diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/block/barrier.txt | 271 | ||||
-rw-r--r-- | Documentation/drivers/edac/edac.txt | 673 | ||||
-rw-r--r-- | Documentation/filesystems/fuse.txt | 63 | ||||
-rw-r--r-- | Documentation/scsi/ChangeLog.megaraid_sas | 24 | ||||
-rw-r--r-- | Documentation/scsi/aic79xx.txt | 93 | ||||
-rw-r--r-- | Documentation/scsi/aic7xxx.txt | 86 | ||||
-rw-r--r-- | Documentation/sysctl/vm.txt | 18 | ||||
-rw-r--r-- | Documentation/video4linux/CARDLIST.tuner | 1 |
8 files changed, 1118 insertions, 111 deletions
diff --git a/Documentation/block/barrier.txt b/Documentation/block/barrier.txt new file mode 100644 index 00000000000..03971518b22 --- /dev/null +++ b/Documentation/block/barrier.txt @@ -0,0 +1,271 @@ +I/O Barriers +============ +Tejun Heo <htejun@gmail.com>, July 22 2005 + +I/O barrier requests are used to guarantee ordering around the barrier +requests. Unless you're crazy enough to use disk drives for +implementing synchronization constructs (wow, sounds interesting...), +the ordering is meaningful only for write requests for things like +journal checkpoints. All requests queued before a barrier request +must be finished (made it to the physical medium) before the barrier +request is started, and all requests queued after the barrier request +must be started only after the barrier request is finished (again, +made it to the physical medium). + +In other words, I/O barrier requests have the following two properties. + +1. Request ordering + +Requests cannot pass the barrier request. Preceding requests are +processed before the barrier and following requests after. + +Depending on what features a drive supports, this can be done in one +of the following three ways. + +i. For devices which have queue depth greater than 1 (TCQ devices) and +support ordered tags, block layer can just issue the barrier as an +ordered request and the lower level driver, controller and drive +itself are responsible for making sure that the ordering contraint is +met. Most modern SCSI controllers/drives should support this. + +NOTE: SCSI ordered tag isn't currently used due to limitation in the + SCSI midlayer, see the following random notes section. + +ii. For devices which have queue depth greater than 1 but don't +support ordered tags, block layer ensures that the requests preceding +a barrier request finishes before issuing the barrier request. Also, +it defers requests following the barrier until the barrier request is +finished. Older SCSI controllers/drives and SATA drives fall in this +category. + +iii. Devices which have queue depth of 1. This is a degenerate case +of ii. Just keeping issue order suffices. Ancient SCSI +controllers/drives and IDE drives are in this category. + +2. Forced flushing to physcial medium + +Again, if you're not gonna do synchronization with disk drives (dang, +it sounds even more appealing now!), the reason you use I/O barriers +is mainly to protect filesystem integrity when power failure or some +other events abruptly stop the drive from operating and possibly make +the drive lose data in its cache. So, I/O barriers need to guarantee +that requests actually get written to non-volatile medium in order. + +There are four cases, + +i. No write-back cache. Keeping requests ordered is enough. + +ii. Write-back cache but no flush operation. There's no way to +gurantee physical-medium commit order. This kind of devices can't to +I/O barriers. + +iii. Write-back cache and flush operation but no FUA (forced unit +access). We need two cache flushes - before and after the barrier +request. + +iv. Write-back cache, flush operation and FUA. We still need one +flush to make sure requests preceding a barrier are written to medium, +but post-barrier flush can be avoided by using FUA write on the +barrier itself. + + +How to support barrier requests in drivers +------------------------------------------ + +All barrier handling is done inside block layer proper. All low level +drivers have to are implementing its prepare_flush_fn and using one +the following two functions to indicate what barrier type it supports +and how to prepare flush requests. Note that the term 'ordered' is +used to indicate the whole sequence of performing barrier requests +including draining and flushing. + +typedef void (prepare_flush_fn)(request_queue_t *q, struct request *rq); + +int blk_queue_ordered(request_queue_t *q, unsigned ordered, + prepare_flush_fn *prepare_flush_fn, + unsigned gfp_mask); + +int blk_queue_ordered_locked(request_queue_t *q, unsigned ordered, + prepare_flush_fn *prepare_flush_fn, + unsigned gfp_mask); + +The only difference between the two functions is whether or not the +caller is holding q->queue_lock on entry. The latter expects the +caller is holding the lock. + +@q : the queue in question +@ordered : the ordered mode the driver/device supports +@prepare_flush_fn : this function should prepare @rq such that it + flushes cache to physical medium when executed +@gfp_mask : gfp_mask used when allocating data structures + for ordered processing + +For example, SCSI disk driver's prepare_flush_fn looks like the +following. + +static void sd_prepare_flush(request_queue_t *q, struct request *rq) +{ + memset(rq->cmd, 0, sizeof(rq->cmd)); + rq->flags |= REQ_BLOCK_PC; + rq->timeout = SD_TIMEOUT; + rq->cmd[0] = SYNCHRONIZE_CACHE; +} + +The following seven ordered modes are supported. The following table +shows which mode should be used depending on what features a +device/driver supports. In the leftmost column of table, +QUEUE_ORDERED_ prefix is omitted from the mode names to save space. + +The table is followed by description of each mode. Note that in the +descriptions of QUEUE_ORDERED_DRAIN*, '=>' is used whereas '->' is +used for QUEUE_ORDERED_TAG* descriptions. '=>' indicates that the +preceding step must be complete before proceeding to the next step. +'->' indicates that the next step can start as soon as the previous +step is issued. + + write-back cache ordered tag flush FUA +----------------------------------------------------------------------- +NONE yes/no N/A no N/A +DRAIN no no N/A N/A +DRAIN_FLUSH yes no yes no +DRAIN_FUA yes no yes yes +TAG no yes N/A N/A +TAG_FLUSH yes yes yes no +TAG_FUA yes yes yes yes + + +QUEUE_ORDERED_NONE + I/O barriers are not needed and/or supported. + + Sequence: N/A + +QUEUE_ORDERED_DRAIN + Requests are ordered by draining the request queue and cache + flushing isn't needed. + + Sequence: drain => barrier + +QUEUE_ORDERED_DRAIN_FLUSH + Requests are ordered by draining the request queue and both + pre-barrier and post-barrier cache flushings are needed. + + Sequence: drain => preflush => barrier => postflush + +QUEUE_ORDERED_DRAIN_FUA + Requests are ordered by draining the request queue and + pre-barrier cache flushing is needed. By using FUA on barrier + request, post-barrier flushing can be skipped. + + Sequence: drain => preflush => barrier + +QUEUE_ORDERED_TAG + Requests are ordered by ordered tag and cache flushing isn't + needed. + + Sequence: barrier + +QUEUE_ORDERED_TAG_FLUSH + Requests are ordered by ordered tag and both pre-barrier and + post-barrier cache flushings are needed. + + Sequence: preflush -> barrier -> postflush + +QUEUE_ORDERED_TAG_FUA + Requests are ordered by ordered tag and pre-barrier cache + flushing is needed. By using FUA on barrier request, + post-barrier flushing can be skipped. + + Sequence: preflush -> barrier + + +Random notes/caveats +-------------------- + +* SCSI layer currently can't use TAG ordering even if the drive, +controller and driver support it. The problem is that SCSI midlayer +request dispatch function is not atomic. It releases queue lock and +switch to SCSI host lock during issue and it's possible and likely to +happen in time that requests change their relative positions. Once +this problem is solved, TAG ordering can be enabled. + +* Currently, no matter which ordered mode is used, there can be only +one barrier request in progress. All I/O barriers are held off by +block layer until the previous I/O barrier is complete. This doesn't +make any difference for DRAIN ordered devices, but, for TAG ordered +devices with very high command latency, passing multiple I/O barriers +to low level *might* be helpful if they are very frequent. Well, this +certainly is a non-issue. I'm writing this just to make clear that no +two I/O barrier is ever passed to low-level driver. + +* Completion order. Requests in ordered sequence are issued in order +but not required to finish in order. Barrier implementation can +handle out-of-order completion of ordered sequence. IOW, the requests +MUST be processed in order but the hardware/software completion paths +are allowed to reorder completion notifications - eg. current SCSI +midlayer doesn't preserve completion order during error handling. + +* Requeueing order. Low-level drivers are free to requeue any request +after they removed it from the request queue with +blkdev_dequeue_request(). As barrier sequence should be kept in order +when requeued, generic elevator code takes care of putting requests in +order around barrier. See blk_ordered_req_seq() and +ELEVATOR_INSERT_REQUEUE handling in __elv_add_request() for details. + +Note that block drivers must not requeue preceding requests while +completing latter requests in an ordered sequence. Currently, no +error checking is done against this. + +* Error handling. Currently, block layer will report error to upper +layer if any of requests in an ordered sequence fails. Unfortunately, +this doesn't seem to be enough. Look at the following request flow. +QUEUE_ORDERED_TAG_FLUSH is in use. + + [0] [1] [2] [3] [pre] [barrier] [post] < [4] [5] [6] ... > + still in elevator + +Let's say request [2], [3] are write requests to update file system +metadata (journal or whatever) and [barrier] is used to mark that +those updates are valid. Consider the following sequence. + + i. Requests [0] ~ [post] leaves the request queue and enters + low-level driver. + ii. After a while, unfortunately, something goes wrong and the + drive fails [2]. Note that any of [0], [1] and [3] could have + completed by this time, but [pre] couldn't have been finished + as the drive must process it in order and it failed before + processing that command. + iii. Error handling kicks in and determines that the error is + unrecoverable and fails [2], and resumes operation. + iv. [pre] [barrier] [post] gets processed. + v. *BOOM* power fails + +The problem here is that the barrier request is *supposed* to indicate +that filesystem update requests [2] and [3] made it safely to the +physical medium and, if the machine crashes after the barrier is +written, filesystem recovery code can depend on that. Sadly, that +isn't true in this case anymore. IOW, the success of a I/O barrier +should also be dependent on success of some of the preceding requests, +where only upper layer (filesystem) knows what 'some' is. + +This can be solved by implementing a way to tell the block layer which +requests affect the success of the following barrier request and +making lower lever drivers to resume operation on error only after +block layer tells it to do so. + +As the probability of this happening is very low and the drive should +be faulty, implementing the fix is probably an overkill. But, still, +it's there. + +* In previous drafts of barrier implementation, there was fallback +mechanism such that, if FUA or ordered TAG fails, less fancy ordered +mode can be selected and the failed barrier request is retried +automatically. The rationale for this feature was that as FUA is +pretty new in ATA world and ordered tag was never used widely, there +could be devices which report to support those features but choke when +actually given such requests. + + This was removed for two reasons 1. it's an overkill 2. it's +impossible to implement properly when TAG ordering is used as low +level drivers resume after an error automatically. If it's ever +needed adding it back and modifying low level drivers accordingly +shouldn't be difficult. diff --git a/Documentation/drivers/edac/edac.txt b/Documentation/drivers/edac/edac.txt new file mode 100644 index 00000000000..d37191fe568 --- /dev/null +++ b/Documentation/drivers/edac/edac.txt @@ -0,0 +1,673 @@ + + +EDAC - Error Detection And Correction + +Written by Doug Thompson <norsk5@xmission.com> +7 Dec 2005 + + +EDAC was written by: + Thayne Harbaugh, + modified by Dave Peterson, Doug Thompson, et al, + from the bluesmoke.sourceforge.net project. + + +============================================================================ +EDAC PURPOSE + +The 'edac' kernel module goal is to detect and report errors that occur +within the computer system. In the initial release, memory Correctable Errors +(CE) and Uncorrectable Errors (UE) are the primary errors being harvested. + +Detecting CE events, then harvesting those events and reporting them, +CAN be a predictor of future UE events. With CE events, the system can +continue to operate, but with less safety. Preventive maintainence and +proactive part replacement of memory DIMMs exhibiting CEs can reduce +the likelihood of the dreaded UE events and system 'panics'. + + +In addition, PCI Bus Parity and SERR Errors are scanned for on PCI devices +in order to determine if errors are occurring on data transfers. +The presence of PCI Parity errors must be examined with a grain of salt. +There are several addin adapters that do NOT follow the PCI specification +with regards to Parity generation and reporting. The specification says +the vendor should tie the parity status bits to 0 if they do not intend +to generate parity. Some vendors do not do this, and thus the parity bit +can "float" giving false positives. + +The PCI Parity EDAC device has the ability to "skip" known flakey +cards during the parity scan. These are set by the parity "blacklist" +interface in the sysfs for PCI Parity. (See the PCI section in the sysfs +section below.) There is also a parity "whitelist" which is used as +an explicit list of devices to scan, while the blacklist is a list +of devices to skip. + +EDAC will have future error detectors that will be added or integrated +into EDAC in the following list: + + MCE Machine Check Exception + MCA Machine Check Architecture + NMI NMI notification of ECC errors + MSRs Machine Specific Register error cases + and other mechanisms. + +These errors are usually bus errors, ECC errors, thermal throttling +and the like. + + +============================================================================ +EDAC VERSIONING + +EDAC is composed of a "core" module (edac_mc.ko) and several Memory +Controller (MC) driver modules. On a given system, the CORE +is loaded and one MC driver will be loaded. Both the CORE and +the MC driver have individual versions that reflect current release +level of their respective modules. Thus, to "report" on what version +a system is running, one must report both the CORE's and the +MC driver's versions. + + +LOADING + +If 'edac' was statically linked with the kernel then no loading is +necessary. If 'edac' was built as modules then simply modprobe the +'edac' pieces that you need. You should be able to modprobe +hardware-specific modules and have the dependencies load the necessary core +modules. + +Example: + +$> modprobe amd76x_edac + +loads both the amd76x_edac.ko memory controller module and the edac_mc.ko +core module. + + +============================================================================ +EDAC sysfs INTERFACE + +EDAC presents a 'sysfs' interface for control, reporting and attribute +reporting purposes. + +EDAC lives in the /sys/devices/system/edac directory. Within this directory +there currently reside 2 'edac' components: + + mc memory controller(s) system + pci PCI status system + + +============================================================================ +Memory Controller (mc) Model + +First a background on the memory controller's model abstracted in EDAC. +Each mc device controls a set of DIMM memory modules. These modules are +layed out in a Chip-Select Row (csrowX) and Channel table (chX). There can +be multiple csrows and two channels. + +Memory controllers allow for several csrows, with 8 csrows being a typical value. +Yet, the actual number of csrows depends on the electrical "loading" +of a given motherboard, memory controller and DIMM characteristics. + +Dual channels allows for 128 bit data transfers to the CPU from memory. + + + Channel 0 Channel 1 + =================================== + csrow0 | DIMM_A0 | DIMM_B0 | + csrow1 | DIMM_A0 | DIMM_B0 | + =================================== + + =================================== + csrow2 | DIMM_A1 | DIMM_B1 | + csrow3 | DIMM_A1 | DIMM_B1 | + =================================== + +In the above example table there are 4 physical slots on the motherboard +for memory DIMMs: + + DIMM_A0 + DIMM_B0 + DIMM_A1 + DIMM_B1 + +Labels for these slots are usually silk screened on the motherboard. Slots +labeled 'A' are channel 0 in this example. Slots labled 'B' +are channel 1. Notice that there are two csrows possible on a +physical DIMM. These csrows are allocated their csrow assignment +based on the slot into which the memory DIMM is placed. Thus, when 1 DIMM +is placed in each Channel, the csrows cross both DIMMs. + +Memory DIMMs come single or dual "ranked". A rank is a populated csrow. +Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above +will have 1 csrow, csrow0. csrow1 will be empty. On the other hand, +when 2 dual ranked DIMMs are similiaryly placed, then both csrow0 and +csrow1 will be populated. The pattern repeats itself for csrow2 and +csrow3. + +The representation of the above is reflected in the directory tree +in EDAC's sysfs interface. Starting in directory +/sys/devices/system/edac/mc each memory controller will be represented +by its own 'mcX' directory, where 'X" is the index of the MC. + + + ..../edac/mc/ + | + |->mc0 + |->mc1 + |->mc2 + .... + +Under each 'mcX' directory each 'csrowX' is again represented by a +'csrowX', where 'X" is the csrow index: + + + .../mc/mc0/ + | + |->csrow0 + |->csrow2 + |->csrow3 + .... + +Notice that there is no csrow1, which indicates that csrow0 is +composed of a single ranked DIMMs. This should also apply in both +Channels, in order to have dual-channel mode be operational. Since +both csrow2 and csrow3 are populated, this indicates a dual ranked +set of DIMMs for channels 0 and 1. + + +Within each of the 'mc','mcX' and 'csrowX' directories are several +EDAC control and attribute files. + + +============================================================================ +DIRECTORY 'mc' + +In directory 'mc' are EDAC system overall control and attribute files: + + +Panic on UE control file: + + 'panic_on_ue' + + An uncorrectable error will cause a machine panic. This is usually + desirable. It is a bad idea to continue when an uncorrectable error + occurs - it is indeterminate what was uncorrected and the operating + system context might be so mangled that continuing will lead to further + corruption. If the kernel has MCE configured, then EDAC will never + notice the UE. + + LOAD TIME: module/kernel parameter: panic_on_ue=[0|1] + + RUN TIME: echo "1" >/sys/devices/system/edac/mc/panic_on_ue + + +Log UE control file: + + 'log_ue' + + Generate kernel messages describing uncorrectable errors. These errors + are reported through the system message log system. UE statistics + will be accumulated even when UE logging is disabled. + + LOAD TIME: module/kernel parameter: log_ue=[0|1] + + RUN TIME: echo "1" >/sys/devices/system/edac/mc/log_ue + + +Log CE control file: + + 'log_ce' + + Generate kernel messages describing correctable errors. These + errors are reported through the system message log system. + CE statistics will be accumulated even when CE logging is disabled. + + LOAD TIME: module/kernel parameter: log_ce=[0|1] + + RUN TIME: echo "1" >/sys/devices/system/edac/mc/log_ce + + +Polling period control file: + + 'poll_msec' + + The time period, in milliseconds, for polling for error information. + Too small a value wastes resources. Too large a value might delay + necessary handling of errors and might loose valuable information for + locating the error. 1000 milliseconds (once each second) is about + right for most uses. + + LOAD TIME: module/kernel parameter: poll_msec=[0|1] + + RUN TIME: echo "1000" >/sys/devices/system/edac/mc/poll_msec + + +Module Version read-only attribute file: + + 'mc_version' + + The EDAC CORE modules's version and compile date are shown here to + indicate what EDAC is running. + + + +============================================================================ +'mcX' DIRECTORIES + + +In 'mcX' directories are EDAC control and attribute files for +this 'X" instance of the memory controllers: + + +Counter reset control file: + + 'reset_counters' + + This write-only control file will zero all the statistical counters + for UE and CE errors. Zeroing the counters will also reset the timer + indicating how long since the last counter zero. This is useful + for computing errors/time. Since the counters are always reset at + driver initialization time, no module/kernel parameter is available. + + RUN TIME: echo "anything" >/sys/devices/system/edac/mc/mc0/counter_reset + + This resets the counters on memory controller 0 + + +Seconds since last counter reset control file: + + 'seconds_since_reset' + + This attribute file displays how many seconds have elapsed since the + last counter reset. This can be used with the error counters to + measure error rates. + + + +DIMM capability attribute file: + + 'edac_capability' + + The EDAC (Error Detection and Correction) capabilities/modes of + the memory controller hardware. + + +DIMM Current Capability attribute file: + + 'edac_current_capability' + + The EDAC capabilities available with the hardware + configuration. This may not be the same as "EDAC capability" + if the correct memory is not used. If a memory controller is + capable of EDAC, but DIMMs without check bits are in use, then + Parity, SECDED, S4ECD4ED capabilities will not be available + even though the memory controller might be capable of those + modes with the proper memory loaded. + + +Memory Type supported on this controller attribute file: + + 'supported_mem_type' + + This attribute file displays the memory type, usually + buffered and unbuffered DIMMs. + + +Memory Controller name attribute file: + + 'mc_name' + + This attribute file displays the type of memory controller + that is being utilized. + + +Memory Controller Module name attribute file: + + 'module_name' + + This attribute file displays the memory controller module name, + version and date built. The name of the memory controller + hardware - some drivers work with multiple controllers and + this field shows which hardware is present. + + +Total memory managed by this memory controller attribute file: + + 'size_mb' + + This attribute file displays, in count of megabytes, of memory + that this instance of memory controller manages. + + +Total Uncorrectable Errors count attribute file: + + 'ue_count' + + This attribute file displays the total count of uncorrectable + errors that have occurred on this memory controller. If panic_on_ue + is set this counter will not have a chance to increment, + since EDAC will panic the system. + + +Total UE count that had no information attribute fileY: + + 'ue_noinfo_count' + + This attribute file displays the number of UEs that + have occurred have occurred with no informations as to which DIMM + slot is having errors. + + +Total Correctable Errors count attribute file: + + 'ce_count' + + This attribute file displays the total count of correctable + errors that have occurred on this memory controller. This + count is very important to examine. CEs provide early + indications that a DIMM is beginning to fail. This count + field should be monitored for non-zero values and report + such information to the system administrator. + + +Total Correctable Errors count attribute file: + + 'ce_noinfo_count' + + This attribute file displays the number of CEs that + have occurred wherewith no informations as to which DIMM slot + is having errors. Memory is handicapped, but operational, + yet no information is available to indicate which slot + the failing memory is in. This count field should be also + be monitored for non-zero values. + +Device Symlink: + + 'device' + + Symlink to the memory controller device + + + +============================================================================ +'csrowX' DIRECTORIES + +In the 'csrowX' directories are EDAC control and attribute files for +this 'X" instance of csrow: + + +Total Uncorrectable Errors count attribute file: + + 'ue_count' + + This attribute file displays the total count of uncorrectable + errors that have occurred on this csrow. If panic_on_ue is set + this counter will not have a chance to increment, since EDAC + will panic the system. + + +Total Correctable Errors count attribute file: + + 'ce_count' + + This attribute file displays the total count of correctable + errors that have occurred on this csrow. This + count is very important to examine. CEs provide early + indications that a DIMM is beginning to fail. This count + field should be monitored for non-zero values and report + such information to the system administrator. + + +Total memory managed by this csrow attribute file: + + 'size_mb' + + This attribute file displays, in count of megabytes, of memory + that this csrow contatins. + + +Memory Type attribute file: + + 'mem_type' + + This attribute file will display what type of memory is currently + on this csrow. Normally, either buffered or unbuffered memory. + + +EDAC Mode of operation attribute file: + + 'edac_mode' + + This attribute file will display what type of Error detection + and correction is being utilized. + + +Device type attribute file: + + 'dev_type' + + This attribute file will display what type of DIMM device is + being utilized. Example: x4 + + +Channel 0 CE Count attribute file: + + 'ch0_ce_count' + + This attribute file will display the count of CEs on this + DIMM located in channel 0. + + +Channel 0 UE Count attribute file: + + 'ch0_ue_count' + + This attribute file will display the count of UEs on this + DIMM located in channel 0. + + +Channel 0 DIMM Label control file: + + 'ch0_dimm_label' + + This control file allows this DIMM to have a label assigned + to it. With this label in the module, when errors occur + the output can provide the DIMM label in the system log. + This becomes vital for panic events to isolate the + cause of the UE event. + + DIMM Labels must be assigned after booting, with information + that correctly identifies the physical slot with its + silk screen label. This information is currently very + motherboard specific and determination of this information + must occur in userland at this time. + + +Channel 1 CE Count attribute file: + + 'ch1_ce_count' + + This attribute file will display the count of CEs on this + DIMM located in channel 1. + + +Channel 1 UE Count attribute file: + + 'ch1_ue_count' + + This attribute file will display the count of UEs on this + DIMM located in channel 0. + + +Channel 1 DIMM Label control file: + + 'ch1_dimm_label' + + This control file allows this DIMM to have a label assigned + to it. With this label in the module, when errors occur + the output can provide the DIMM label in the system log. + This becomes vital for panic events to isolate the + cause of the UE event. + + DIMM Labels must be assigned after booting, with information + that correctly identifies the physical slot with its + silk screen label. This information is currently very + motherboard specific and determination of this information + must occur in userland at this time. + + +============================================================================ +SYSTEM LOGGING + +If logging for UEs and CEs are enabled then system logs will have +error notices indicating errors that have been detected: + +MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0, +channel 1 "DIMM_B1": amd76x_edac + +MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0, +channel 1 "DIMM_B1": amd76x_edac + + +The structure of the message is: + the memory controller (MC0) + Error type (CE) + memory page (0x283) + offset in the page (0xce0) + the byte granularity (grain 8) + or resolution of the error + the error syndrome (0xb741) + memory row (row 0) + memory channel (channel 1) + DIMM label, if set prior (DIMM B1 + and then an optional, driver-specific message that may + have additional information. + +Both UEs and CEs with no info will lack all but memory controller, +error type, a notice of "no info" and then an optional, +driver-specific error message. + + + +============================================================================ +PCI Bus Parity Detection + + +On Header Type 00 devices the primary status is looked at +for any parity error regardless of whether Parity is enabled on the +device. (The spec indicates parity is generated in some cases). +On Header Type 01 bridges, the secondary status register is also +looked at to see if parity ocurred on the bus on the other side of +the bridge. + + +SYSFS CONFIGURATION + +Under /sys/devices/system/edac/pci are control and attribute files as follows: + + +Enable/Disable PCI Parity checking control file: + + 'check_pci_parity' + + + This control file enables or disables the PCI Bus Parity scanning + operation. Writing a 1 to this file enables the scanning. Writing + a 0 to this file disables the scanning. + + Enable: + echo "1" >/sys/devices/system/edac/pci/check_pci_parity + + Disable: + echo "0" >/sys/devices/system/edac/pci/check_pci_parity + + + +Panic on PCI PARITY Error: + + 'panic_on_pci_parity' + + + This control files enables or disables panic'ing when a parity + error has been detected. + + + module/kernel parameter: panic_on_pci_parity=[0|1] + + Enable: + echo "1" >/sys/devices/system/edac/pci/panic_on_pci_parity + + Disable: + echo "0" >/sys/devices/system/edac/pci/panic_on_pci_parity + + +Parity Count: + + 'pci_parity_count' + + This attribute file will display the number of parity errors that + have been detected. + + + +PCI Device Whitelist: + + 'pci_parity_whitelist' + + This control file allows for an explicit list of PCI devices to be + scanned for parity errors. Only devices found on this list will + be examined. The list is a line of hexadecimel VENDOR and DEVICE + ID tuples: + + 1022:7450,1434:16a6 + + One or more can be inserted, seperated by a comma. + + To write the above list doing the following as one command line: + + echo "1022:7450,1434:16a6" + > /sys/devices/system/edac/pci/pci_parity_whitelist + + + + To display what the whitelist is, simply 'cat' the same file. + + +PCI Device Blacklist: + + 'pci_parity_blacklist' + + This control file allows for a list of PCI devices to be + skipped for scanning. + The list is a line of hexadecimel VENDOR and DEVICE ID tuples: + + 1022:7450,1434:16a6 + + One or more can be inserted, seperated by a comma. + + To write the above list doing the following as one command line: + + echo "1022:7450,1434:16a6" + > /sys/devices/system/edac/pci/pci_parity_blacklist + + + To display what the whitelist current contatins, + simply 'cat' the same file. + +======================================================================= + +PCI Vendor and Devices IDs can be obtained with the lspci command. Using +the -n option lspci will display the vendor and device IDs. The system +adminstrator will have to determine which devices should be scanned or +skipped. + + + +The two lists (white and black) are prioritized. blacklist is the lower +priority and will NOT be utilized when a whitelist has been set. +Turn OFF a whitelist by an empty echo command: + + echo > /sys/devices/system/edac/pci/pci_parity_whitelist + +and any previous blacklist will be utililzed. + diff --git a/Documentation/filesystems/fuse.txt b/Documentation/filesystems/fuse.txt index 6b5741e651a..33f74310d16 100644 --- a/Documentation/filesystems/fuse.txt +++ b/Documentation/filesystems/fuse.txt @@ -86,6 +86,62 @@ Mount options The default is infinite. Note that the size of read requests is limited anyway to 32 pages (which is 128kbyte on i386). +Sysfs +~~~~~ + +FUSE sets up the following hierarchy in sysfs: + + /sys/fs/fuse/connections/N/ + +where N is an increasing number allocated to each new connection. + +For each connection the following attributes are defined: + + 'waiting' + + The number of requests which are waiting to be transfered to + userspace or being processed by the filesystem daemon. If there is + no filesystem activity and 'waiting' is non-zero, then the + filesystem is hung or deadlocked. + + 'abort' + + Writing anything into this file will abort the filesystem + connection. This means that all waiting requests will be aborted an + error returned for all aborted and new requests. + +Only a privileged user may read or write these attributes. + +Aborting a filesystem connection +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +It is possible to get into certain situations where the filesystem is +not responding. Reasons for this may be: + + a) Broken userspace filesystem implementation + + b) Network connection down + + c) Accidental deadlock + + d) Malicious deadlock + +(For more on c) and d) see later sections) + +In either of these cases it may be useful to abort the connection to +the filesystem. There are several ways to do this: + + - Kill the filesystem daemon. Works in case of a) and b) + + - Kill the filesystem daemon and all users of the filesystem. Works + in all cases except some malicious deadlocks + + - Use forced umount (umount -f). Works in all cases but only if + filesystem is still attached (it hasn't been lazy unmounted) + + - Abort filesystem through the sysfs interface. Most powerful + method, always works. + How do non-privileged mounts work? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -313,3 +369,10 @@ faulted with get_user_pages(). The 'req->locked' flag indicates when the copy is taking place, and interruption is delayed until this flag is unset. +Scenario 3 - Tricky deadlock with asynchronous read +--------------------------------------------------- + +The same situation as above, except thread-1 will wait on page lock +and hence it will be uninterruptible as well. The solution is to +abort the connection with forced umount (if mount is attached) or +through the abort attribute in sysfs. diff --git a/Documentation/scsi/ChangeLog.megaraid_sas b/Documentation/scsi/ChangeLog.megaraid_sas new file mode 100644 index 00000000000..f8c16cbf56b --- /dev/null +++ b/Documentation/scsi/ChangeLog.megaraid_sas @@ -0,0 +1,24 @@ +1 Release Date : Mon Jan 23 14:09:01 PST 2006 - Sumant Patro <Sumant.Patro@lsil.com> +2 Current Version : 00.00.02.02 +3 Older Version : 00.00.02.01 + +i. New template defined to represent each family of controllers (identified by processor used). + The template will have defintions that will be initialised to appropritae values for a specific family of controllers. The template definition has four function pointers. During driver initialisation the function pointers will be set based on the controller family type. This change is done to support new controllers that has different processors and thus different register set. + + -Sumant Patro <Sumant.Patro@lsil.com> + +1 Release Date : Mon Dec 19 14:36:26 PST 2005 - Sumant Patro <Sumant.Patro@lsil.com> +2 Current Version : 00.00.02.00-rc4 +3 Older Version : 00.00.02.01 + +i. Code reorganized to remove code duplication in megasas_build_cmd. + + "There's a lot of duplicate code megasas_build_cmd. Move that out of the different codepathes and merge the reminder of megasas_build_cmd into megasas_queue_command" + + - Christoph Hellwig <hch@lst.de> + +ii. Defined MEGASAS_IOC_FIRMWARE32 for code paths that handles 32 bit applications in 64 bit systems. + + "MEGASAS_IOC_FIRMWARE can't be redefined if CONFIG_COMPAT is set, we need to define a MEGASAS_IOC_FIRMWARE32 define so native binaries continue to work" + + - Christoph Hellwig <hch@lst.de> diff --git a/Documentation/scsi/aic79xx.txt b/Documentation/scsi/aic79xx.txt index 0aeef740a95..382b439b439 100644 --- a/Documentation/scsi/aic79xx.txt +++ b/Documentation/scsi/aic79xx.txt @@ -1,5 +1,5 @@ ==================================================================== -= Adaptec Ultra320 Family Manager Set v1.3.11 = += Adaptec Ultra320 Family Manager Set = = = = README for = = The Linux Operating System = @@ -63,6 +63,11 @@ The following information is available in this file: 68-pin) 2. Version History + 3.0 (December 1st, 2005) + - Updated driver to use SCSI transport class infrastructure + - Upported sequencer and core fixes from adaptec released + version 2.0.15 of the driver. + 1.3.11 (July 11, 2003) - Fix several deadlock issues. - Add 29320ALP and 39320B Id's. @@ -194,7 +199,7 @@ The following information is available in this file: supported) - Support for the PCI-X standard up to 133MHz - Support for the PCI v2.2 standard - - Domain Validation + - Domain Validation 2.2. Operating System Support: - Redhat Linux 7.2, 7.3, 8.0, Advanced Server 2.1 @@ -411,77 +416,53 @@ The following information is available in this file: http://www.adaptec.com. -5. Contacting Adaptec +5. Adaptec Customer Support A Technical Support Identification (TSID) Number is required for Adaptec technical support. - The 12-digit TSID can be found on the white barcode-type label - included inside the box with your product. The TSID helps us + included inside the box with your product. The TSID helps us provide more efficient service by accurately identifying your product and support status. + Support Options - Search the Adaptec Support Knowledgebase (ASK) at http://ask.adaptec.com for articles, troubleshooting tips, and - frequently asked questions for your product. + frequently asked questions about your product. - For support via Email, submit your question to Adaptec's - Technical Support Specialists at http://ask.adaptec.com. + Technical Support Specialists at http://ask.adaptec.com/. North America - - Visit our Web site at http://www.adaptec.com. - - To speak with a Fibre Channel/RAID/External Storage Technical - Support Specialist, call 1-321-207-2000, - Hours: Monday-Friday, 3:00 A.M. to 5:00 P.M., PST. - (Not open on holidays) - - For Technical Support in all other technologies including - SCSI, call 1-408-934-7274, - Hours: Monday-Friday, 6:00 A.M. to 5:00 P.M., PST. - (Not open on holidays) - - For after hours support, call 1-800-416-8066 ($99/call, - $149/call on holidays) - - To order Adaptec products including software and cables, call - 1-800-442-7274 or 1-408-957-7274. You can also visit our - online store at http://www.adaptecstore.com + - Visit our Web site at http://www.adaptec.com/. + - For information about Adaptec's support options, call + 408-957-2550, 24 hours a day, 7 days a week. + - To speak with a Technical Support Specialist, + * For hardware products, call 408-934-7274, + Monday to Friday, 3:00 am to 5:00 pm, PDT. + * For RAID and Fibre Channel products, call 321-207-2000, + Monday to Friday, 3:00 am to 5:00 pm, PDT. + To expedite your service, have your computer with you. + - To order Adaptec products, including accessories and cables, + call 408-957-7274. To order cables online go to + http://www.adaptec.com/buy-cables/. Europe - - Visit our Web site at http://www.adaptec-europe.com. - - English and French: To speak with a Technical Support - Specialist, call one of the following numbers: - - English: +32-2-352-3470 - - French: +32-2-352-3460 - Hours: Monday-Thursday, 10:00 to 12:30, 13:30 to 17:30 CET - Friday, 10:00 to 12:30, 13:30 to 16:30 CET - - German: To speak with a Technical Support Specialist, - call +49-89-456-40660 - Hours: Monday-Thursday, 09:30 to 12:30, 13:30 to 16:30 CET - Friday, 09:30 to 12:30, 13:30 to 15:00 CET - - To order Adaptec products, including accessories and cables: - - UK: +0800-96-65-26 or fax +0800-731-02-95 - - Other European countries: +32-11-300-379 - - Australia and New Zealand - - Visit our Web site at http://www.adaptec.com.au. - - To speak with a Technical Support Specialist, call - +612-9416-0698 - Hours: Monday-Friday, 10:00 A.M. to 4:30 P.M., EAT - (Not open on holidays) + - Visit our Web site at http://www.adaptec-europe.com/. + - To speak with a Technical Support Specialist, call, or email, + * German: +49 89 4366 5522, Monday-Friday, 9:00-17:00 CET, + http://ask-de.adaptec.com/. + * French: +49 89 4366 5533, Monday-Friday, 9:00-17:00 CET, + http://ask-fr.adaptec.com/. + * English: +49 89 4366 5544, Monday-Friday, 9:00-17:00 GMT, + http://ask.adaptec.com/. + - You can order Adaptec cables online at + http://www.adaptec.com/buy-cables/. Japan + - Visit our web site at http://www.adaptec.co.jp/. - To speak with a Technical Support Specialist, call - +81-3-5308-6120 - Hours: Monday-Friday, 9:00 a.m. to 12:00 p.m., 1:00 p.m. to - 6:00 p.m. TSC - - Hong Kong and China - - To speak with a Technical Support Specialist, call - +852-2869-7200 - Hours: Monday-Friday, 10:00 to 17:00. - - Fax Technical Support at +852-2869-7100. - - Singapore - - To speak with a Technical Support Specialist, call - +65-245-7470 - Hours: Monday-Friday, 10:00 to 17:00. - - Fax Technical Support at +852-2869-7100 + +81 3 5308 6120, Monday-Friday, 9:00 a.m. to 12:00 p.m., + 1:00 p.m. to 6:00 p.m. ------------------------------------------------------------------- /* diff --git a/Documentation/scsi/aic7xxx.txt b/Documentation/scsi/aic7xxx.txt index 47e74ddc4bc..3481fcded4c 100644 --- a/Documentation/scsi/aic7xxx.txt +++ b/Documentation/scsi/aic7xxx.txt @@ -309,81 +309,57 @@ The following information is available in this file: ----------------------------------------------------------------- Example: - 'options aic7xxx aic7xxx=verbose,no_probe,tag_info:{{},{,,10}},seltime:1" + 'options aic7xxx aic7xxx=verbose,no_probe,tag_info:{{},{,,10}},seltime:1' enables verbose logging, Disable EISA/VLB probing, and set tag depth on Controller 1/Target 2 to 10 tags. -3. Contacting Adaptec +4. Adaptec Customer Support A Technical Support Identification (TSID) Number is required for Adaptec technical support. - The 12-digit TSID can be found on the white barcode-type label - included inside the box with your product. The TSID helps us + included inside the box with your product. The TSID helps us provide more efficient service by accurately identifying your product and support status. + Support Options - Search the Adaptec Support Knowledgebase (ASK) at http://ask.adaptec.com for articles, troubleshooting tips, and - frequently asked questions for your product. + frequently asked questions about your product. - For support via Email, submit your question to Adaptec's - Technical Support Specialists at http://ask.adaptec.com. + Technical Support Specialists at http://ask.adaptec.com/. North America - - Visit our Web site at http://www.adaptec.com. - - To speak with a Fibre Channel/RAID/External Storage Technical - Support Specialist, call 1-321-207-2000, - Hours: Monday-Friday, 3:00 A.M. to 5:00 P.M., PST. - (Not open on holidays) - - For Technical Support in all other technologies including - SCSI, call 1-408-934-7274, - Hours: Monday-Friday, 6:00 A.M. to 5:00 P.M., PST. - (Not open on holidays) - - For after hours support, call 1-800-416-8066 ($99/call, - $149/call on holidays) - - To order Adaptec products including software and cables, call - 1-800-442-7274 or 1-408-957-7274. You can also visit our - online store at http://www.adaptecstore.com + - Visit our Web site at http://www.adaptec.com/. + - For information about Adaptec's support options, call + 408-957-2550, 24 hours a day, 7 days a week. + - To speak with a Technical Support Specialist, + * For hardware products, call 408-934-7274, + Monday to Friday, 3:00 am to 5:00 pm, PDT. + * For RAID and Fibre Channel products, call 321-207-2000, + Monday to Friday, 3:00 am to 5:00 pm, PDT. + To expedite your service, have your computer with you. + - To order Adaptec products, including accessories and cables, + call 408-957-7274. To order cables online go to + http://www.adaptec.com/buy-cables/. Europe - - Visit our Web site at http://www.adaptec-europe.com. - - English and French: To speak with a Technical Support - Specialist, call one of the following numbers: - - English: +32-2-352-3470 - - French: +32-2-352-3460 - Hours: Monday-Thursday, 10:00 to 12:30, 13:30 to 17:30 CET - Friday, 10:00 to 12:30, 13:30 to 16:30 CET - - German: To speak with a Technical Support Specialist, - call +49-89-456-40660 - Hours: Monday-Thursday, 09:30 to 12:30, 13:30 to 16:30 CET - Friday, 09:30 to 12:30, 13:30 to 15:00 CET - - To order Adaptec products, including accessories and cables: - - UK: +0800-96-65-26 or fax +0800-731-02-95 - - Other European countries: +32-11-300-379 - - Australia and New Zealand - - Visit our Web site at http://www.adaptec.com.au. - - To speak with a Technical Support Specialist, call - +612-9416-0698 - Hours: Monday-Friday, 10:00 A.M. to 4:30 P.M., EAT - (Not open on holidays) + - Visit our Web site at http://www.adaptec-europe.com/. + - To speak with a Technical Support Specialist, call, or email, + * German: +49 89 4366 5522, Monday-Friday, 9:00-17:00 CET, + http://ask-de.adaptec.com/. + * French: +49 89 4366 5533, Monday-Friday, 9:00-17:00 CET, + http://ask-fr.adaptec.com/. + * English: +49 89 4366 5544, Monday-Friday, 9:00-17:00 GMT, + http://ask.adaptec.com/. + - You can order Adaptec cables online at + http://www.adaptec.com/buy-cables/. Japan + - Visit our web site at http://www.adaptec.co.jp/. - To speak with a Technical Support Specialist, call - +81-3-5308-6120 - Hours: Monday-Friday, 9:00 a.m. to 12:00 p.m., 1:00 p.m. to - 6:00 p.m. TSC - - Hong Kong and China - - To speak with a Technical Support Specialist, call - +852-2869-7200 - Hours: Monday-Friday, 10:00 to 17:00. - - Fax Technical Support at +852-2869-7100. - - Singapore - - To speak with a Technical Support Specialist, call - +65-245-7470 - Hours: Monday-Friday, 10:00 to 17:00. - - Fax Technical Support at +852-2869-7100 + +81 3 5308 6120, Monday-Friday, 9:00 a.m. to 12:00 p.m., + 1:00 p.m. to 6:00 p.m. ------------------------------------------------------------------- /* diff --git a/Documentation/sysctl/vm.txt b/Documentation/sysctl/vm.txt index 6910c0136f8..391dd64363e 100644 --- a/Documentation/sysctl/vm.txt +++ b/Documentation/sysctl/vm.txt @@ -27,6 +27,7 @@ Currently, these files are in /proc/sys/vm: - laptop_mode - block_dump - drop-caches +- zone_reclaim_mode ============================================================== @@ -120,3 +121,20 @@ set to pcp->high/4. The upper limit of batch is (PAGE_SHIFT * 8) The initial value is zero. Kernel does not use this value at boot time to set the high water marks for each per cpu page list. + +=============================================================== + +zone_reclaim_mode: + +This is set during bootup to 1 if it is determined that pages from +remote zones will cause a significant performance reduction. The +page allocator will then reclaim easily reusable pages (those page +cache pages that are currently not used) before going off node. + +The user can override this setting. It may be beneficial to switch +off zone reclaim if the system is used for a file server and all +of memory should be used for caching files from disk. + +It may be beneficial to switch this on if one wants to do zone +reclaim regardless of the numa distances in the system. + diff --git a/Documentation/video4linux/CARDLIST.tuner b/Documentation/video4linux/CARDLIST.tuner index 0bf3d5bf9ef..f6d0cf7b792 100644 --- a/Documentation/video4linux/CARDLIST.tuner +++ b/Documentation/video4linux/CARDLIST.tuner @@ -68,3 +68,4 @@ tuner=66 - LG NTSC (TALN mini series) tuner=67 - Philips TD1316 Hybrid Tuner tuner=68 - Philips TUV1236D ATSC/NTSC dual in tuner=69 - Tena TNF 5335 MF +tuner=70 - Samsung TCPN 2121P30A |