diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/networking/e1000.txt | 451 | ||||
-rw-r--r-- | Documentation/networking/phy.txt | 13 |
2 files changed, 275 insertions, 189 deletions
diff --git a/Documentation/networking/e1000.txt b/Documentation/networking/e1000.txt index 5c0a5cc0399..61b171cf531 100644 --- a/Documentation/networking/e1000.txt +++ b/Documentation/networking/e1000.txt @@ -1,7 +1,7 @@ Linux* Base Driver for the Intel(R) PRO/1000 Family of Adapters =============================================================== -November 15, 2005 +September 26, 2006 Contents @@ -9,6 +9,7 @@ Contents - In This Release - Identifying Your Adapter +- Building and Installation - Command Line Parameters - Speed and Duplex Configuration - Additional Configurations @@ -41,6 +42,9 @@ or later), lspci, and ifconfig to obtain the same information. Instructions on updating ethtool can be found in the section "Additional Configurations" later in this document. +NOTE: The Intel(R) 82562v 10/100 Network Connection only provides 10/100 +support. + Identifying Your Adapter ======================== @@ -51,28 +55,27 @@ Driver ID Guide at: http://support.intel.com/support/network/adapter/pro100/21397.htm For the latest Intel network drivers for Linux, refer to the following -website. In the search field, enter your adapter name or type, or use the +website. In the search field, enter your adapter name or type, or use the networking link on the left to search for your adapter: http://downloadfinder.intel.com/scripts-df/support_intel.asp -Command Line Parameters ======================= +Command Line Parameters +======================= If the driver is built as a module, the following optional parameters -are used by entering them on the command line with the modprobe or insmod -command using this syntax: +are used by entering them on the command line with the modprobe command +using this syntax: modprobe e1000 [<option>=<VAL1>,<VAL2>,...] - insmod e1000 [<option>=<VAL1>,<VAL2>,...] - For example, with two PRO/1000 PCI adapters, entering: - insmod e1000 TxDescriptors=80,128 + modprobe e1000 TxDescriptors=80,128 -loads the e1000 driver with 80 TX descriptors for the first adapter and 128 -TX descriptors for the second adapter. +loads the e1000 driver with 80 TX descriptors for the first adapter and +128 TX descriptors for the second adapter. The default value for each parameter is generally the recommended setting, unless otherwise noted. @@ -87,7 +90,7 @@ NOTES: For more information about the AutoNeg, Duplex, and Speed http://www.intel.com/design/network/applnots/ap450.htm A descriptor describes a data buffer and attributes related to - the data buffer. This information is accessed by the hardware. + the data buffer. This information is accessed by the hardware. AutoNeg @@ -96,9 +99,9 @@ AutoNeg Valid Range: 0x01-0x0F, 0x20-0x2F Default Value: 0x2F -This parameter is a bit mask that specifies which speed and duplex -settings the board advertises. When this parameter is used, the Speed -and Duplex parameters must not be specified. +This parameter is a bit-mask that specifies the speed and duplex settings +advertised by the adapter. When this parameter is used, the Speed and +Duplex parameters must not be specified. NOTE: Refer to the Speed and Duplex section of this readme for more information on the AutoNeg parameter. @@ -110,14 +113,15 @@ Duplex Valid Range: 0-2 (0=auto-negotiate, 1=half, 2=full) Default Value: 0 -Defines the direction in which data is allowed to flow. Can be either -one or two-directional. If both Duplex and the link partner are set to -auto-negotiate, the board auto-detects the correct duplex. If the link -partner is forced (either full or half), Duplex defaults to half-duplex. +This defines the direction in which data is allowed to flow. Can be +either one or two-directional. If both Duplex and the link partner are +set to auto-negotiate, the board auto-detects the correct duplex. If the +link partner is forced (either full or half), Duplex defaults to half- +duplex. FlowControl ----------- +----------- Valid Range: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx) Default Value: Reads flow control settings from the EEPROM @@ -127,57 +131,107 @@ to Ethernet PAUSE frames. InterruptThrottleRate --------------------- -(not supported on Intel 82542, 82543 or 82544-based adapters) -Valid Range: 100-100000 (0=off, 1=dynamic) -Default Value: 8000 - -This value represents the maximum number of interrupts per second the -controller generates. InterruptThrottleRate is another setting used in -interrupt moderation. Dynamic mode uses a heuristic algorithm to adjust -InterruptThrottleRate based on the current traffic load. +(not supported on Intel(R) 82542, 82543 or 82544-based adapters) +Valid Range: 0,1,3,100-100000 (0=off, 1=dynamic, 3=dynamic conservative) +Default Value: 3 + +The driver can limit the amount of interrupts per second that the adapter +will generate for incoming packets. It does this by writing a value to the +adapter that is based on the maximum amount of interrupts that the adapter +will generate per second. + +Setting InterruptThrottleRate to a value greater or equal to 100 +will program the adapter to send out a maximum of that many interrupts +per second, even if more packets have come in. This reduces interrupt +load on the system and can lower CPU utilization under heavy load, +but will increase latency as packets are not processed as quickly. + +The default behaviour of the driver previously assumed a static +InterruptThrottleRate value of 8000, providing a good fallback value for +all traffic types,but lacking in small packet performance and latency. +The hardware can handle many more small packets per second however, and +for this reason an adaptive interrupt moderation algorithm was implemented. + +Since 7.3.x, the driver has two adaptive modes (setting 1 or 3) in which +it dynamically adjusts the InterruptThrottleRate value based on the traffic +that it receives. After determining the type of incoming traffic in the last +timeframe, it will adjust the InterruptThrottleRate to an appropriate value +for that traffic. + +The algorithm classifies the incoming traffic every interval into +classes. Once the class is determined, the InterruptThrottleRate value is +adjusted to suit that traffic type the best. There are three classes defined: +"Bulk traffic", for large amounts of packets of normal size; "Low latency", +for small amounts of traffic and/or a significant percentage of small +packets; and "Lowest latency", for almost completely small packets or +minimal traffic. + +In dynamic conservative mode, the InterruptThrottleRate value is set to 4000 +for traffic that falls in class "Bulk traffic". If traffic falls in the "Low +latency" or "Lowest latency" class, the InterruptThrottleRate is increased +stepwise to 20000. This default mode is suitable for most applications. + +For situations where low latency is vital such as cluster or +grid computing, the algorithm can reduce latency even more when +InterruptThrottleRate is set to mode 1. In this mode, which operates +the same as mode 3, the InterruptThrottleRate will be increased stepwise to +70000 for traffic in class "Lowest latency". + +Setting InterruptThrottleRate to 0 turns off any interrupt moderation +and may improve small packet latency, but is generally not suitable +for bulk throughput traffic. NOTE: InterruptThrottleRate takes precedence over the TxAbsIntDelay and - RxAbsIntDelay parameters. In other words, minimizing the receive + RxAbsIntDelay parameters. In other words, minimizing the receive and/or transmit absolute delays does not force the controller to generate more interrupts than what the Interrupt Throttle Rate allows. -CAUTION: If you are using the Intel PRO/1000 CT Network Connection +CAUTION: If you are using the Intel(R) PRO/1000 CT Network Connection (controller 82547), setting InterruptThrottleRate to a value greater than 75,000, may hang (stop transmitting) adapters - under certain network conditions. If this occurs a NETDEV - WATCHDOG message is logged in the system event log. In + under certain network conditions. If this occurs a NETDEV + WATCHDOG message is logged in the system event log. In addition, the controller is automatically reset, restoring - the network connection. To eliminate the potential for the + the network connection. To eliminate the potential for the hang, ensure that InterruptThrottleRate is set no greater than 75,000 and is not set to 0. NOTE: When e1000 is loaded with default settings and multiple adapters are in use simultaneously, the CPU utilization may increase non- - linearly. In order to limit the CPU utilization without impacting + linearly. In order to limit the CPU utilization without impacting the overall throughput, we recommend that you load the driver as follows: - insmod e1000.o InterruptThrottleRate=3000,3000,3000 + modprobe e1000 InterruptThrottleRate=3000,3000,3000 This sets the InterruptThrottleRate to 3000 interrupts/sec for - the first, second, and third instances of the driver. The range + the first, second, and third instances of the driver. The range of 2000 to 3000 interrupts per second works on a majority of systems and is a good starting point, but the optimal value will - be platform-specific. If CPU utilization is not a concern, use + be platform-specific. If CPU utilization is not a concern, use RX_POLLING (NAPI) and default driver settings. + RxDescriptors ------------- Valid Range: 80-256 for 82542 and 82543-based adapters 80-4096 for all other supported adapters Default Value: 256 -This value specifies the number of receive descriptors allocated by the -driver. Increasing this value allows the driver to buffer more incoming -packets. Each descriptor is 16 bytes. A receive buffer is also -allocated for each descriptor and is 2048. +This value specifies the number of receive buffer descriptors allocated +by the driver. Increasing this value allows the driver to buffer more +incoming packets, at the expense of increased system memory utilization. + +Each descriptor is 16 bytes. A receive buffer is also allocated for each +descriptor and can be either 2048, 4096, 8192, or 16384 bytes, depending +on the MTU setting. The maximum MTU size is 16110. + +NOTE: MTU designates the frame size. It only needs to be set for Jumbo + Frames. Depending on the available system resources, the request + for a higher number of receive descriptors may be denied. In this + case, use a lower number. RxIntDelay @@ -187,17 +241,17 @@ Default Value: 0 This value delays the generation of receive interrupts in units of 1.024 microseconds. Receive interrupt reduction can improve CPU efficiency if -properly tuned for specific network traffic. Increasing this value adds +properly tuned for specific network traffic. Increasing this value adds extra latency to frame reception and can end up decreasing the throughput -of TCP traffic. If the system is reporting dropped receives, this value +of TCP traffic. If the system is reporting dropped receives, this value may be set too high, causing the driver to run out of available receive descriptors. CAUTION: When setting RxIntDelay to a value other than 0, adapters may - hang (stop transmitting) under certain network conditions. If + hang (stop transmitting) under certain network conditions. If this occurs a NETDEV WATCHDOG message is logged in the system - event log. In addition, the controller is automatically reset, - restoring the network connection. To eliminate the potential + event log. In addition, the controller is automatically reset, + restoring the network connection. To eliminate the potential for the hang ensure that RxIntDelay is set to 0. @@ -208,7 +262,7 @@ Valid Range: 0-65535 (0=off) Default Value: 128 This value, in units of 1.024 microseconds, limits the delay in which a -receive interrupt is generated. Useful only if RxIntDelay is non-zero, +receive interrupt is generated. Useful only if RxIntDelay is non-zero, this value ensures that an interrupt is generated after the initial packet is received within the set amount of time. Proper tuning, along with RxIntDelay, may improve traffic throughput in specific network @@ -222,9 +276,9 @@ Valid Settings: 0, 10, 100, 1000 Default Value: 0 (auto-negotiate at all supported speeds) Speed forces the line speed to the specified value in megabits per second -(Mbps). If this parameter is not specified or is set to 0 and the link +(Mbps). If this parameter is not specified or is set to 0 and the link partner is set to auto-negotiate, the board will auto-detect the correct -speed. Duplex should also be set when Speed is set to either 10 or 100. +speed. Duplex should also be set when Speed is set to either 10 or 100. TxDescriptors @@ -234,7 +288,7 @@ Valid Range: 80-256 for 82542 and 82543-based adapters Default Value: 256 This value is the number of transmit descriptors allocated by the driver. -Increasing this value allows the driver to queue more transmits. Each +Increasing this value allows the driver to queue more transmits. Each descriptor is 16 bytes. NOTE: Depending on the available system resources, the request for a @@ -248,8 +302,8 @@ Valid Range: 0-65535 (0=off) Default Value: 64 This value delays the generation of transmit interrupts in units of -1.024 microseconds. Transmit interrupt reduction can improve CPU -efficiency if properly tuned for specific network traffic. If the +1.024 microseconds. Transmit interrupt reduction can improve CPU +efficiency if properly tuned for specific network traffic. If the system is reporting dropped transmits, this value may be set too high causing the driver to run out of available transmit descriptors. @@ -261,7 +315,7 @@ Valid Range: 0-65535 (0=off) Default Value: 64 This value, in units of 1.024 microseconds, limits the delay in which a -transmit interrupt is generated. Useful only if TxIntDelay is non-zero, +transmit interrupt is generated. Useful only if TxIntDelay is non-zero, this value ensures that an interrupt is generated after the initial packet is sent on the wire within the set amount of time. Proper tuning, along with TxIntDelay, may improve traffic throughput in specific @@ -288,15 +342,15 @@ fiber interface board only links at 1000 Mbps full-duplex. For copper-based boards, the keywords interact as follows: - The default operation is auto-negotiate. The board advertises all + The default operation is auto-negotiate. The board advertises all supported speed and duplex combinations, and it links at the highest common speed and duplex mode IF the link partner is set to auto-negotiate. If Speed = 1000, limited auto-negotiation is enabled and only 1000 Mbps is advertised (The 1000BaseT spec requires auto-negotiation.) - If Speed = 10 or 100, then both Speed and Duplex should be set. Auto- - negotiation is disabled, and the AutoNeg parameter is ignored. Partner + If Speed = 10 or 100, then both Speed and Duplex should be set. Auto- + negotiation is disabled, and the AutoNeg parameter is ignored. Partner SHOULD also be forced. The AutoNeg parameter is used when more control is required over the @@ -304,7 +358,7 @@ auto-negotiation process. It should be used when you wish to control which speed and duplex combinations are advertised during the auto-negotiation process. -The parameter may be specified as either a decimal or hexidecimal value as +The parameter may be specified as either a decimal or hexadecimal value as determined by the bitmap below. Bit position 7 6 5 4 3 2 1 0 @@ -337,20 +391,19 @@ Additional Configurations Configuring the Driver on Different Distributions ------------------------------------------------- - Configuring a network driver to load properly when the system is started - is distribution dependent. Typically, the configuration process involves + is distribution dependent. Typically, the configuration process involves adding an alias line to /etc/modules.conf or /etc/modprobe.conf as well - as editing other system startup scripts and/or configuration files. Many + as editing other system startup scripts and/or configuration files. Many popular Linux distributions ship with tools to make these changes for you. To learn the proper way to configure a network device for your system, - refer to your distribution documentation. If during this process you are + refer to your distribution documentation. If during this process you are asked for the driver or module name, the name for the Linux Base Driver - for the Intel PRO/1000 Family of Adapters is e1000. + for the Intel(R) PRO/1000 Family of Adapters is e1000. As an example, if you install the e1000 driver for two PRO/1000 adapters (eth0 and eth1) and set the speed and duplex to 10full and 100half, add - the following to modules.conf or modprobe.conf: + the following to modules.conf or or modprobe.conf: alias eth0 e1000 alias eth1 e1000 @@ -358,9 +411,8 @@ Additional Configurations Viewing Link Messages --------------------- - Link messages will not be displayed to the console if the distribution is - restricting system messages. In order to see network driver link messages + restricting system messages. In order to see network driver link messages on your console, set dmesg to eight by entering the following: dmesg -n 8 @@ -369,11 +421,9 @@ Additional Configurations Jumbo Frames ------------ - - The driver supports Jumbo Frames for all adapters except 82542 and - 82573-based adapters. Jumbo Frames support is enabled by changing the - MTU to a value larger than the default of 1500. Use the ifconfig command - to increase the MTU size. For example: + Jumbo Frames support is enabled by changing the MTU to a value larger than + the default of 1500. Use the ifconfig command to increase the MTU size. + For example: ifconfig eth<x> mtu 9000 up @@ -390,26 +440,49 @@ Additional Configurations - To enable Jumbo Frames, increase the MTU size on the interface beyond 1500. - - The maximum MTU setting for Jumbo Frames is 16110. This value coincides + + - The maximum MTU setting for Jumbo Frames is 16110. This value coincides with the maximum Jumbo Frames size of 16128. + - Using Jumbo Frames at 10 or 100 Mbps may result in poor performance or loss of link. + - Some Intel gigabit adapters that support Jumbo Frames have a frame size limit of 9238 bytes, with a corresponding MTU size limit of 9216 bytes. - The adapters with this limitation are based on the Intel 82571EB and - 82572EI controllers, which correspond to these product names: - Intel® PRO/1000 PT Dual Port Server Adapter - Intel® PRO/1000 PF Dual Port Server Adapter - Intel® PRO/1000 PT Server Adapter - Intel® PRO/1000 PT Desktop Adapter - Intel® PRO/1000 PF Server Adapter - - - The Intel PRO/1000 PM Network Connection does not support jumbo frames. + The adapters with this limitation are based on the Intel(R) 82571EB, + 82572EI, 82573L and 80003ES2LAN controller. These correspond to the + following product names: + Intel(R) PRO/1000 PT Server Adapter + Intel(R) PRO/1000 PT Desktop Adapter + Intel(R) PRO/1000 PT Network Connection + Intel(R) PRO/1000 PT Dual Port Server Adapter + Intel(R) PRO/1000 PT Dual Port Network Connection + Intel(R) PRO/1000 PF Server Adapter + Intel(R) PRO/1000 PF Network Connection + Intel(R) PRO/1000 PF Dual Port Server Adapter + Intel(R) PRO/1000 PB Server Connection + Intel(R) PRO/1000 PL Network Connection + Intel(R) PRO/1000 EB Network Connection with I/O Acceleration + Intel(R) PRO/1000 EB Backplane Connection with I/O Acceleration + Intel(R) PRO/1000 PT Quad Port Server Adapter + + - Adapters based on the Intel(R) 82542 and 82573V/E controller do not + support Jumbo Frames. These correspond to the following product names: + Intel(R) PRO/1000 Gigabit Server Adapter + Intel(R) PRO/1000 PM Network Connection + + - The following adapters do not support Jumbo Frames: + Intel(R) 82562V 10/100 Network Connection + Intel(R) 82566DM Gigabit Network Connection + Intel(R) 82566DC Gigabit Network Connection + Intel(R) 82566MM Gigabit Network Connection + Intel(R) 82566MC Gigabit Network Connection + Intel(R) 82562GT 10/100 Network Connection + Intel(R) 82562G 10/100 Network Connection Ethtool ------- - The driver utilizes the ethtool interface for driver configuration and diagnostics, as well as displaying statistical information. Ethtool version 1.6 or later is required for this functionality. @@ -417,15 +490,14 @@ Additional Configurations The latest release of ethtool can be found from http://sourceforge.net/projects/gkernel. - NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support + NOTE: Ethtool 1.6 only supports a limited set of ethtool options. Support for a more complete ethtool feature set can be enabled by upgrading ethtool to ethtool-1.8.1. Enabling Wake on LAN* (WoL) --------------------------- - - WoL is configured through the Ethtool* utility. Ethtool is included with - all versions of Red Hat after Red Hat 7.2. For other Linux distributions, + WoL is configured through the Ethtool* utility. Ethtool is included with + all versions of Red Hat after Red Hat 7.2. For other Linux distributions, download and install Ethtool from the following website: http://sourceforge.net/projects/gkernel. @@ -436,11 +508,17 @@ Additional Configurations For this driver version, in order to enable WoL, the e1000 driver must be loaded when shutting down or rebooting the system. + Wake On LAN is only supported on port A for the following devices: + Intel(R) PRO/1000 PT Dual Port Network Connection + Intel(R) PRO/1000 PT Dual Port Server Connection + Intel(R) PRO/1000 PT Dual Port Server Adapter + Intel(R) PRO/1000 PF Dual Port Server Adapter + Intel(R) PRO/1000 PT Quad Port Server Adapter + NAPI ---- - - NAPI (Rx polling mode) is supported in the e1000 driver. NAPI is enabled - or disabled based on the configuration of the kernel. To override + NAPI (Rx polling mode) is supported in the e1000 driver. NAPI is enabled + or disabled based on the configuration of the kernel. To override the default, use the following compile-time flags. To enable NAPI, compile the driver module, passing in a configuration option: @@ -457,88 +535,105 @@ Additional Configurations Known Issues ============ - Jumbo Frames System Requirement - ------------------------------- - - Memory allocation failures have been observed on Linux systems with 64 MB - of RAM or less that are running Jumbo Frames. If you are using Jumbo - Frames, your system may require more than the advertised minimum - requirement of 64 MB of system memory. - - Performance Degradation with Jumbo Frames - ----------------------------------------- - - Degradation in throughput performance may be observed in some Jumbo frames - environments. If this is observed, increasing the application's socket - buffer size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values - may help. See the specific application manual and - /usr/src/linux*/Documentation/ - networking/ip-sysctl.txt for more details. - - Jumbo frames on Foundry BigIron 8000 switch - ------------------------------------------- - There is a known issue using Jumbo frames when connected to a Foundry - BigIron 8000 switch. This is a 3rd party limitation. If you experience - loss of packets, lower the MTU size. - - Multiple Interfaces on Same Ethernet Broadcast Network - ------------------------------------------------------ - - Due to the default ARP behavior on Linux, it is not possible to have - one system on two IP networks in the same Ethernet broadcast domain - (non-partitioned switch) behave as expected. All Ethernet interfaces - will respond to IP traffic for any IP address assigned to the system. - This results in unbalanced receive traffic. - - If you have multiple interfaces in a server, either turn on ARP - filtering by entering: - - echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter - (this only works if your kernel's version is higher than 2.4.5), - - NOTE: This setting is not saved across reboots. The configuration - change can be made permanent by adding the line: - net.ipv4.conf.all.arp_filter = 1 - to the file /etc/sysctl.conf - - or, - - install the interfaces in separate broadcast domains (either in - different switches or in a switch partitioned to VLANs). - - 82541/82547 can't link or are slow to link with some link partners - ----------------------------------------------------------------- - - There is a known compatibility issue with 82541/82547 and some - low-end switches where the link will not be established, or will - be slow to establish. In particular, these switches are known to - be incompatible with 82541/82547: - - Planex FXG-08TE - I-O Data ETG-SH8 - - To workaround this issue, the driver can be compiled with an override - of the PHY's master/slave setting. Forcing master or forcing slave - mode will improve time-to-link. - - # make EXTRA_CFLAGS=-DE1000_MASTER_SLAVE=<n> - - Where <n> is: - - 0 = Hardware default - 1 = Master mode - 2 = Slave mode - 3 = Auto master/slave - - Disable rx flow control with ethtool - ------------------------------------ - - In order to disable receive flow control using ethtool, you must turn - off auto-negotiation on the same command line. - - For example: - - ethtool -A eth? autoneg off rx off +Dropped Receive Packets on Half-duplex 10/100 Networks +------------------------------------------------------ +If you have an Intel PCI Express adapter running at 10mbps or 100mbps, half- +duplex, you may observe occasional dropped receive packets. There are no +workarounds for this problem in this network configuration. The network must +be updated to operate in full-duplex, and/or 1000mbps only. + +Jumbo Frames System Requirement +------------------------------- +Memory allocation failures have been observed on Linux systems with 64 MB +of RAM or less that are running Jumbo Frames. If you are using Jumbo +Frames, your system may require more than the advertised minimum +requirement of 64 MB of system memory. + +Performance Degradation with Jumbo Frames +----------------------------------------- +Degradation in throughput performance may be observed in some Jumbo frames +environments. If this is observed, increasing the application's socket +buffer size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values +may help. See the specific application manual and +/usr/src/linux*/Documentation/ +networking/ip-sysctl.txt for more details. + +Jumbo Frames on Foundry BigIron 8000 switch +------------------------------------------- +There is a known issue using Jumbo frames when connected to a Foundry +BigIron 8000 switch. This is a 3rd party limitation. If you experience +loss of packets, lower the MTU size. + +Allocating Rx Buffers when Using Jumbo Frames +--------------------------------------------- +Allocating Rx buffers when using Jumbo Frames on 2.6.x kernels may fail if +the available memory is heavily fragmented. This issue may be seen with PCI-X +adapters or with packet split disabled. This can be reduced or eliminated +by changing the amount of available memory for receive buffer allocation, by +increasing /proc/sys/vm/min_free_kbytes. + +Multiple Interfaces on Same Ethernet Broadcast Network +------------------------------------------------------ +Due to the default ARP behavior on Linux, it is not possible to have +one system on two IP networks in the same Ethernet broadcast domain +(non-partitioned switch) behave as expected. All Ethernet interfaces +will respond to IP traffic for any IP address assigned to the system. +This results in unbalanced receive traffic. + +If you have multiple interfaces in a server, either turn on ARP +filtering by entering: + + echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter +(this only works if your kernel's version is higher than 2.4.5), + +NOTE: This setting is not saved across reboots. The configuration +change can be made permanent by adding the line: + net.ipv4.conf.all.arp_filter = 1 +to the file /etc/sysctl.conf + + or, + +install the interfaces in separate broadcast domains (either in +different switches or in a switch partitioned to VLANs). + +82541/82547 can't link or are slow to link with some link partners +----------------------------------------------------------------- +There is a known compatibility issue with 82541/82547 and some +low-end switches where the link will not be established, or will +be slow to establish. In particular, these switches are known to +be incompatible with 82541/82547: + + Planex FXG-08TE + I-O Data ETG-SH8 + +To workaround this issue, the driver can be compiled with an override +of the PHY's master/slave setting. Forcing master or forcing slave +mode will improve time-to-link. + + # make CFLAGS_EXTRA=-DE1000_MASTER_SLAVE=<n> + +Where <n> is: + + 0 = Hardware default + 1 = Master mode + 2 = Slave mode + 3 = Auto master/slave + +Disable rx flow control with ethtool +------------------------------------ +In order to disable receive flow control using ethtool, you must turn +off auto-negotiation on the same command line. + +For example: + + ethtool -A eth? autoneg off rx off + +Unplugging network cable while ethtool -p is running +---------------------------------------------------- +In kernel versions 2.5.50 and later (including 2.6 kernel), unplugging +the network cable while ethtool -p is running will cause the system to +become unresponsive to keyboard commands, except for control-alt-delete. +Restarting the system appears to be the only remedy. Support @@ -548,24 +643,10 @@ For general information, go to the Intel support website at: http://support.intel.com - or the Intel Wired Networking project hosted by Sourceforge at: +or the Intel Wired Networking project hosted by Sourceforge at: http://sourceforge.net/projects/e1000 If an issue is identified with the released source code on the supported kernel with a supported adapter, email the specific information related -to the issue to e1000-devel@lists.sourceforge.net - - -License -======= - -This software program is released under the terms of a license agreement -between you ('Licensee') and Intel. Do not use or load this software or any -associated materials (collectively, the 'Software') until you have carefully -read the full terms and conditions of the file COPYING located in this software -package. By loading or using the Software, you agree to the terms of this -Agreement. If you do not agree with the terms of this Agreement, do not -install or use the Software. - -* Other names and brands may be claimed as the property of others. +to the issue to e1000-devel@lists.sf.net diff --git a/Documentation/networking/phy.txt b/Documentation/networking/phy.txt index 29ccae40903..0bc95eab151 100644 --- a/Documentation/networking/phy.txt +++ b/Documentation/networking/phy.txt @@ -1,7 +1,7 @@ ------- PHY Abstraction Layer -(Updated 2005-07-21) +(Updated 2006-11-30) Purpose @@ -97,11 +97,12 @@ Letting the PHY Abstraction Layer do Everything Next, you need to know the device name of the PHY connected to this device. The name will look something like, "phy0:0", where the first number is the - bus id, and the second is the PHY's address on that bus. + bus id, and the second is the PHY's address on that bus. Typically, + the bus is responsible for making its ID unique. Now, to connect, just call this function: - phydev = phy_connect(dev, phy_name, &adjust_link, flags); + phydev = phy_connect(dev, phy_name, &adjust_link, flags, interface); phydev is a pointer to the phy_device structure which represents the PHY. If phy_connect is successful, it will return the pointer. dev, here, is the @@ -115,6 +116,10 @@ Letting the PHY Abstraction Layer do Everything This is useful if the system has put hardware restrictions on the PHY/controller, of which the PHY needs to be aware. + interface is a u32 which specifies the connection type used + between the controller and the PHY. Examples are GMII, MII, + RGMII, and SGMII. For a full list, see include/linux/phy.h + Now just make sure that phydev->supported and phydev->advertising have any values pruned from them which don't make sense for your controller (a 10/100 controller may be connected to a gigabit capable PHY, so you would need to @@ -191,7 +196,7 @@ Doing it all yourself start, or disables then frees them for stop. struct phy_device * phy_attach(struct net_device *dev, const char *phy_id, - u32 flags); + u32 flags, phy_interface_t interface); Attaches a network device to a particular PHY, binding the PHY to a generic driver if none was found during bus initialization. Passes in |