aboutsummaryrefslogtreecommitdiff
path: root/drivers/media/dvb/frontends/mt2060.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/media/dvb/frontends/mt2060.c')
-rw-r--r--drivers/media/dvb/frontends/mt2060.c312
1 files changed, 312 insertions, 0 deletions
diff --git a/drivers/media/dvb/frontends/mt2060.c b/drivers/media/dvb/frontends/mt2060.c
new file mode 100644
index 00000000000..aa92c1c51e6
--- /dev/null
+++ b/drivers/media/dvb/frontends/mt2060.c
@@ -0,0 +1,312 @@
+/*
+ * Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
+ *
+ * Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ *
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.=
+ */
+
+/* See mt2060_priv.h for details */
+
+/* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
+
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/delay.h>
+#include <linux/dvb/frontend.h>
+#include "mt2060.h"
+#include "mt2060_priv.h"
+
+static int debug=0;
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
+
+#define dprintk(args...) do { if (debug) printk(KERN_DEBUG "MT2060: " args); printk("\n"); } while (0)
+
+// Reads a single register
+static int mt2060_readreg(struct mt2060_state *state, u8 reg, u8 *val)
+{
+ struct i2c_msg msg[2] = {
+ { .addr = state->config->i2c_address, .flags = 0, .buf = &reg, .len = 1 },
+ { .addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = val, .len = 1 },
+ };
+
+ if (i2c_transfer(state->i2c, msg, 2) != 2) {
+ printk(KERN_WARNING "mt2060 I2C read failed\n");
+ return -EREMOTEIO;
+ }
+ return 0;
+}
+
+// Writes a single register
+static int mt2060_writereg(struct mt2060_state *state, u8 reg, u8 val)
+{
+ u8 buf[2];
+ struct i2c_msg msg = {
+ .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = 2
+ };
+ buf[0]=reg;
+ buf[1]=val;
+
+ if (i2c_transfer(state->i2c, &msg, 1) != 1) {
+ printk(KERN_WARNING "mt2060 I2C write failed\n");
+ return -EREMOTEIO;
+ }
+ return 0;
+}
+
+// Writes a set of consecutive registers
+static int mt2060_writeregs(struct mt2060_state *state,u8 *buf, u8 len)
+{
+ struct i2c_msg msg = {
+ .addr = state->config->i2c_address, .flags = 0, .buf = buf, .len = len
+ };
+ if (i2c_transfer(state->i2c, &msg, 1) != 1) {
+ printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n",(int)len);
+ return -EREMOTEIO;
+ }
+ return 0;
+}
+
+// Initialisation sequences
+// LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
+static u8 mt2060_config1[] = {
+ REG_LO1C1,
+ 0x3F, 0x74, 0x00, 0x08, 0x93
+};
+
+// FMCG=2, GP2=0, GP1=0
+static u8 mt2060_config2[] = {
+ REG_MISC_CTRL,
+ 0x20, 0x1E, 0x30, 0xff, 0x80, 0xff, 0x00, 0x2c, 0x42
+};
+
+// VGAG=3, V1CSE=1
+static u8 mt2060_config3[] = {
+ REG_VGAG,
+ 0x33
+};
+
+int mt2060_init(struct mt2060_state *state)
+{
+ if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
+ return -EREMOTEIO;
+ if (mt2060_writeregs(state,mt2060_config3,sizeof(mt2060_config3)))
+ return -EREMOTEIO;
+ return 0;
+}
+EXPORT_SYMBOL(mt2060_init);
+
+#ifdef MT2060_SPURCHECK
+/* The function below calculates the frequency offset between the output frequency if2
+ and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
+static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
+{
+ int I,J;
+ int dia,diamin,diff;
+ diamin=1000000;
+ for (I = 1; I < 10; I++) {
+ J = ((2*I*lo1)/lo2+1)/2;
+ diff = I*(int)lo1-J*(int)lo2;
+ if (diff < 0) diff=-diff;
+ dia = (diff-(int)if2);
+ if (dia < 0) dia=-dia;
+ if (diamin > dia) diamin=dia;
+ }
+ return diamin;
+}
+
+#define BANDWIDTH 4000 // kHz
+
+/* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
+static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
+{
+ u32 Spur,Sp1,Sp2;
+ int I,J;
+ I=0;
+ J=1000;
+
+ Spur=mt2060_spurcalc(lo1,lo2,if2);
+ if (Spur < BANDWIDTH) {
+ /* Potential spurs detected */
+ dprintk("Spurs before : f_lo1: %d f_lo2: %d (kHz)",
+ (int)lo1,(int)lo2);
+ I=1000;
+ Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
+ Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
+
+ if (Sp1 < Sp2) {
+ J=-J; I=-I; Spur=Sp2;
+ } else
+ Spur=Sp1;
+
+ while (Spur < BANDWIDTH) {
+ I += J;
+ Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
+ }
+ dprintk("Spurs after : f_lo1: %d f_lo2: %d (kHz)",
+ (int)(lo1+I),(int)(lo2+I));
+ }
+ return I;
+}
+#endif
+
+#define IF2 36150 // IF2 frequency = 36.150 MHz
+#define FREF 16000 // Quartz oscillator 16 MHz
+
+int mt2060_set(struct mt2060_state *state, struct dvb_frontend_parameters *fep)
+{
+ int ret=0;
+ int i=0;
+ u32 freq;
+ u8 lnaband;
+ u32 f_lo1,f_lo2;
+ u32 div1,num1,div2,num2;
+ u8 b[8];
+ u32 if1;
+
+ if1 = state->if1_freq;
+ b[0] = REG_LO1B1;
+ b[1] = 0xFF;
+ mt2060_writeregs(state,b,2);
+
+ freq = fep->frequency / 1000; // Hz -> kHz
+
+ f_lo1 = freq + if1 * 1000;
+ f_lo1 = (f_lo1/250)*250;
+ f_lo2 = f_lo1 - freq - IF2;
+ f_lo2 = (f_lo2/50)*50;
+
+#ifdef MT2060_SPURCHECK
+ // LO-related spurs detection and correction
+ num1 = mt2060_spurcheck(f_lo1,f_lo2,IF2);
+ f_lo1 += num1;
+ f_lo2 += num1;
+#endif
+ //Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
+ div1 = f_lo1 / FREF;
+ num1 = (64 * (f_lo1 % FREF) )/FREF;
+
+ // Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
+ div2 = f_lo2 / FREF;
+ num2 = (16384 * (f_lo2 % FREF) /FREF +1)/2;
+
+ if (freq <= 95000) lnaband = 0xB0; else
+ if (freq <= 180000) lnaband = 0xA0; else
+ if (freq <= 260000) lnaband = 0x90; else
+ if (freq <= 335000) lnaband = 0x80; else
+ if (freq <= 425000) lnaband = 0x70; else
+ if (freq <= 480000) lnaband = 0x60; else
+ if (freq <= 570000) lnaband = 0x50; else
+ if (freq <= 645000) lnaband = 0x40; else
+ if (freq <= 730000) lnaband = 0x30; else
+ if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
+
+ b[0] = REG_LO1C1;
+ b[1] = lnaband | ((num1 >>2) & 0x0F);
+ b[2] = div1;
+ b[3] = (num2 & 0x0F) | ((num1 & 3) << 4);
+ b[4] = num2 >> 4;
+ b[5] = ((num2 >>12) & 1) | (div2 << 1);
+
+ dprintk("IF1: %dMHz",(int)if1);
+ dprintk("PLL freq: %d f_lo1: %d f_lo2: %d (kHz)",(int)freq,(int)f_lo1,(int)f_lo2);
+ dprintk("PLL div1: %d num1: %d div2: %d num2: %d",(int)div1,(int)num1,(int)div2,(int)num2);
+ dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
+
+ mt2060_writeregs(state,b,6);
+
+ //Waits for pll lock or timeout
+ i=0;
+ do {
+ mt2060_readreg(state,REG_LO_STATUS,b);
+ if ((b[0] & 0x88)==0x88) break;
+ msleep(4);
+ i++;
+ } while (i<10);
+
+ return ret;
+}
+EXPORT_SYMBOL(mt2060_set);
+
+/* from usbsnoop.log */
+static void mt2060_calibrate(struct mt2060_state *state)
+{
+ u8 b = 0;
+ int i = 0;
+
+ if (mt2060_writeregs(state,mt2060_config1,sizeof(mt2060_config1)))
+ return;
+ if (mt2060_writeregs(state,mt2060_config2,sizeof(mt2060_config2)))
+ return;
+
+ do {
+ b |= (1 << 6); // FM1SS;
+ mt2060_writereg(state, REG_LO2C1,b);
+ msleep(20);
+
+ if (i == 0) {
+ b |= (1 << 7); // FM1CA;
+ mt2060_writereg(state, REG_LO2C1,b);
+ b &= ~(1 << 7); // FM1CA;
+ msleep(20);
+ }
+
+ b &= ~(1 << 6); // FM1SS
+ mt2060_writereg(state, REG_LO2C1,b);
+
+ msleep(20);
+ i++;
+ } while (i < 9);
+
+ i = 0;
+ while (i++ < 10 && mt2060_readreg(state, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
+ msleep(20);
+
+ if (i < 10) {
+ mt2060_readreg(state, REG_FM_FREQ, &state->fmfreq); // now find out, what is fmreq used for :)
+ dprintk("calibration was successful: %d",state->fmfreq);
+ } else
+ dprintk("FMCAL timed out");
+}
+
+/* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
+int mt2060_attach(struct mt2060_state *state, struct mt2060_config *config, struct i2c_adapter *i2c,u16 if1)
+{
+ u8 id = 0;
+ memset(state,0,sizeof(struct mt2060_state));
+
+ state->config = config;
+ state->i2c = i2c;
+ state->if1_freq = if1;
+
+ if (mt2060_readreg(state,REG_PART_REV,&id) != 0)
+ return -ENODEV;
+
+ if (id != PART_REV)
+ return -ENODEV;
+
+ printk(KERN_INFO "MT2060: successfully identified\n");
+
+ mt2060_calibrate(state);
+
+ return 0;
+}
+EXPORT_SYMBOL(mt2060_attach);
+
+MODULE_AUTHOR("Olivier DANET");
+MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
+MODULE_LICENSE("GPL");