS (cycles) - - divisor positive negative unsigned - - . 1 2 2 2 - . 2 4 4 2 - . 3 19 21 19 - . 4 4 4 2 - . 5 18 22 19 - . 6 19 22 19 - . 8 4 4 2 - . 10 18 19 17 - . 12 18 20 18 - . 15 16 18 16 - . 16 4 4 2 - . 17 16 18 16 - - Now, the algorithm for 7, 9, and 14 is an iterative one. That is, - a loop body is executed until the tentative quotient is 0. The - number of times the loop body is executed varies depending on the - dividend, but is never more than two times. If the dividend is - less than the divisor, then the loop body is not executed at all. - Each iteration adds 4 cycles to the timings. - - divisor positive negative unsigned - - . 7 19+4n 20+4n 20+4n n = number of iterations - . 9 21+4n 22+4n 21+4n - . 14 21+4n 22+4n 20+4n - - To give an idea of how the number of iterations varies, here is a - table of dividend versus number of iterations when dividing by 7. - - smallest largest required - dividend dividend iterations - - . 0 6 0 - . 7 0x6ffffff 1 - 0x1000006 0xffffffff 2 - - There is some overlap in the range of numbers requiring 1 and 2 - iterations. */ - -RDEFINE(t2,r1) -RDEFINE(x2,arg0) /* r26 */ -RDEFINE(t1,arg1) /* r25 */ -RDEFINE(x1,ret1) /* r29 */ - - SUBSPA_MILLI_DIV - ATTR_MILLI - - .proc - .callinfo millicode - .entry -/* NONE of these routines require a stack frame - ALL of these routines are unwindable from millicode */ - -GSYM($$divide_by_constant) - .export $$divide_by_constant,millicode -/* Provides a "nice" label for the code covered by the unwind descriptor - for things like gprof. */ - -/* DIVISION BY 2 (shift by 1) */ -GSYM($$divI_2) - .export $$divI_2,millicode - comclr,>= arg0,0,0 - addi 1,arg0,arg0 - MILLIRET - extrs arg0,30,31,ret1 - - -/* DIVISION BY 4 (shift by 2) */ -GSYM($$divI_4) - .export $$divI_4,millicode - comclr,>= arg0,0,0 - addi 3,arg0,arg0 - MILLIRET - extrs arg0,29,30,ret1 - - -/* DIVISION BY 8 (shift by 3) */ -GSYM($$divI_8) - .export $$divI_8,millicode - comclr,>= arg0,0,0 - addi 7,arg0,arg0 - MILLIRET - extrs arg0,28,29,ret1 - -/* DIVISION BY 16 (shift by 4) */ -GSYM($$divI_16) - .export $$divI_16,millicode - comclr,>= arg0,0,0 - addi 15,arg0,arg0 - MILLIRET - extrs arg0,27,28,ret1 - -/**************************************************************************** -* -* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these -* -* includes 3,5,15,17 and also 6,10,12 -* -****************************************************************************/ - -/* DIVISION BY 3 (use z = 2**32; a = 55555555) */ - -GSYM($$divI_3) - .export $$divI_3,millicode - comb,<,N x2,0,LREF(neg3) - - addi 1,x2,x2 /* this cannot overflow */ - extru x2,1,2,x1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(pos) - addc x1,0,x1 - -LSYM(neg3) - subi 1,x2,x2 /* this cannot overflow */ - extru x2,1,2,x1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(neg) - addc x1,0,x1 - -GSYM($$divU_3) - .export $$divU_3,millicode - addi 1,x2,x2 /* this CAN overflow */ - addc 0,0,x1 - shd x1,x2,30,t1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(pos) - addc x1,t1,x1 - -/* DIVISION BY 5 (use z = 2**32; a = 33333333) */ - -GSYM($$divI_5) - .export $$divI_5,millicode - comb,<,N x2,0,LREF(neg5) - - addi 3,x2,t1 /* this cannot overflow */ - sh1add x2,t1,x2 /* multiply by 3 to get started */ - b LREF(pos) - addc 0,0,x1 - -LSYM(neg5) - sub 0,x2,x2 /* negate x2 */ - addi 1,x2,x2 /* this cannot overflow */ - shd 0,x2,31,x1 /* get top bit (can be 1) */ - sh1add x2,x2,x2 /* multiply by 3 to get started */ - b LREF(neg) - addc x1,0,x1 - -GSYM($$divU_5) - .export $$divU_5,millicode - addi 1,x2,x2 /* this CAN overflow */ - addc 0,0,x1 - shd x1,x2,31,t1 /* multiply by 3 to get started */ - sh1add x2,x2,x2 - b LREF(pos) - addc t1,x1,x1 - -/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */ -GSYM($$divI_6) - .export $$divI_6,millicode - comb,<,N x2,0,LREF(neg6) - extru x2,30,31,x2 /* divide by 2 */ - addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */ - sh2add x2,t1,x2 /* multiply by 5 to get started */ - b LREF(pos) - addc 0,0,x1 - -LSYM(neg6) - subi 2,x2,x2 /* negate, divide by 2, and add 1 */ - /* negation and adding 1 are done */ - /* at the same time by the SUBI */ - extru x2,30,31,x2 - shd 0,x2,30,x1 - sh2add x2,x2,x2 /* multiply by 5 to get started */ - b LREF(neg) - addc x1,0,x1 - -GSYM($$divU_6) - .export $$divU_6,millicode - extru x2,30,31,x2 /* divide by 2 */ - addi 1,x2,x2 /* cannot carry */ - shd 0,x2,30,x1 /* multiply by 5 to get started */ - sh2add x2,x2,x2 - b LREF(pos) - addc x1,0,x1 - -/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */ -GSYM($$divU_10) - .export $$divU_10,millicode - extru x2,30,31,x2 /* divide by 2 */ - addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */ - sh1add x2,t1,x2 /* multiply by 3 to get started */ - addc 0,0,x1 -LSYM(pos) - shd x1,x2,28,t1 /* multiply by 0x11 */ - shd x2,0,28,t2 - add x2,t2,x2 - addc x1,t1,x1 -LSYM(pos_for_17) - shd x1,x2,24,t1 /* multiply by 0x101 */ - shd x2,0,24,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,16,t1 /* multiply by 0x10001 */ - shd x2,0,16,t2 - add x2,t2,x2 - MILLIRET - addc x1,t1,x1 - -GSYM($$divI_10) - .export $$divI_10,millicode - comb,< x2,0,LREF(neg10) - copy 0,x1 - extru x2,30,31,x2 /* divide by 2 */ - addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */ - sh1add x2,x2,x2 /* multiply by 3 to get started */ - -LSYM(neg10) - subi 2,x2,x2 /* negate, divide by 2, and add 1 */ - /* negation and adding 1 are done */ - /* at the same time by the SUBI */ - extru x2,30,31,x2 - sh1add x2,x2,x2 /* multiply by 3 to get started */ -LSYM(neg) - shd x1,x2,28,t1 /* multiply by 0x11 */ - shd x2,0,28,t2 - add x2,t2,x2 - addc x1,t1,x1 -LSYM(neg_for_17) - shd x1,x2,24,t1 /* multiply by 0x101 */ - shd x2,0,24,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,16,t1 /* multiply by 0x10001 */ - shd x2,0,16,t2 - add x2,t2,x2 - addc x1,t1,x1 - MILLIRET - sub 0,x1,x1 - -/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */ -GSYM($$divI_12) - .export $$divI_12,millicode - comb,< x2,0,LREF(neg12) - copy 0,x1 - extru x2,29,30,x2 /* divide by 4 */ - addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */ - sh2add x2,x2,x2 /* multiply by 5 to get started */ - -LSYM(neg12) - subi 4,x2,x2 /* negate, divide by 4, and add 1 */ - /* negation and adding 1 are done */ - /* at the same time by the SUBI */ - extru x2,29,30,x2 - b LREF(neg) - sh2add x2,x2,x2 /* multiply by 5 to get started */ - -GSYM($$divU_12) - .export $$divU_12,millicode - extru x2,29,30,x2 /* divide by 4 */ - addi 5,x2,t1 /* cannot carry */ - sh2add x2,t1,x2 /* multiply by 5 to get started */ - b LREF(pos) - addc 0,0,x1 - -/* DIVISION BY 15 (use z = 2**32; a = 11111111) */ -GSYM($$divI_15) - .export $$divI_15,millicode - comb,< x2,0,LREF(neg15) - copy 0,x1 - addib,tr 1,x2,LREF(pos)+4 - shd x1,x2,28,t1 - -LSYM(neg15) - b LREF(neg) - subi 1,x2,x2 - -GSYM($$divU_15) - .export $$divU_15,millicode - addi 1,x2,x2 /* this CAN overflow */ - b LREF(pos) - addc 0,0,x1 - -/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */ -GSYM($$divI_17) - .export $$divI_17,millicode - comb,<,n x2,0,LREF(neg17) - addi 1,x2,x2 /* this cannot overflow */ - shd 0,x2,28,t1 /* multiply by 0xf to get started */ - shd x2,0,28,t2 - sub t2,x2,x2 - b LREF(pos_for_17) - subb t1,0,x1 - -LSYM(neg17) - subi 1,x2,x2 /* this cannot overflow */ - shd 0,x2,28,t1 /* multiply by 0xf to get started */ - shd x2,0,28,t2 - sub t2,x2,x2 - b LREF(neg_for_17) - subb t1,0,x1 - -GSYM($$divU_17) - .export $$divU_17,millicode - addi 1,x2,x2 /* this CAN overflow */ - addc 0,0,x1 - shd x1,x2,28,t1 /* multiply by 0xf to get started */ -LSYM(u17) - shd x2,0,28,t2 - sub t2,x2,x2 - b LREF(pos_for_17) - subb t1,x1,x1 - - -/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these - includes 7,9 and also 14 - - - z = 2**24-1 - r = z mod x = 0 - - so choose b = 0 - - Also, in order to divide by z = 2**24-1, we approximate by dividing - by (z+1) = 2**24 (which is easy), and then correcting. - - (ax) = (z+1)q' + r - . = zq' + (q'+r) - - So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1) - Then the true remainder of (ax)/z is (q'+r). Repeat the process - with this new remainder, adding the tentative quotients together, - until a tentative quotient is 0 (and then we are done). There is - one last correction to be done. It is possible that (q'+r) = z. - If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But, - in fact, we need to add 1 more to the quotient. Now, it turns - out that this happens if and only if the original value x is - an exact multiple of y. So, to avoid a three instruction test at - the end, instead use 1 instruction to add 1 to x at the beginning. */ - -/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */ -GSYM($$divI_7) - .export $$divI_7,millicode - comb,<,n x2,0,LREF(neg7) -LSYM(7) - addi 1,x2,x2 /* cannot overflow */ - shd 0,x2,29,x1 - sh3add x2,x2,x2 - addc x1,0,x1 -LSYM(pos7) - shd x1,x2,26,t1 - shd x2,0,26,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,20,t1 - shd x2,0,20,t2 - add x2,t2,x2 - addc x1,t1,t1 - - /* computed <t1,x2>. Now divide it by (2**24 - 1) */ - - copy 0,x1 - shd,= t1,x2,24,t1 /* tentative quotient */ -LSYM(1) - addb,tr t1,x1,LREF(2) /* add to previous quotient */ - extru x2,31,24,x2 /* new remainder (unadjusted) */ - - MILLIRETN - -LSYM(2) - addb,tr t1,x2,LREF(1) /* adjust remainder */ - extru,= x2,7,8,t1 /* new quotient */ - -LSYM(neg7) - subi 1,x2,x2 /* negate x2 and add 1 */ -LSYM(8) - shd 0,x2,29,x1 - sh3add x2,x2,x2 - addc x1,0,x1 - -LSYM(neg7_shift) - shd x1,x2,26,t1 - shd x2,0,26,t2 - add x2,t2,x2 - addc x1,t1,x1 - - shd x1,x2,20,t1 - shd x2,0,20,t2 - add x2,t2,x2 - addc x1,t1,t1 - - /* computed <t1,x2>. Now divide it by (2**24 - 1) */ - - copy 0,x1 - shd,= t1,x2,24,t1 /* tentative quotient */ -LSYM(3) - addb,tr t1,x1,LREF(4) /* add to previous quotient */ - extru x2,31,24,x2 /* new remainder (unadjusted) */ - - MILLIRET - sub 0,x1,x1 /* negate result */ - -LSYM(4) - addb,tr t1,x2,LREF(3) /* adjust remainder */ - extru,= x2,7,8,t1 /* new quotient */ - -GSYM($$divU_7) - .export $$divU_7,millicode - addi 1,x2,x2 /* can carry */ - addc 0,0,x1 - shd x1,x2,29,t1 - sh3add x2,x2,x2 - b LREF(pos7) - addc t1,x1,x1 - -/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */ -GSYM($$divI_9) - .export $$divI_9,millicode - comb,<,n x2,0,LREF(neg9) - addi 1,x2,x2 /* cannot overflow */ - shd 0,x2,29,t1 - shd x2,0,29,t2 - sub t2,x2,x2 - b LREF(pos7) - subb t1,0,x1 - -LSYM(neg9) - subi 1,x2,x2 /* negate and add 1 */ - shd 0,x2,29,t1 - shd x2,0,29,t2 - sub t2,x2,x2 - b LREF(neg7_shift) - subb t1,0,x1 - -GSYM($$divU_9) - .export $$divU_9,millicode - addi 1,x2,x2 /* can carry */ - addc 0,0,x1 - shd x1,x2,29,t1 - shd x2,0,29,t2 - sub t2,x2,x2 - b LREF(pos7) - subb t1,x1,x1 - -/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */ -GSYM($$divI_14) - .export $$divI_14,millicode - comb,<,n x2,0,LREF(neg14) -GSYM($$divU_14) - .export $$divU_14,millicode - b LREF(7) /* go to 7 case */ - extru x2,30,31,x2 /* divide by 2 */ - -LSYM(neg14) - subi 2,x2,x2 /* negate (and add 2) */ - b LREF(8) - extru x2,30,31,x2 /* divide by 2 */ - .exit - .procend - .end -#endif - -#ifdef L_mulI -/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */ -/****************************************************************************** -This routine is used on PA2.0 processors when gcc -mno-fpregs is used - -ROUTINE: $$mulI - - -DESCRIPTION: - - $$mulI multiplies two single word integers, giving a single - word result. - - -INPUT REGISTERS: - - arg0 = Operand 1 - arg1 = Operand 2 - r31 == return pc - sr0 == return space when called externally - - -OUTPUT REGISTERS: - - arg0 = undefined - arg1 = undefined - ret1 = result - -OTHER REGISTERS AFFECTED: - - r1 = undefined - -SIDE EFFECTS: - - Causes a trap under the following conditions: NONE - Changes memory at the following places: NONE - -PERMISSIBLE CONTEXT: - - Unwindable - Does not create a stack frame - Is usable for internal or external microcode - -DISCUSSION: - - Calls other millicode routines via mrp: NONE - Calls other millicode routines: NONE - -***************************************************************************/ - - -#define a0 %arg0 -#define a1 %arg1 -#define t0 %r1 -#define r %ret1 - -#define a0__128a0 zdep a0,24,25,a0 -#define a0__256a0 zdep a0,23,24,a0 -#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0) -#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1) -#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2) -#define b_n_ret_t0 b,n LREF(ret_t0) -#define b_e_shift b LREF(e_shift) -#define b_e_t0ma0 b LREF(e_t0ma0) -#define b_e_t0 b LREF(e_t0) -#define b_e_t0a0 b LREF(e_t0a0) -#define b_e_t02a0 b LREF(e_t02a0) -#define b_e_t04a0 b LREF(e_t04a0) -#define b_e_2t0 b LREF(e_2t0) -#define b_e_2t0a0 b LREF(e_2t0a0) -#define b_e_2t04a0 b LREF(e2t04a0) -#define b_e_3t0 b LREF(e_3t0) -#define b_e_4t0 b LREF(e_4t0) -#define b_e_4t0a0 b LREF(e_4t0a0) -#define b_e_4t08a0 b LREF(e4t08a0) -#define b_e_5t0 b LREF(e_5t0) -#define b_e_8t0 b LREF(e_8t0) -#define b_e_8t0a0 b LREF(e_8t0a0) -#define r__r_a0 add r,a0,r -#define r__r_2a0 sh1add a0,r,r -#define r__r_4a0 sh2add a0,r,r -#define r__r_8a0 sh3add a0,r,r -#define r__r_t0 add r,t0,r -#define r__r_2t0 sh1add t0,r,r -#define r__r_4t0 sh2add t0,r,r -#define r__r_8t0 sh3add t0,r,r -#define t0__3a0 sh1add a0,a0,t0 -#define t0__4a0 sh2add a0,0,t0 -#define t0__5a0 sh2add a0,a0,t0 -#define t0__8a0 sh3add a0,0,t0 -#define t0__9a0 sh3add a0,a0,t0 -#define t0__16a0 zdep a0,27,28,t0 -#define t0__32a0 zdep a0,26,27,t0 -#define t0__64a0 zdep a0,25,26,t0 -#define t0__128a0 zdep a0,24,25,t0 -#define t0__t0ma0 sub t0,a0,t0 -#define t0__t0_a0 add t0,a0,t0 -#define t0__t0_2a0 sh1add a0,t0,t0 -#define t0__t0_4a0 sh2add a0,t0,t0 -#define t0__t0_8a0 sh3add a0,t0,t0 -#define t0__2t0_a0 sh1add t0,a0,t0 -#define t0__3t0 sh1add t0,t0,t0 -#define t0__4t0 sh2add t0,0,t0 -#define t0__4t0_a0 sh2add t0,a0,t0 -#define t0__5t0 sh2add t0,t0,t0 -#define t0__8t0 sh3add t0,0,t0 -#define t0__8t0_a0 sh3add t0,a0,t0 -#define t0__9t0 sh3add t0,t0,t0 -#define t0__16t0 zdep t0,27,28,t0 -#define t0__32t0 zdep t0,26,27,t0 -#define t0__256a0 zdep a0,23,24,t0 - - - SUBSPA_MILLI - ATTR_MILLI - .align 16 - .proc - .callinfo millicode - .export $$mulI,millicode -GSYM($$mulI) - combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */ - copy 0,r /* zero out the result */ - xor a0,a1,a0 /* swap a0 & a1 using the */ - xor a0,a1,a1 /* old xor trick */ - xor a0,a1,a0 -LSYM(l4) - combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */ - zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ - sub,> 0,a1,t0 /* otherwise negate both and */ - combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */ - sub 0,a0,a1 - movb,tr,n t0,a0,LREF(l2) /* 10th inst. */ - -LSYM(l0) r__r_t0 /* add in this partial product */ -LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */ -LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ -LSYM(l3) blr t0,0 /* case on these 8 bits ****** */ - extru a1,23,24,a1 /* a1 >>= 8 ****************** */ - -/*16 insts before this. */ -/* a0 <<= 8 ************************** */ -LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop -LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop -LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop -LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0 -LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop -LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0 -LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN -LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0 -LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop -LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0 -LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN -LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 -LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN -LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 -LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0 -LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0 -LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN -LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0 -LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN -LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 -LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN -LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 -LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0 -LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 -LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 -LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0 -LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN -LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 -LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN -LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 -LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 -LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0 -LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0 -LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0 -LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0 -LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 -LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0 -LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 -LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0 -LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 -LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 -LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 -LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0 -LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN -LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0 -LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0 -LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0 -LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0 -LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 -LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0 -LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0 -LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 -LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0 -LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 -LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 -LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0 -LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0 -LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 -LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0 -LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0 -LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0 -LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0 -LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 -LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0 -LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0 -LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 -LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 -LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 -LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 -LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0 -LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0 -LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0 -LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0 -LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0 -LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0 -LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0 -LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 -LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0 -LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0 -LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0 -LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0 -LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0 -LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 -LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0 -LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0 -LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0 -LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0 -LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0 -LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0 -LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0 -LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0 -LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0 -LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 -LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0 -LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0 -LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0 -LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0 -LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0 -LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 -LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0 -LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 -LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0 -LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 -LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0 -LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0 -LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 -LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0 -LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 -LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0 -LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0 -LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0 -LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0 -LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0 -LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0 -LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0 -LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0 -LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 -LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0 -LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0 -LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0 -LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 -LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0 -LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0 -LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 -LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0 -LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0 -LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 -LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0 -LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0 -LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0 -LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0 -LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0 -LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0 -LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0 -LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0 -LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0 -LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0 -LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0 -LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0 -LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0 -LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0 -LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0 -LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0 -LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0 -LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0 -LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 -LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 -LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -/*1040 insts before this. */ -LSYM(ret_t0) MILLIRET -LSYM(e_t0) r__r_t0 -LSYM(e_shift) a1_ne_0_b_l2 - a0__256a0 /* a0 <<= 8 *********** */ - MILLIRETN -LSYM(e_t0ma0) a1_ne_0_b_l0 - t0__t0ma0 - MILLIRET - r__r_t0 -LSYM(e_t0a0) a1_ne_0_b_l0 - t0__t0_a0 - MILLIRET - r__r_t0 -LSYM(e_t02a0) a1_ne_0_b_l0 - t0__t0_2a0 - MILLIRET - r__r_t0 -LSYM(e_t04a0) a1_ne_0_b_l0 - t0__t0_4a0 - MILLIRET - r__r_t0 -LSYM(e_2t0) a1_ne_0_b_l1 - r__r_2t0 - MILLIRETN -LSYM(e_2t0a0) a1_ne_0_b_l0 - t0__2t0_a0 - MILLIRET - r__r_t0 -LSYM(e2t04a0) t0__t0_2a0 - a1_ne_0_b_l1 - r__r_2t0 - MILLIRETN -LSYM(e_3t0) a1_ne_0_b_l0 - t0__3t0 - MILLIRET - r__r_t0 -LSYM(e_4t0) a1_ne_0_b_l1 - r__r_4t0 - MILLIRETN -LSYM(e_4t0a0) a1_ne_0_b_l0 - t0__4t0_a0 - MILLIRET - r__r_t0 -LSYM(e4t08a0) t0__t0_2a0 - a1_ne_0_b_l1 - r__r_4t0 - MILLIRETN -LSYM(e_5t0) a1_ne_0_b_l0 - t0__5t0 - MILLIRET - r__r_t0 -LSYM(e_8t0) a1_ne_0_b_l1 - r__r_8t0 - MILLIRETN -LSYM(e_8t0a0) a1_ne_0_b_l0 - t0__8t0_a0 - MILLIRET - r__r_t0 - - .procend - .end -#endif diff --git a/arch/parisc/lib/milli/milli.h b/arch/parisc/lib/milli/milli.h deleted file mode 100644 index 19ac79f336d..00000000000 --- a/arch/parisc/lib/milli/milli.h +++ /dev/null @@ -1,165 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#ifndef _PA_MILLI_H_ -#define _PA_MILLI_H_ - -#define L_dyncall -#define L_divI -#define L_divU -#define L_remI -#define L_remU -#define L_div_const -#define L_mulI - -#ifdef CONFIG_64BIT - .level 2.0w -#endif - -/* Hardware General Registers. */ -r0: .reg %r0 -r1: .reg %r1 -r2: .reg %r2 -r3: .reg %r3 -r4: .reg %r4 -r5: .reg %r5 -r6: .reg %r6 -r7: .reg %r7 -r8: .reg %r8 -r9: .reg %r9 -r10: .reg %r10 -r11: .reg %r11 -r12: .reg %r12 -r13: .reg %r13 -r14: .reg %r14 -r15: .reg %r15 -r16: .reg %r16 -r17: .reg %r17 -r18: .reg %r18 -r19: .reg %r19 -r20: .reg %r20 -r21: .reg %r21 -r22: .reg %r22 -r23: .reg %r23 -r24: .reg %r24 -r25: .reg %r25 -r26: .reg %r26 -r27: .reg %r27 -r28: .reg %r28 -r29: .reg %r29 -r30: .reg %r30 -r31: .reg %r31 - -/* Hardware Space Registers. */ -sr0: .reg %sr0 -sr1: .reg %sr1 -sr2: .reg %sr2 -sr3: .reg %sr3 -sr4: .reg %sr4 -sr5: .reg %sr5 -sr6: .reg %sr6 -sr7: .reg %sr7 - -/* Hardware Floating Point Registers. */ -fr0: .reg %fr0 -fr1: .reg %fr1 -fr2: .reg %fr2 -fr3: .reg %fr3 -fr4: .reg %fr4 -fr5: .reg %fr5 -fr6: .reg %fr6 -fr7: .reg %fr7 -fr8: .reg %fr8 -fr9: .reg %fr9 -fr10: .reg %fr10 -fr11: .reg %fr11 -fr12: .reg %fr12 -fr13: .reg %fr13 -fr14: .reg %fr14 -fr15: .reg %fr15 - -/* Hardware Control Registers. */ -cr11: .reg %cr11 -sar: .reg %cr11 /* Shift Amount Register */ - -/* Software Architecture General Registers. */ -rp: .reg r2 /* return pointer */ -#ifdef CONFIG_64BIT -mrp: .reg r2 /* millicode return pointer */ -#else -mrp: .reg r31 /* millicode return pointer */ -#endif -ret0: .reg r28 /* return value */ -ret1: .reg r29 /* return value (high part of double) */ -sp: .reg r30 /* stack pointer */ -dp: .reg r27 /* data pointer */ -arg0: .reg r26 /* argument */ -arg1: .reg r25 /* argument or high part of double argument */ -arg2: .reg r24 /* argument */ -arg3: .reg r23 /* argument or high part of double argument */ - -/* Software Architecture Space Registers. */ -/* sr0 ; return link from BLE */ -sret: .reg sr1 /* return value */ -sarg: .reg sr1 /* argument */ -/* sr4 ; PC SPACE tracker */ -/* sr5 ; process private data */ - -/* Frame Offsets (millicode convention!) Used when calling other - millicode routines. Stack unwinding is dependent upon these - definitions. */ -r31_slot: .equ -20 /* "current RP" slot */ -sr0_slot: .equ -16 /* "static link" slot */ -#if defined(CONFIG_64BIT) -mrp_slot: .equ -16 /* "current RP" slot */ -psp_slot: .equ -8 /* "previous SP" slot */ -#else -mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */ -#endif - - -#define DEFINE(name,value)name: .EQU value -#define RDEFINE(name,value)name: .REG value -#ifdef milliext -#define MILLI_BE(lbl) BE lbl(sr7,r0) -#define MILLI_BEN(lbl) BE,n lbl(sr7,r0) -#define MILLI_BLE(lbl) BLE lbl(sr7,r0) -#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0) -#define MILLIRETN BE,n 0(sr0,mrp) -#define MILLIRET BE 0(sr0,mrp) -#define MILLI_RETN BE,n 0(sr0,mrp) -#define MILLI_RET BE 0(sr0,mrp) -#else -#define MILLI_BE(lbl) B lbl -#define MILLI_BEN(lbl) B,n lbl -#define MILLI_BLE(lbl) BL lbl,mrp -#define MILLI_BLEN(lbl) BL,n lbl,mrp -#define MILLIRETN BV,n 0(mrp) -#define MILLIRET BV 0(mrp) -#define MILLI_RETN BV,n 0(mrp) -#define MILLI_RET BV 0(mrp) -#endif - -#define CAT(a,b) a##b - -#define SUBSPA_MILLI .section .text -#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16 -#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16 -#define ATTR_MILLI -#define SUBSPA_DATA .section .data -#define ATTR_DATA -#define GLOBAL $global$ -#define GSYM(sym) !sym: -#define LSYM(sym) !CAT(.L,sym:) -#define LREF(sym) CAT(.L,sym) - -#endif /*_PA_MILLI_H_*/ diff --git a/arch/parisc/lib/milli/mulI.S b/arch/parisc/lib/milli/mulI.S deleted file mode 100644 index 4c7e0c36d15..00000000000 --- a/arch/parisc/lib/milli/mulI.S +++ /dev/null @@ -1,474 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#include "milli.h" - -#ifdef L_mulI -/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */ -/****************************************************************************** -This routine is used on PA2.0 processors when gcc -mno-fpregs is used - -ROUTINE: $$mulI - - -DESCRIPTION: - - $$mulI multiplies two single word integers, giving a single - word result. - - -INPUT REGISTERS: - - arg0 = Operand 1 - arg1 = Operand 2 - r31 == return pc - sr0 == return space when called externally - - -OUTPUT REGISTERS: - - arg0 = undefined - arg1 = undefined - ret1 = result - -OTHER REGISTERS AFFECTED: - - r1 = undefined - -SIDE EFFECTS: - - Causes a trap under the following conditions: NONE - Changes memory at the following places: NONE - -PERMISSIBLE CONTEXT: - - Unwindable - Does not create a stack frame - Is usable for internal or external microcode - -DISCUSSION: - - Calls other millicode routines via mrp: NONE - Calls other millicode routines: NONE - -***************************************************************************/ - - -#define a0 %arg0 -#define a1 %arg1 -#define t0 %r1 -#define r %ret1 - -#define a0__128a0 zdep a0,24,25,a0 -#define a0__256a0 zdep a0,23,24,a0 -#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0) -#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1) -#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2) -#define b_n_ret_t0 b,n LREF(ret_t0) -#define b_e_shift b LREF(e_shift) -#define b_e_t0ma0 b LREF(e_t0ma0) -#define b_e_t0 b LREF(e_t0) -#define b_e_t0a0 b LREF(e_t0a0) -#define b_e_t02a0 b LREF(e_t02a0) -#define b_e_t04a0 b LREF(e_t04a0) -#define b_e_2t0 b LREF(e_2t0) -#define b_e_2t0a0 b LREF(e_2t0a0) -#define b_e_2t04a0 b LREF(e2t04a0) -#define b_e_3t0 b LREF(e_3t0) -#define b_e_4t0 b LREF(e_4t0) -#define b_e_4t0a0 b LREF(e_4t0a0) -#define b_e_4t08a0 b LREF(e4t08a0) -#define b_e_5t0 b LREF(e_5t0) -#define b_e_8t0 b LREF(e_8t0) -#define b_e_8t0a0 b LREF(e_8t0a0) -#define r__r_a0 add r,a0,r -#define r__r_2a0 sh1add a0,r,r -#define r__r_4a0 sh2add a0,r,r -#define r__r_8a0 sh3add a0,r,r -#define r__r_t0 add r,t0,r -#define r__r_2t0 sh1add t0,r,r -#define r__r_4t0 sh2add t0,r,r -#define r__r_8t0 sh3add t0,r,r -#define t0__3a0 sh1add a0,a0,t0 -#define t0__4a0 sh2add a0,0,t0 -#define t0__5a0 sh2add a0,a0,t0 -#define t0__8a0 sh3add a0,0,t0 -#define t0__9a0 sh3add a0,a0,t0 -#define t0__16a0 zdep a0,27,28,t0 -#define t0__32a0 zdep a0,26,27,t0 -#define t0__64a0 zdep a0,25,26,t0 -#define t0__128a0 zdep a0,24,25,t0 -#define t0__t0ma0 sub t0,a0,t0 -#define t0__t0_a0 add t0,a0,t0 -#define t0__t0_2a0 sh1add a0,t0,t0 -#define t0__t0_4a0 sh2add a0,t0,t0 -#define t0__t0_8a0 sh3add a0,t0,t0 -#define t0__2t0_a0 sh1add t0,a0,t0 -#define t0__3t0 sh1add t0,t0,t0 -#define t0__4t0 sh2add t0,0,t0 -#define t0__4t0_a0 sh2add t0,a0,t0 -#define t0__5t0 sh2add t0,t0,t0 -#define t0__8t0 sh3add t0,0,t0 -#define t0__8t0_a0 sh3add t0,a0,t0 -#define t0__9t0 sh3add t0,t0,t0 -#define t0__16t0 zdep t0,27,28,t0 -#define t0__32t0 zdep t0,26,27,t0 -#define t0__256a0 zdep a0,23,24,t0 - - - SUBSPA_MILLI - ATTR_MILLI - .align 16 - .proc - .callinfo millicode - .export $$mulI,millicode -GSYM($$mulI) - combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */ - copy 0,r /* zero out the result */ - xor a0,a1,a0 /* swap a0 & a1 using the */ - xor a0,a1,a1 /* old xor trick */ - xor a0,a1,a0 -LSYM(l4) - combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */ - zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ - sub,> 0,a1,t0 /* otherwise negate both and */ - combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */ - sub 0,a0,a1 - movb,tr,n t0,a0,LREF(l2) /* 10th inst. */ - -LSYM(l0) r__r_t0 /* add in this partial product */ -LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */ -LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ -LSYM(l3) blr t0,0 /* case on these 8 bits ****** */ - extru a1,23,24,a1 /* a1 >>= 8 ****************** */ - -/*16 insts before this. */ -/* a0 <<= 8 ************************** */ -LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop -LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop -LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop -LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0 -LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop -LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0 -LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN -LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0 -LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop -LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0 -LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN -LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 -LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN -LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 -LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0 -LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0 -LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN -LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0 -LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN -LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 -LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN -LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 -LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0 -LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 -LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 -LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0 -LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN -LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 -LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN -LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 -LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 -LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0 -LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0 -LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0 -LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0 -LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 -LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0 -LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 -LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0 -LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 -LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 -LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 -LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0 -LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN -LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0 -LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0 -LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0 -LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0 -LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 -LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0 -LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0 -LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 -LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0 -LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 -LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 -LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0 -LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0 -LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 -LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0 -LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0 -LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0 -LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0 -LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 -LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0 -LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0 -LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 -LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 -LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 -LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 -LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN -LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0 -LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0 -LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0 -LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0 -LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0 -LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0 -LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0 -LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 -LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 -LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0 -LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0 -LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0 -LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0 -LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0 -LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0 -LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0 -LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 -LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 -LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0 -LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0 -LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0 -LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0 -LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0 -LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0 -LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0 -LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0 -LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0 -LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 -LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0 -LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0 -LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0 -LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0 -LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0 -LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0 -LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 -LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0 -LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0 -LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 -LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0 -LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 -LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0 -LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0 -LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 -LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0 -LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0 -LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 -LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0 -LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0 -LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0 -LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0 -LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0 -LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0 -LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0 -LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0 -LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 -LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 -LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 -LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0 -LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0 -LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0 -LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0 -LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 -LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0 -LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0 -LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 -LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0 -LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0 -LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 -LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0 -LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0 -LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0 -LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0 -LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0 -LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0 -LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0 -LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0 -LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0 -LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0 -LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0 -LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0 -LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0 -LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0 -LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0 -LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0 -LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0 -LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0 -LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0 -LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0 -LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 -LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0 -LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 -LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 -/*1040 insts before this. */ -LSYM(ret_t0) MILLIRET -LSYM(e_t0) r__r_t0 -LSYM(e_shift) a1_ne_0_b_l2 - a0__256a0 /* a0 <<= 8 *********** */ - MILLIRETN -LSYM(e_t0ma0) a1_ne_0_b_l0 - t0__t0ma0 - MILLIRET - r__r_t0 -LSYM(e_t0a0) a1_ne_0_b_l0 - t0__t0_a0 - MILLIRET - r__r_t0 -LSYM(e_t02a0) a1_ne_0_b_l0 - t0__t0_2a0 - MILLIRET - r__r_t0 -LSYM(e_t04a0) a1_ne_0_b_l0 - t0__t0_4a0 - MILLIRET - r__r_t0 -LSYM(e_2t0) a1_ne_0_b_l1 - r__r_2t0 - MILLIRETN -LSYM(e_2t0a0) a1_ne_0_b_l0 - t0__2t0_a0 - MILLIRET - r__r_t0 -LSYM(e2t04a0) t0__t0_2a0 - a1_ne_0_b_l1 - r__r_2t0 - MILLIRETN -LSYM(e_3t0) a1_ne_0_b_l0 - t0__3t0 - MILLIRET - r__r_t0 -LSYM(e_4t0) a1_ne_0_b_l1 - r__r_4t0 - MILLIRETN -LSYM(e_4t0a0) a1_ne_0_b_l0 - t0__4t0_a0 - MILLIRET - r__r_t0 -LSYM(e4t08a0) t0__t0_2a0 - a1_ne_0_b_l1 - r__r_4t0 - MILLIRETN -LSYM(e_5t0) a1_ne_0_b_l0 - t0__5t0 - MILLIRET - r__r_t0 -LSYM(e_8t0) a1_ne_0_b_l1 - r__r_8t0 - MILLIRETN -LSYM(e_8t0a0) a1_ne_0_b_l0 - t0__8t0_a0 - MILLIRET - r__r_t0 - - .procend - .end -#endif diff --git a/arch/parisc/lib/milli/remI.S b/arch/parisc/lib/milli/remI.S deleted file mode 100644 index 63bc094471e..00000000000 --- a/arch/parisc/lib/milli/remI.S +++ /dev/null @@ -1,185 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#include "milli.h" - -#ifdef L_remI -/* ROUTINE: $$remI - - DESCRIPTION: - . $$remI returns the remainder of the division of two signed 32-bit - . integers. The sign of the remainder is the same as the sign of - . the dividend. - - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = destroyed - . arg1 = destroyed - . ret1 = remainder - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: DIVIDE BY ZERO - . Changes memory at the following places: NONE - - PERMISSIBLE CONTEXT: - . Unwindable - . Does not create a stack frame - . Is usable for internal or external microcode - - DISCUSSION: - . Calls other millicode routines via mrp: NONE - . Calls other millicode routines: NONE */ - -RDEFINE(tmp,r1) -RDEFINE(retreg,ret1) - - SUBSPA_MILLI - ATTR_MILLI - .proc - .callinfo millicode - .entry -GSYM($$remI) -GSYM($$remoI) - .export $$remI,MILLICODE - .export $$remoI,MILLICODE - ldo -1(arg1),tmp /* is there at most one bit set ? */ - and,<> arg1,tmp,r0 /* if not, don't use power of 2 */ - addi,> 0,arg1,r0 /* if denominator > 0, use power */ - /* of 2 */ - b,n LREF(neg_denom) -LSYM(pow2) - comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */ - and arg0,tmp,retreg /* get the result */ - MILLIRETN -LSYM(neg_num) - subi 0,arg0,arg0 /* negate numerator */ - and arg0,tmp,retreg /* get the result */ - subi 0,retreg,retreg /* negate result */ - MILLIRETN -LSYM(neg_denom) - addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */ - /* of 2 */ - b,n LREF(regular_seq) - sub r0,arg1,tmp /* make denominator positive */ - comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */ - ldo -1(tmp),retreg /* is there at most one bit set ? */ - and,= tmp,retreg,r0 /* if not, go to regular_seq */ - b,n LREF(regular_seq) - comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */ - and arg0,retreg,retreg - MILLIRETN -LSYM(neg_num_2) - subi 0,arg0,tmp /* test against 0x80000000 */ - and tmp,retreg,retreg - subi 0,retreg,retreg - MILLIRETN -LSYM(regular_seq) - addit,= 0,arg1,0 /* trap if div by zero */ - add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ - sub 0,retreg,retreg /* make it positive */ - sub 0,arg1, tmp /* clear carry, */ - /* negate the divisor */ - ds 0, tmp,0 /* set V-bit to the comple- */ - /* ment of the divisor sign */ - or 0,0, tmp /* clear tmp */ - add retreg,retreg,retreg /* shift msb bit into carry */ - ds tmp,arg1, tmp /* 1st divide step, if no carry */ - /* out, msb of quotient = 0 */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ -LSYM(t1) - ds tmp,arg1, tmp /* 2nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 3rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 4th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 5th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 6th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 7th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 8th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 9th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 10th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 11th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 12th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 13th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 14th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 15th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 16th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 17th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 18th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 19th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 20th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 21st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 22nd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 23rd divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 24th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 25th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 26th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 27th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 28th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 29th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 30th divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 31st divide step */ - addc retreg,retreg,retreg /* shift retreg with/into carry */ - ds tmp,arg1, tmp /* 32nd divide step, */ - addc retreg,retreg,retreg /* shift last bit into retreg */ - movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */ - add,< arg1,0,0 /* if arg1 > 0, add arg1 */ - add,tr tmp,arg1,retreg /* for correcting remainder tmp */ - sub tmp,arg1,retreg /* else add absolute value arg1 */ -LSYM(finish) - add,>= arg0,0,0 /* set sign of remainder */ - sub 0,retreg,retreg /* to sign of dividend */ - MILLIRET - nop - .exit - .procend -#ifdef milliext - .origin 0x00000200 -#endif - .end -#endif diff --git a/arch/parisc/lib/milli/remU.S b/arch/parisc/lib/milli/remU.S deleted file mode 100644 index c0a2d6e247c..00000000000 --- a/arch/parisc/lib/milli/remU.S +++ /dev/null @@ -1,148 +0,0 @@ -/* 32 and 64-bit millicode, original author Hewlett-Packard - adapted for gcc by Paul Bame <bame@debian.org> - and Alan Modra <alan@linuxcare.com.au>. - - Copyright 2001, 2002, 2003 Free Software Foundation, Inc. - - This file is part of GCC and is released under the terms of - of the GNU General Public License as published by the Free Software - Foundation; either version 2, or (at your option) any later version. - See the file COPYING in the top-level GCC source directory for a copy - of the license. */ - -#include "milli.h" - -#ifdef L_remU -/* ROUTINE: $$remU - . Single precision divide for remainder with unsigned binary integers. - . - . The remainder must be dividend-(dividend/divisor)*divisor. - . Divide by zero is trapped. - - INPUT REGISTERS: - . arg0 == dividend - . arg1 == divisor - . mrp == return pc - . sr0 == return space when called externally - - OUTPUT REGISTERS: - . arg0 = undefined - . arg1 = undefined - . ret1 = remainder - - OTHER REGISTERS AFFECTED: - . r1 = undefined - - SIDE EFFECTS: - . Causes a trap under the following conditions: DIVIDE BY ZERO - . Changes memory at the following places: NONE - - PERMISSIBLE CONTEXT: - . Unwindable. - . Does not create a stack frame. - . Suitable for internal or external millicode. - . Assumes the special millicode register conventions. - - DISCUSSION: - . Calls other millicode routines using mrp: NONE - . Calls other millicode routines: NONE */ - - -RDEFINE(temp,r1) -RDEFINE(rmndr,ret1) /* r29 */ - SUBSPA_MILLI - ATTR_MILLI - .export $$remU,millicode - .proc - .callinfo millicode - .entry -GSYM($$remU) - ldo -1(arg1),temp /* is there at most one bit set ? */ - and,= arg1,temp,r0 /* if not, don't use power of 2 */ - b LREF(regular_seq) - addit,= 0,arg1,r0 /* trap on div by zero */ - and arg0,temp,rmndr /* get the result for power of 2 */ - MILLIRETN -LSYM(regular_seq) - comib,>=,n 0,arg1,LREF(special_case) - subi 0,arg1,rmndr /* clear carry, negate the divisor */ - ds r0,rmndr,r0 /* set V-bit to 1 */ - add arg0,arg0,temp /* shift msb bit into carry */ - ds r0,arg1,rmndr /* 1st divide step, if no carry */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 2nd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 3rd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 4th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 5th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 6th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 7th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 8th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 9th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 10th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 11th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 12th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 13th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 14th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 15th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 16th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 17th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 18th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 19th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 20th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 21st divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 22nd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 23rd divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 24th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 25th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 26th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 27th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 28th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 29th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 30th divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 31st divide step */ - addc temp,temp,temp /* shift temp with/into carry */ - ds rmndr,arg1,rmndr /* 32nd divide step, */ - comiclr,<= 0,rmndr,r0 - add rmndr,arg1,rmndr /* correction */ - MILLIRETN - nop - -/* Putting >= on the last DS and deleting COMICLR does not work! */ -LSYM(special_case) - sub,>>= arg0,arg1,rmndr - copy arg0,rmndr - MILLIRETN - nop - .exit - .procend - .end -#endif |