aboutsummaryrefslogtreecommitdiff
path: root/Documentation/i2c
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/i2c')
-rw-r--r--Documentation/i2c/busses/i2c-i81047
-rw-r--r--Documentation/i2c/busses/i2c-prosavage23
-rw-r--r--Documentation/i2c/busses/i2c-savage426
-rw-r--r--Documentation/i2c/busses/i2c-viapro8
-rw-r--r--Documentation/i2c/chips/max68752
-rw-r--r--Documentation/i2c/chips/pca953910
-rw-r--r--Documentation/i2c/chips/pcf857412
-rw-r--r--Documentation/i2c/chips/pcf85759
-rw-r--r--Documentation/i2c/dev-interface110
-rw-r--r--Documentation/i2c/fault-codes127
-rw-r--r--Documentation/i2c/smbus-protocol8
-rw-r--r--Documentation/i2c/upgrading-clients281
-rw-r--r--Documentation/i2c/writing-clients73
13 files changed, 577 insertions, 159 deletions
diff --git a/Documentation/i2c/busses/i2c-i810 b/Documentation/i2c/busses/i2c-i810
deleted file mode 100644
index 778210ee158..00000000000
--- a/Documentation/i2c/busses/i2c-i810
+++ /dev/null
@@ -1,47 +0,0 @@
-Kernel driver i2c-i810
-
-Supported adapters:
- * Intel 82810, 82810-DC100, 82810E, and 82815 (GMCH)
- * Intel 82845G (GMCH)
-
-Authors:
- Frodo Looijaard <frodol@dds.nl>,
- Philip Edelbrock <phil@netroedge.com>,
- Kyösti Mälkki <kmalkki@cc.hut.fi>,
- Ralph Metzler <rjkm@thp.uni-koeln.de>,
- Mark D. Studebaker <mdsxyz123@yahoo.com>
-
-Main contact: Mark Studebaker <mdsxyz123@yahoo.com>
-
-Description
------------
-
-WARNING: If you have an '810' or '815' motherboard, your standard I2C
-temperature sensors are most likely on the 801's I2C bus. You want the
-i2c-i801 driver for those, not this driver.
-
-Now for the i2c-i810...
-
-The GMCH chip contains two I2C interfaces.
-
-The first interface is used for DDC (Data Display Channel) which is a
-serial channel through the VGA monitor connector to a DDC-compliant
-monitor. This interface is defined by the Video Electronics Standards
-Association (VESA). The standards are available for purchase at
-http://www.vesa.org .
-
-The second interface is a general-purpose I2C bus. It may be connected to a
-TV-out chip such as the BT869 or possibly to a digital flat-panel display.
-
-Features
---------
-
-Both busses use the i2c-algo-bit driver for 'bit banging'
-and support for specific transactions is provided by i2c-algo-bit.
-
-Issues
-------
-
-If you enable bus testing in i2c-algo-bit (insmod i2c-algo-bit bit_test=1),
-the test may fail; if so, the i2c-i810 driver won't be inserted. However,
-we think this has been fixed.
diff --git a/Documentation/i2c/busses/i2c-prosavage b/Documentation/i2c/busses/i2c-prosavage
deleted file mode 100644
index 70368790251..00000000000
--- a/Documentation/i2c/busses/i2c-prosavage
+++ /dev/null
@@ -1,23 +0,0 @@
-Kernel driver i2c-prosavage
-
-Supported adapters:
-
- S3/VIA KM266/VT8375 aka ProSavage8
- S3/VIA KM133/VT8365 aka Savage4
-
-Author: Henk Vergonet <henk@god.dyndns.org>
-
-Description
------------
-
-The Savage4 chips contain two I2C interfaces (aka a I2C 'master' or
-'host').
-
-The first interface is used for DDC (Data Display Channel) which is a
-serial channel through the VGA monitor connector to a DDC-compliant
-monitor. This interface is defined by the Video Electronics Standards
-Association (VESA). The standards are available for purchase at
-http://www.vesa.org . The second interface is a general-purpose I2C bus.
-
-Usefull for gaining access to the TV Encoder chips.
-
diff --git a/Documentation/i2c/busses/i2c-savage4 b/Documentation/i2c/busses/i2c-savage4
deleted file mode 100644
index 6ecceab618d..00000000000
--- a/Documentation/i2c/busses/i2c-savage4
+++ /dev/null
@@ -1,26 +0,0 @@
-Kernel driver i2c-savage4
-
-Supported adapters:
- * Savage4
- * Savage2000
-
-Authors:
- Alexander Wold <awold@bigfoot.com>,
- Mark D. Studebaker <mdsxyz123@yahoo.com>
-
-Description
------------
-
-The Savage4 chips contain two I2C interfaces (aka a I2C 'master'
-or 'host').
-
-The first interface is used for DDC (Data Display Channel) which is a
-serial channel through the VGA monitor connector to a DDC-compliant
-monitor. This interface is defined by the Video Electronics Standards
-Association (VESA). The standards are available for purchase at
-http://www.vesa.org . The DDC bus is not yet supported because its register
-is not directly memory-mapped.
-
-The second interface is a general-purpose I2C bus. This is the only
-interface supported by the driver at the moment.
-
diff --git a/Documentation/i2c/busses/i2c-viapro b/Documentation/i2c/busses/i2c-viapro
index 1405fb69984..22efedf60c8 100644
--- a/Documentation/i2c/busses/i2c-viapro
+++ b/Documentation/i2c/busses/i2c-viapro
@@ -16,6 +16,9 @@ Supported adapters:
* VIA Technologies, Inc. CX700
Datasheet: available on request and under NDA from VIA
+ * VIA Technologies, Inc. VX800/VX820
+ Datasheet: available on http://linux.via.com.tw
+
Authors:
Kyösti Mälkki <kmalkki@cc.hut.fi>,
Mark D. Studebaker <mdsxyz123@yahoo.com>,
@@ -49,6 +52,7 @@ Your lspci -n listing must show one of these :
device 1106:3372 (VT8237S)
device 1106:3287 (VT8251)
device 1106:8324 (CX700)
+ device 1106:8353 (VX800/VX820)
If none of these show up, you should look in the BIOS for settings like
enable ACPI / SMBus or even USB.
@@ -57,5 +61,5 @@ Except for the oldest chips (VT82C596A/B, VT82C686A and most probably
VT8231), this driver supports I2C block transactions. Such transactions
are mainly useful to read from and write to EEPROMs.
-The CX700 additionally appears to support SMBus PEC, although this driver
-doesn't implement it yet.
+The CX700/VX800/VX820 additionally appears to support SMBus PEC, although
+this driver doesn't implement it yet.
diff --git a/Documentation/i2c/chips/max6875 b/Documentation/i2c/chips/max6875
index a0cd8af2f40..10ca43cd1a7 100644
--- a/Documentation/i2c/chips/max6875
+++ b/Documentation/i2c/chips/max6875
@@ -49,7 +49,7 @@ $ modprobe max6875 force=0,0x50
The MAX6874/MAX6875 ignores address bit 0, so this driver attaches to multiple
addresses. For example, for address 0x50, it also reserves 0x51.
-The even-address instance is called 'max6875', the odd one is 'max6875 subclient'.
+The even-address instance is called 'max6875', the odd one is 'dummy'.
Programming the chip using i2c-dev
diff --git a/Documentation/i2c/chips/pca9539 b/Documentation/i2c/chips/pca9539
index 1d81c530c4a..6aff890088b 100644
--- a/Documentation/i2c/chips/pca9539
+++ b/Documentation/i2c/chips/pca9539
@@ -7,7 +7,7 @@ drivers/gpio/pca9539.c instead.
Supported chips:
* Philips PCA9539
Prefix: 'pca9539'
- Addresses scanned: 0x74 - 0x77
+ Addresses scanned: none
Datasheet:
http://www.semiconductors.philips.com/acrobat/datasheets/PCA9539_2.pdf
@@ -23,6 +23,14 @@ The input sense can also be inverted.
The 16 lines are split between two bytes.
+Detection
+---------
+
+The PCA9539 is difficult to detect and not commonly found in PC machines,
+so you have to pass the I2C bus and address of the installed PCA9539
+devices explicitly to the driver at load time via the force=... parameter.
+
+
Sysfs entries
-------------
diff --git a/Documentation/i2c/chips/pcf8574 b/Documentation/i2c/chips/pcf8574
index 5c1ad1376b6..235815c075f 100644
--- a/Documentation/i2c/chips/pcf8574
+++ b/Documentation/i2c/chips/pcf8574
@@ -4,13 +4,13 @@ Kernel driver pcf8574
Supported chips:
* Philips PCF8574
Prefix: 'pcf8574'
- Addresses scanned: I2C 0x20 - 0x27
+ Addresses scanned: none
Datasheet: Publicly available at the Philips Semiconductors website
http://www.semiconductors.philips.com/pip/PCF8574P.html
* Philips PCF8574A
Prefix: 'pcf8574a'
- Addresses scanned: I2C 0x38 - 0x3f
+ Addresses scanned: none
Datasheet: Publicly available at the Philips Semiconductors website
http://www.semiconductors.philips.com/pip/PCF8574P.html
@@ -38,12 +38,10 @@ For more informations see the datasheet.
Accessing PCF8574(A) via /sys interface
-------------------------------------
-! Be careful !
The PCF8574(A) is plainly impossible to detect ! Stupid chip.
-So every chip with address in the interval [20..27] and [38..3f] are
-detected as PCF8574(A). If you have other chips in this address
-range, the workaround is to load this module after the one
-for your others chips.
+So, you have to pass the I2C bus and address of the installed PCF857A
+and PCF8574A devices explicitly to the driver at load time via the
+force=... parameter.
On detection (i.e. insmod, modprobe et al.), directories are being
created for each detected PCF8574(A):
diff --git a/Documentation/i2c/chips/pcf8575 b/Documentation/i2c/chips/pcf8575
index 25f5698a61c..40b268eb276 100644
--- a/Documentation/i2c/chips/pcf8575
+++ b/Documentation/i2c/chips/pcf8575
@@ -40,12 +40,9 @@ Detection
---------
There is no method known to detect whether a chip on a given I2C address is
-a PCF8575 or whether it is any other I2C device. So there are two alternatives
-to let the driver find the installed PCF8575 devices:
-- Load this driver after any other I2C driver for I2C devices with addresses
- in the range 0x20 .. 0x27.
-- Pass the I2C bus and address of the installed PCF8575 devices explicitly to
- the driver at load time via the probe=... or force=... parameters.
+a PCF8575 or whether it is any other I2C device, so you have to pass the I2C
+bus and address of the installed PCF8575 devices explicitly to the driver at
+load time via the force=... parameter.
/sys interface
--------------
diff --git a/Documentation/i2c/dev-interface b/Documentation/i2c/dev-interface
index 9dd79123ddd..3e742ba2553 100644
--- a/Documentation/i2c/dev-interface
+++ b/Documentation/i2c/dev-interface
@@ -4,6 +4,10 @@ the /dev interface. You need to load module i2c-dev for this.
Each registered i2c adapter gets a number, counting from 0. You can
examine /sys/class/i2c-dev/ to see what number corresponds to which adapter.
+Alternatively, you can run "i2cdetect -l" to obtain a formated list of all
+i2c adapters present on your system at a given time. i2cdetect is part of
+the i2c-tools package.
+
I2C device files are character device files with major device number 89
and a minor device number corresponding to the number assigned as
explained above. They should be called "i2c-%d" (i2c-0, i2c-1, ...,
@@ -17,30 +21,34 @@ So let's say you want to access an i2c adapter from a C program. The
first thing to do is "#include <linux/i2c-dev.h>". Please note that
there are two files named "i2c-dev.h" out there, one is distributed
with the Linux kernel and is meant to be included from kernel
-driver code, the other one is distributed with lm_sensors and is
+driver code, the other one is distributed with i2c-tools and is
meant to be included from user-space programs. You obviously want
the second one here.
Now, you have to decide which adapter you want to access. You should
-inspect /sys/class/i2c-dev/ to decide this. Adapter numbers are assigned
-somewhat dynamically, so you can not even assume /dev/i2c-0 is the
-first adapter.
+inspect /sys/class/i2c-dev/ or run "i2cdetect -l" to decide this.
+Adapter numbers are assigned somewhat dynamically, so you can not
+assume much about them. They can even change from one boot to the next.
Next thing, open the device file, as follows:
+
int file;
int adapter_nr = 2; /* probably dynamically determined */
char filename[20];
- sprintf(filename,"/dev/i2c-%d",adapter_nr);
- if ((file = open(filename,O_RDWR)) < 0) {
+ snprintf(filename, 19, "/dev/i2c-%d", adapter_nr);
+ file = open(filename, O_RDWR);
+ if (file < 0) {
/* ERROR HANDLING; you can check errno to see what went wrong */
exit(1);
}
When you have opened the device, you must specify with what device
address you want to communicate:
+
int addr = 0x40; /* The I2C address */
- if (ioctl(file,I2C_SLAVE,addr) < 0) {
+
+ if (ioctl(file, I2C_SLAVE, addr) < 0) {
/* ERROR HANDLING; you can check errno to see what went wrong */
exit(1);
}
@@ -48,31 +56,41 @@ address you want to communicate:
Well, you are all set up now. You can now use SMBus commands or plain
I2C to communicate with your device. SMBus commands are preferred if
the device supports them. Both are illustrated below.
+
__u8 register = 0x10; /* Device register to access */
__s32 res;
char buf[10];
+
/* Using SMBus commands */
- res = i2c_smbus_read_word_data(file,register);
+ res = i2c_smbus_read_word_data(file, register);
if (res < 0) {
/* ERROR HANDLING: i2c transaction failed */
} else {
/* res contains the read word */
}
+
/* Using I2C Write, equivalent of
- i2c_smbus_write_word_data(file,register,0x6543) */
+ i2c_smbus_write_word_data(file, register, 0x6543) */
buf[0] = register;
buf[1] = 0x43;
buf[2] = 0x65;
- if ( write(file,buf,3) != 3) {
+ if (write(file, buf, 3) ! =3) {
/* ERROR HANDLING: i2c transaction failed */
}
+
/* Using I2C Read, equivalent of i2c_smbus_read_byte(file) */
- if (read(file,buf,1) != 1) {
+ if (read(file, buf, 1) != 1) {
/* ERROR HANDLING: i2c transaction failed */
} else {
/* buf[0] contains the read byte */
}
+Note that only a subset of the I2C and SMBus protocols can be achieved by
+the means of read() and write() calls. In particular, so-called combined
+transactions (mixing read and write messages in the same transaction)
+aren't supported. For this reason, this interface is almost never used by
+user-space programs.
+
IMPORTANT: because of the use of inline functions, you *have* to use
'-O' or some variation when you compile your program!
@@ -80,31 +98,29 @@ IMPORTANT: because of the use of inline functions, you *have* to use
Full interface description
==========================
-The following IOCTLs are defined and fully supported
-(see also i2c-dev.h):
+The following IOCTLs are defined:
-ioctl(file,I2C_SLAVE,long addr)
+ioctl(file, I2C_SLAVE, long addr)
Change slave address. The address is passed in the 7 lower bits of the
argument (except for 10 bit addresses, passed in the 10 lower bits in this
case).
-ioctl(file,I2C_TENBIT,long select)
+ioctl(file, I2C_TENBIT, long select)
Selects ten bit addresses if select not equals 0, selects normal 7 bit
addresses if select equals 0. Default 0. This request is only valid
if the adapter has I2C_FUNC_10BIT_ADDR.
-ioctl(file,I2C_PEC,long select)
+ioctl(file, I2C_PEC, long select)
Selects SMBus PEC (packet error checking) generation and verification
if select not equals 0, disables if select equals 0. Default 0.
Used only for SMBus transactions. This request only has an effect if the
the adapter has I2C_FUNC_SMBUS_PEC; it is still safe if not, it just
doesn't have any effect.
-ioctl(file,I2C_FUNCS,unsigned long *funcs)
+ioctl(file, I2C_FUNCS, unsigned long *funcs)
Gets the adapter functionality and puts it in *funcs.
-ioctl(file,I2C_RDWR,struct i2c_rdwr_ioctl_data *msgset)
-
+ioctl(file, I2C_RDWR, struct i2c_rdwr_ioctl_data *msgset)
Do combined read/write transaction without stop in between.
Only valid if the adapter has I2C_FUNC_I2C. The argument is
a pointer to a
@@ -120,10 +136,9 @@ ioctl(file,I2C_RDWR,struct i2c_rdwr_ioctl_data *msgset)
The slave address and whether to use ten bit address mode has to be
set in each message, overriding the values set with the above ioctl's.
-
-Other values are NOT supported at this moment, except for I2C_SMBUS,
-which you should never directly call; instead, use the access functions
-below.
+ioctl(file, I2C_SMBUS, struct i2c_smbus_ioctl_data *args)
+ Not meant to be called directly; instead, use the access functions
+ below.
You can do plain i2c transactions by using read(2) and write(2) calls.
You do not need to pass the address byte; instead, set it through
@@ -148,7 +163,52 @@ what happened. The 'write' transactions return 0 on success; the
returns the number of values read. The block buffers need not be longer
than 32 bytes.
-The above functions are all macros, that resolve to calls to the
-i2c_smbus_access function, that on its turn calls a specific ioctl
+The above functions are all inline functions, that resolve to calls to
+the i2c_smbus_access function, that on its turn calls a specific ioctl
with the data in a specific format. Read the source code if you
want to know what happens behind the screens.
+
+
+Implementation details
+======================
+
+For the interested, here's the code flow which happens inside the kernel
+when you use the /dev interface to I2C:
+
+1* Your program opens /dev/i2c-N and calls ioctl() on it, as described in
+section "C example" above.
+
+2* These open() and ioctl() calls are handled by the i2c-dev kernel
+driver: see i2c-dev.c:i2cdev_open() and i2c-dev.c:i2cdev_ioctl(),
+respectively. You can think of i2c-dev as a generic I2C chip driver
+that can be programmed from user-space.
+
+3* Some ioctl() calls are for administrative tasks and are handled by
+i2c-dev directly. Examples include I2C_SLAVE (set the address of the
+device you want to access) and I2C_PEC (enable or disable SMBus error
+checking on future transactions.)
+
+4* Other ioctl() calls are converted to in-kernel function calls by
+i2c-dev. Examples include I2C_FUNCS, which queries the I2C adapter
+functionality using i2c.h:i2c_get_functionality(), and I2C_SMBUS, which
+performs an SMBus transaction using i2c-core.c:i2c_smbus_xfer().
+
+The i2c-dev driver is responsible for checking all the parameters that
+come from user-space for validity. After this point, there is no
+difference between these calls that came from user-space through i2c-dev
+and calls that would have been performed by kernel I2C chip drivers
+directly. This means that I2C bus drivers don't need to implement
+anything special to support access from user-space.
+
+5* These i2c-core.c/i2c.h functions are wrappers to the actual
+implementation of your I2C bus driver. Each adapter must declare
+callback functions implementing these standard calls.
+i2c.h:i2c_get_functionality() calls i2c_adapter.algo->functionality(),
+while i2c-core.c:i2c_smbus_xfer() calls either
+adapter.algo->smbus_xfer() if it is implemented, or if not,
+i2c-core.c:i2c_smbus_xfer_emulated() which in turn calls
+i2c_adapter.algo->master_xfer().
+
+After your I2C bus driver has processed these requests, execution runs
+up the call chain, with almost no processing done, except by i2c-dev to
+package the returned data, if any, in suitable format for the ioctl.
diff --git a/Documentation/i2c/fault-codes b/Documentation/i2c/fault-codes
new file mode 100644
index 00000000000..045765c0b9b
--- /dev/null
+++ b/Documentation/i2c/fault-codes
@@ -0,0 +1,127 @@
+This is a summary of the most important conventions for use of fault
+codes in the I2C/SMBus stack.
+
+
+A "Fault" is not always an "Error"
+----------------------------------
+Not all fault reports imply errors; "page faults" should be a familiar
+example. Software often retries idempotent operations after transient
+faults. There may be fancier recovery schemes that are appropriate in
+some cases, such as re-initializing (and maybe resetting). After such
+recovery, triggered by a fault report, there is no error.
+
+In a similar way, sometimes a "fault" code just reports one defined
+result for an operation ... it doesn't indicate that anything is wrong
+at all, just that the outcome wasn't on the "golden path".
+
+In short, your I2C driver code may need to know these codes in order
+to respond correctly. Other code may need to rely on YOUR code reporting
+the right fault code, so that it can (in turn) behave correctly.
+
+
+I2C and SMBus fault codes
+-------------------------
+These are returned as negative numbers from most calls, with zero or
+some positive number indicating a non-fault return. The specific
+numbers associated with these symbols differ between architectures,
+though most Linux systems use <asm-generic/errno*.h> numbering.
+
+Note that the descriptions here are not exhaustive. There are other
+codes that may be returned, and other cases where these codes should
+be returned. However, drivers should not return other codes for these
+cases (unless the hardware doesn't provide unique fault reports).
+
+Also, codes returned by adapter probe methods follow rules which are
+specific to their host bus (such as PCI, or the platform bus).
+
+
+EAGAIN
+ Returned by I2C adapters when they lose arbitration in master
+ transmit mode: some other master was transmitting different
+ data at the same time.
+
+ Also returned when trying to invoke an I2C operation in an
+ atomic context, when some task is already using that I2C bus
+ to execute some other operation.
+
+EBADMSG
+ Returned by SMBus logic when an invalid Packet Error Code byte
+ is received. This code is a CRC covering all bytes in the
+ transaction, and is sent before the terminating STOP. This
+ fault is only reported on read transactions; the SMBus slave
+ may have a way to report PEC mismatches on writes from the
+ host. Note that even if PECs are in use, you should not rely
+ on these as the only way to detect incorrect data transfers.
+
+EBUSY
+ Returned by SMBus adapters when the bus was busy for longer
+ than allowed. This usually indicates some device (maybe the
+ SMBus adapter) needs some fault recovery (such as resetting),
+ or that the reset was attempted but failed.
+
+EINVAL
+ This rather vague error means an invalid parameter has been
+ detected before any I/O operation was started. Use a more
+ specific fault code when you can.
+
+ One example would be a driver trying an SMBus Block Write
+ with block size outside the range of 1-32 bytes.
+
+EIO
+ This rather vague error means something went wrong when
+ performing an I/O operation. Use a more specific fault
+ code when you can.
+
+ENODEV
+ Returned by driver probe() methods. This is a bit more
+ specific than ENXIO, implying the problem isn't with the
+ address, but with the device found there. Driver probes
+ may verify the device returns *correct* responses, and
+ return this as appropriate. (The driver core will warn
+ about probe faults other than ENXIO and ENODEV.)
+
+ENOMEM
+ Returned by any component that can't allocate memory when
+ it needs to do so.
+
+ENXIO
+ Returned by I2C adapters to indicate that the address phase
+ of a transfer didn't get an ACK. While it might just mean
+ an I2C device was temporarily not responding, usually it
+ means there's nothing listening at that address.
+
+ Returned by driver probe() methods to indicate that they
+ found no device to bind to. (ENODEV may also be used.)
+
+EOPNOTSUPP
+ Returned by an adapter when asked to perform an operation
+ that it doesn't, or can't, support.
+
+ For example, this would be returned when an adapter that
+ doesn't support SMBus block transfers is asked to execute
+ one. In that case, the driver making that request should
+ have verified that functionality was supported before it
+ made that block transfer request.
+
+ Similarly, if an I2C adapter can't execute all legal I2C
+ messages, it should return this when asked to perform a
+ transaction it can't. (These limitations can't be seen in
+ the adapter's functionality mask, since the assumption is
+ that if an adapter supports I2C it supports all of I2C.)
+
+EPROTO
+ Returned when slave does not conform to the relevant I2C
+ or SMBus (or chip-specific) protocol specifications. One
+ case is when the length of an SMBus block data response
+ (from the SMBus slave) is outside the range 1-32 bytes.
+
+ETIMEDOUT
+ This is returned by drivers when an operation took too much
+ time, and was aborted before it completed.
+
+ SMBus adapters may return it when an operation took more
+ time than allowed by the SMBus specification; for example,
+ when a slave stretches clocks too far. I2C has no such
+ timeouts, but it's normal for I2C adapters to impose some
+ arbitrary limits (much longer than SMBus!) too.
+
diff --git a/Documentation/i2c/smbus-protocol b/Documentation/i2c/smbus-protocol
index 03f08fb491c..9df47441f0e 100644
--- a/Documentation/i2c/smbus-protocol
+++ b/Documentation/i2c/smbus-protocol
@@ -42,8 +42,8 @@ Count (8 bits): A data byte containing the length of a block operation.
[..]: Data sent by I2C device, as opposed to data sent by the host adapter.
-SMBus Quick Command: i2c_smbus_write_quick()
-=============================================
+SMBus Quick Command
+===================
This sends a single bit to the device, at the place of the Rd/Wr bit.
@@ -109,8 +109,8 @@ specified through the Comm byte.
S Addr Wr [A] Comm [A] DataLow [A] DataHigh [A] P
-SMBus Process Call
-==================
+SMBus Process Call: i2c_smbus_process_call()
+=============================================
This command selects a device register (through the Comm byte), sends
16 bits of data to it, and reads 16 bits of data in return.
diff --git a/Documentation/i2c/upgrading-clients b/Documentation/i2c/upgrading-clients
new file mode 100644
index 00000000000..9a45f9bb6a2
--- /dev/null
+++ b/Documentation/i2c/upgrading-clients
@@ -0,0 +1,281 @@
+Upgrading I2C Drivers to the new 2.6 Driver Model
+=================================================
+
+Ben Dooks <ben-linux@fluff.org>
+
+Introduction
+------------
+
+This guide outlines how to alter existing Linux 2.6 client drivers from
+the old to the new new binding methods.
+
+
+Example old-style driver
+------------------------
+
+
+struct example_state {
+ struct i2c_client client;
+ ....
+};
+
+static struct i2c_driver example_driver;
+
+static unsigned short ignore[] = { I2C_CLIENT_END };
+static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
+
+I2C_CLIENT_INSMOD;
+
+static int example_attach(struct i2c_adapter *adap, int addr, int kind)
+{
+ struct example_state *state;
+ struct device *dev = &adap->dev; /* to use for dev_ reports */
+ int ret;
+
+ state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
+ if (state == NULL) {
+ dev_err(dev, "failed to create our state\n");
+ return -ENOMEM;
+ }
+
+ example->client.addr = addr;
+ example->client.flags = 0;
+ example->client.adapter = adap;
+
+ i2c_set_clientdata(&state->i2c_client, state);
+ strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+
+ ret = i2c_attach_client(&state->i2c_client);
+ if (ret < 0) {
+ dev_err(dev, "failed to attach client\n");
+ kfree(state);
+ return ret;
+ }
+
+ dev = &state->i2c_client.dev;
+
+ /* rest of the initialisation goes here. */
+
+ dev_info(dev, "example client created\n");
+
+ return 0;
+}
+
+static int __devexit example_detach(struct i2c_client *client)
+{
+ struct example_state *state = i2c_get_clientdata(client);
+
+ i2c_detach_client(client);
+ kfree(state);
+ return 0;
+}
+
+static int example_attach_adapter(struct i2c_adapter *adap)
+{
+ return i2c_probe(adap, &addr_data, example_attach);
+}
+
+static struct i2c_driver example_driver = {
+ .driver = {
+ .owner = THIS_MODULE,
+ .name = "example",
+ },
+ .attach_adapter = example_attach_adapter,
+ .detach_client = __devexit_p(example_detach),
+ .suspend = example_suspend,
+ .resume = example_resume,
+};
+
+
+Updating the client
+-------------------
+
+The new style binding model will check against a list of supported
+devices and their associated address supplied by the code registering
+the busses. This means that the driver .attach_adapter and
+.detach_adapter methods can be removed, along with the addr_data,
+as follows:
+
+- static struct i2c_driver example_driver;
+
+- static unsigned short ignore[] = { I2C_CLIENT_END };
+- static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END };
+
+- I2C_CLIENT_INSMOD;
+
+- static int example_attach_adapter(struct i2c_adapter *adap)
+- {
+- return i2c_probe(adap, &addr_data, example_attach);
+- }
+
+ static struct i2c_driver example_driver = {
+- .attach_adapter = example_attach_adapter,
+- .detach_client = __devexit_p(example_detach),
+ }
+
+Add the probe and remove methods to the i2c_driver, as so:
+
+ static struct i2c_driver example_driver = {
++ .probe = example_probe,
++ .remove = __devexit_p(example_remove),
+ }
+
+Change the example_attach method to accept the new parameters
+which include the i2c_client that it will be working with:
+
+- static int example_attach(struct i2c_adapter *adap, int addr, int kind)
++ static int example_probe(struct i2c_client *client,
++ const struct i2c_device_id *id)
+
+Change the name of example_attach to example_probe to align it with the
+i2c_driver entry names. The rest of the probe routine will now need to be
+changed as the i2c_client has already been setup for use.
+
+The necessary client fields have already been setup before
+the probe function is called, so the following client setup
+can be removed:
+
+- example->client.addr = addr;
+- example->client.flags = 0;
+- example->client.adapter = adap;
+-
+- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE);
+
+The i2c_set_clientdata is now:
+
+- i2c_set_clientdata(&state->client, state);
++ i2c_set_clientdata(client, state);
+
+The call to i2c_attach_client is no longer needed, if the probe
+routine exits successfully, then the driver will be automatically
+attached by the core. Change the probe routine as so:
+
+- ret = i2c_attach_client(&state->i2c_client);
+- if (ret < 0) {
+- dev_err(dev, "failed to attach client\n");
+- kfree(state);
+- return ret;
+- }
+
+
+Remove the storage of 'struct i2c_client' from the 'struct example_state'
+as we are provided with the i2c_client in our example_probe. Instead we
+store a pointer to it for when it is needed.
+
+struct example_state {
+- struct i2c_client client;
++ struct i2c_client *client;
+
+the new i2c client as so:
+
+- struct device *dev = &adap->dev; /* to use for dev_ reports */
++ struct device *dev = &i2c_client->dev; /* to use for dev_ reports */
+
+And remove the change after our client is attached, as the driver no
+longer needs to register a new client structure with the core:
+
+- dev = &state->i2c_client.dev;
+
+In the probe routine, ensure that the new state has the client stored
+in it:
+
+static int example_probe(struct i2c_client *i2c_client,
+ const struct i2c_device_id *id)
+{
+ struct example_state *state;
+ struct device *dev = &i2c_client->dev;
+ int ret;
+
+ state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
+ if (state == NULL) {
+ dev_err(dev, "failed to create our state\n");
+ return -ENOMEM;
+ }
+
++ state->client = i2c_client;
+
+Update the detach method, by changing the name to _remove and
+to delete the i2c_detach_client call. It is possible that you
+can also remove the ret variable as it is not not needed for
+any of the core functions.
+
+- static int __devexit example_detach(struct i2c_client *client)
++ static int __devexit example_remove(struct i2c_client *client)
+{
+ struct example_state *state = i2c_get_clientdata(client);
+
+- i2c_detach_client(client);
+
+And finally ensure that we have the correct ID table for the i2c-core
+and other utilities:
+
++ struct i2c_device_id example_idtable[] = {
++ { "example", 0 },
++ { }
++};
++
++MODULE_DEVICE_TABLE(i2c, example_idtable);
+
+static struct i2c_driver example_driver = {
+ .driver = {
+ .owner = THIS_MODULE,
+ .name = "example",
+ },
++ .id_table = example_ids,
+
+
+Our driver should now look like this:
+
+struct example_state {
+ struct i2c_client *client;
+ ....
+};
+
+static int example_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct example_state *state;
+ struct device *dev = &client->dev;
+
+ state = kzalloc(sizeof(struct example_state), GFP_KERNEL);
+ if (state == NULL) {
+ dev_err(dev, "failed to create our state\n");
+ return -ENOMEM;
+ }
+
+ state->client = client;
+ i2c_set_clientdata(client, state);
+
+ /* rest of the initialisation goes here. */
+
+ dev_info(dev, "example client created\n");
+
+ return 0;
+}
+
+static int __devexit example_remove(struct i2c_client *client)
+{
+ struct example_state *state = i2c_get_clientdata(client);
+
+ kfree(state);
+ return 0;
+}
+
+static struct i2c_device_id example_idtable[] = {
+ { "example", 0 },
+ { }
+};
+
+MODULE_DEVICE_TABLE(i2c, example_idtable);
+
+static struct i2c_driver example_driver = {
+ .driver = {
+ .owner = THIS_MODULE,
+ .name = "example",
+ },
+ .id_table = example_idtable,
+ .probe = example_probe,
+ .remove = __devexit_p(example_remove),
+ .suspend = example_suspend,
+ .resume = example_resume,
+};
diff --git a/Documentation/i2c/writing-clients b/Documentation/i2c/writing-clients
index ee75cbace28..d73ee117a8c 100644
--- a/Documentation/i2c/writing-clients
+++ b/Documentation/i2c/writing-clients
@@ -25,14 +25,29 @@ routines, and should be zero-initialized except for fields with data you
provide. A client structure holds device-specific information like the
driver model device node, and its I2C address.
+/* iff driver uses driver model ("new style") binding model: */
+
+static struct i2c_device_id foo_idtable[] = {
+ { "foo", my_id_for_foo },
+ { "bar", my_id_for_bar },
+ { }
+};
+
+MODULE_DEVICE_TABLE(i2c, foo_idtable);
+
static struct i2c_driver foo_driver = {
.driver = {
.name = "foo",
},
/* iff driver uses driver model ("new style") binding model: */
+ .id_table = foo_ids,
.probe = foo_probe,
.remove = foo_remove,
+ /* if device autodetection is needed: */
+ .class = I2C_CLASS_SOMETHING,
+ .detect = foo_detect,
+ .address_data = &addr_data,
/* else, driver uses "legacy" binding model: */
.attach_adapter = foo_attach_adapter,
@@ -173,10 +188,9 @@ handle may be used during foo_probe(). If foo_probe() reports success
(zero not a negative status code) it may save the handle and use it until
foo_remove() returns. That binding model is used by most Linux drivers.
-Drivers match devices when i2c_client.driver_name and the driver name are
-the same; this approach is used in several other busses that don't have
-device typing support in the hardware. The driver and module name should
-match, so hotplug/coldplug mechanisms will modprobe the driver.
+The probe function is called when an entry in the id_table name field
+matches the device's name. It is passed the entry that was matched so
+the driver knows which one in the table matched.
Device Creation (Standard driver model)
@@ -207,6 +221,31 @@ in the I2C bus driver. You may want to save the returned i2c_client
reference for later use.
+Device Detection (Standard driver model)
+----------------------------------------
+
+Sometimes you do not know in advance which I2C devices are connected to
+a given I2C bus. This is for example the case of hardware monitoring
+devices on a PC's SMBus. In that case, you may want to let your driver
+detect supported devices automatically. This is how the legacy model
+was working, and is now available as an extension to the standard
+driver model (so that we can finally get rid of the legacy model.)
+
+You simply have to define a detect callback which will attempt to
+identify supported devices (returning 0 for supported ones and -ENODEV
+for unsupported ones), a list of addresses to probe, and a device type
+(or class) so that only I2C buses which may have that type of device
+connected (and not otherwise enumerated) will be probed. The i2c
+core will then call you back as needed and will instantiate a device
+for you for every successful detection.
+
+Note that this mechanism is purely optional and not suitable for all
+devices. You need some reliable way to identify the supported devices
+(typically using device-specific, dedicated identification registers),
+otherwise misdetections are likely to occur and things can get wrong
+quickly.
+
+
Device Deletion (Standard driver model)
---------------------------------------
@@ -559,7 +598,6 @@ SMBus communication
in terms of it. Never use this function directly!
- extern s32 i2c_smbus_write_quick(struct i2c_client * client, u8 value);
extern s32 i2c_smbus_read_byte(struct i2c_client * client);
extern s32 i2c_smbus_write_byte(struct i2c_client * client, u8 value);
extern s32 i2c_smbus_read_byte_data(struct i2c_client * client, u8 command);
@@ -568,30 +606,31 @@ SMBus communication
extern s32 i2c_smbus_read_word_data(struct i2c_client * client, u8 command);
extern s32 i2c_smbus_write_word_data(struct i2c_client * client,
u8 command, u16 value);
+ extern s32 i2c_smbus_process_call(struct i2c_client *client,
+ u8 command, u16 value);
+ extern s32 i2c_smbus_read_block_data(struct i2c_client * client,
+ u8 command, u8 *values);
extern s32 i2c_smbus_write_block_data(struct i2c_client * client,
u8 command, u8 length,
u8 *values);
extern s32 i2c_smbus_read_i2c_block_data(struct i2c_client * client,
u8 command, u8 length, u8 *values);
-
-These ones were removed in Linux 2.6.10 because they had no users, but could
-be added back later if needed:
-
- extern s32 i2c_smbus_read_block_data(struct i2c_client * client,
- u8 command, u8 *values);
extern s32 i2c_smbus_write_i2c_block_data(struct i2c_client * client,
u8 command, u8 length,
u8 *values);
- extern s32 i2c_smbus_process_call(struct i2c_client * client,
- u8 command, u16 value);
+
+These ones were removed from i2c-core because they had no users, but could
+be added back later if needed:
+
+ extern s32 i2c_smbus_write_quick(struct i2c_client * client, u8 value);
extern s32 i2c_smbus_block_process_call(struct i2c_client *client,
u8 command, u8 length,
u8 *values)
-All these transactions return -1 on failure. The 'write' transactions
-return 0 on success; the 'read' transactions return the read value, except
-for read_block, which returns the number of values read. The block buffers
-need not be longer than 32 bytes.
+All these transactions return a negative errno value on failure. The 'write'
+transactions return 0 on success; the 'read' transactions return the read
+value, except for block transactions, which return the number of values
+read. The block buffers need not be longer than 32 bytes.
You can read the file `smbus-protocol' for more information about the
actual SMBus protocol.