diff options
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Makefile | 1 | ||||
-rw-r--r-- | kernel/exit.c | 13 | ||||
-rw-r--r-- | kernel/fork.c | 1 | ||||
-rw-r--r-- | kernel/perf_counter.c | 2212 | ||||
-rw-r--r-- | kernel/sched.c | 93 | ||||
-rw-r--r-- | kernel/sys.c | 7 | ||||
-rw-r--r-- | kernel/sys_ni.c | 3 |
7 files changed, 2323 insertions, 7 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index bab1dffe37e..63c697529ca 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -94,6 +94,7 @@ obj-$(CONFIG_FUNCTION_TRACER) += trace/ obj-$(CONFIG_TRACING) += trace/ obj-$(CONFIG_SMP) += sched_cpupri.o obj-$(CONFIG_SLOW_WORK) += slow-work.o +obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is diff --git a/kernel/exit.c b/kernel/exit.c index 6686ed1e4aa..7a14a2b504f 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -158,6 +158,9 @@ static void delayed_put_task_struct(struct rcu_head *rhp) { struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); +#ifdef CONFIG_PERF_COUNTERS + WARN_ON_ONCE(!list_empty(&tsk->perf_counter_ctx.counter_list)); +#endif trace_sched_process_free(tsk); put_task_struct(tsk); } @@ -980,10 +983,6 @@ NORET_TYPE void do_exit(long code) tsk->mempolicy = NULL; #endif #ifdef CONFIG_FUTEX - /* - * This must happen late, after the PID is not - * hashed anymore: - */ if (unlikely(!list_empty(&tsk->pi_state_list))) exit_pi_state_list(tsk); if (unlikely(current->pi_state_cache)) @@ -1250,6 +1249,12 @@ static int wait_task_zombie(struct task_struct *p, int options, */ read_unlock(&tasklist_lock); + /* + * Flush inherited counters to the parent - before the parent + * gets woken up by child-exit notifications. + */ + perf_counter_exit_task(p); + retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; status = (p->signal->flags & SIGNAL_GROUP_EXIT) ? p->signal->group_exit_code : p->exit_code; diff --git a/kernel/fork.c b/kernel/fork.c index 660c2b8765b..381d7f9b70f 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -975,6 +975,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, goto fork_out; rt_mutex_init_task(p); + perf_counter_init_task(p); #ifdef CONFIG_PROVE_LOCKING DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c new file mode 100644 index 00000000000..b2e838959f3 --- /dev/null +++ b/kernel/perf_counter.c @@ -0,0 +1,2212 @@ +/* + * Performance counter core code + * + * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de> + * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar + * + * For licencing details see kernel-base/COPYING + */ + +#include <linux/fs.h> +#include <linux/cpu.h> +#include <linux/smp.h> +#include <linux/file.h> +#include <linux/poll.h> +#include <linux/sysfs.h> +#include <linux/ptrace.h> +#include <linux/percpu.h> +#include <linux/uaccess.h> +#include <linux/syscalls.h> +#include <linux/anon_inodes.h> +#include <linux/kernel_stat.h> +#include <linux/perf_counter.h> +#include <linux/mm.h> +#include <linux/vmstat.h> + +/* + * Each CPU has a list of per CPU counters: + */ +DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); + +int perf_max_counters __read_mostly = 1; +static int perf_reserved_percpu __read_mostly; +static int perf_overcommit __read_mostly = 1; + +/* + * Mutex for (sysadmin-configurable) counter reservations: + */ +static DEFINE_MUTEX(perf_resource_mutex); + +/* + * Architecture provided APIs - weak aliases: + */ +extern __weak const struct hw_perf_counter_ops * +hw_perf_counter_init(struct perf_counter *counter) +{ + return NULL; +} + +u64 __weak hw_perf_save_disable(void) { return 0; } +void __weak hw_perf_restore(u64 ctrl) { barrier(); } +void __weak hw_perf_counter_setup(int cpu) { barrier(); } +int __weak hw_perf_group_sched_in(struct perf_counter *group_leader, + struct perf_cpu_context *cpuctx, + struct perf_counter_context *ctx, int cpu) +{ + return 0; +} + +void __weak perf_counter_print_debug(void) { } + +static void +list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) +{ + struct perf_counter *group_leader = counter->group_leader; + + /* + * Depending on whether it is a standalone or sibling counter, + * add it straight to the context's counter list, or to the group + * leader's sibling list: + */ + if (counter->group_leader == counter) + list_add_tail(&counter->list_entry, &ctx->counter_list); + else + list_add_tail(&counter->list_entry, &group_leader->sibling_list); +} + +static void +list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) +{ + struct perf_counter *sibling, *tmp; + + list_del_init(&counter->list_entry); + + /* + * If this was a group counter with sibling counters then + * upgrade the siblings to singleton counters by adding them + * to the context list directly: + */ + list_for_each_entry_safe(sibling, tmp, + &counter->sibling_list, list_entry) { + + list_del_init(&sibling->list_entry); + list_add_tail(&sibling->list_entry, &ctx->counter_list); + sibling->group_leader = sibling; + } +} + +static void +counter_sched_out(struct perf_counter *counter, + struct perf_cpu_context *cpuctx, + struct perf_counter_context *ctx) +{ + if (counter->state != PERF_COUNTER_STATE_ACTIVE) + return; + + counter->state = PERF_COUNTER_STATE_INACTIVE; + counter->hw_ops->disable(counter); + counter->oncpu = -1; + + if (!is_software_counter(counter)) + cpuctx->active_oncpu--; + ctx->nr_active--; + if (counter->hw_event.exclusive || !cpuctx->active_oncpu) + cpuctx->exclusive = 0; +} + +static void +group_sched_out(struct perf_counter *group_counter, + struct perf_cpu_context *cpuctx, + struct perf_counter_context *ctx) +{ + struct perf_counter *counter; + + if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) + return; + + counter_sched_out(group_counter, cpuctx, ctx); + + /* + * Schedule out siblings (if any): + */ + list_for_each_entry(counter, &group_counter->sibling_list, list_entry) + counter_sched_out(counter, cpuctx, ctx); + + if (group_counter->hw_event.exclusive) + cpuctx->exclusive = 0; +} + +/* + * Cross CPU call to remove a performance counter + * + * We disable the counter on the hardware level first. After that we + * remove it from the context list. + */ +static void __perf_counter_remove_from_context(void *info) +{ + struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); + struct perf_counter *counter = info; + struct perf_counter_context *ctx = counter->ctx; + unsigned long flags; + u64 perf_flags; + + /* + * If this is a task context, we need to check whether it is + * the current task context of this cpu. If not it has been + * scheduled out before the smp call arrived. + */ + if (ctx->task && cpuctx->task_ctx != ctx) + return; + + curr_rq_lock_irq_save(&flags); + spin_lock(&ctx->lock); + + counter_sched_out(counter, cpuctx, ctx); + + counter->task = NULL; + ctx->nr_counters--; + + /* + * Protect the list operation against NMI by disabling the + * counters on a global level. NOP for non NMI based counters. + */ + perf_flags = hw_perf_save_disable(); + list_del_counter(counter, ctx); + hw_perf_restore(perf_flags); + + if (!ctx->task) { + /* + * Allow more per task counters with respect to the + * reservation: + */ + cpuctx->max_pertask = + min(perf_max_counters - ctx->nr_counters, + perf_max_counters - perf_reserved_percpu); + } + + spin_unlock(&ctx->lock); + curr_rq_unlock_irq_restore(&flags); +} + + +/* + * Remove the counter from a task's (or a CPU's) list of counters. + * + * Must be called with counter->mutex and ctx->mutex held. + * + * CPU counters are removed with a smp call. For task counters we only + * call when the task is on a CPU. + */ +static void perf_counter_remove_from_context(struct perf_counter *counter) +{ + struct perf_counter_context *ctx = counter->ctx; + struct task_struct *task = ctx->task; + + if (!task) { + /* + * Per cpu counters are removed via an smp call and + * the removal is always sucessful. + */ + smp_call_function_single(counter->cpu, + __perf_counter_remove_from_context, + counter, 1); + return; + } + +retry: + task_oncpu_function_call(task, __perf_counter_remove_from_context, + counter); + + spin_lock_irq(&ctx->lock); + /* + * If the context is active we need to retry the smp call. + */ + if (ctx->nr_active && !list_empty(&counter->list_entry)) { + spin_unlock_irq(&ctx->lock); + goto retry; + } + + /* + * The lock prevents that this context is scheduled in so we + * can remove the counter safely, if the call above did not + * succeed. + */ + if (!list_empty(&counter->list_entry)) { + ctx->nr_counters--; + list_del_counter(counter, ctx); + counter->task = NULL; + } + spin_unlock_irq(&ctx->lock); +} + +/* + * Cross CPU call to disable a performance counter + */ +static void __perf_counter_disable(void *info) +{ + struct perf_counter *counter = info; + struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); + struct perf_counter_context *ctx = counter->ctx; + unsigned long flags; + + /* + * If this is a per-task counter, need to check whether this + * counter's task is the current task on this cpu. + */ + if (ctx->task && cpuctx->task_ctx != ctx) + return; + + curr_rq_lock_irq_save(&flags); + spin_lock(&ctx->lock); + + /* + * If the counter is on, turn it off. + * If it is in error state, leave it in error state. + */ + if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { + if (counter == counter->group_leader) + group_sched_out(counter, cpuctx, ctx); + else + counter_sched_out(counter, cpuctx, ctx); + counter->state = PERF_COUNTER_STATE_OFF; + } + + spin_unlock(&ctx->lock); + curr_rq_unlock_irq_restore(&flags); +} + +/* + * Disable a counter. + */ +static void perf_counter_disable(struct perf_counter *counter) +{ + struct perf_counter_context *ctx = counter->ctx; + struct task_struct *task = ctx->task; + + if (!task) { + /* + * Disable the counter on the cpu that it's on + */ + smp_call_function_single(counter->cpu, __perf_counter_disable, + counter, 1); + return; + } + + retry: + task_oncpu_function_call(task, __perf_counter_disable, counter); + + spin_lock_irq(&ctx->lock); + /* + * If the counter is still active, we need to retry the cross-call. + */ + if (counter->state == PERF_COUNTER_STATE_ACTIVE) { + spin_unlock_irq(&ctx->lock); + goto retry; + } + + /* + * Since we have the lock this context can't be scheduled + * in, so we can change the state safely. + */ + if (counter->state == PERF_COUNTER_STATE_INACTIVE) + counter->state = PERF_COUNTER_STATE_OFF; + + spin_unlock_irq(&ctx->lock); +} + +/* + * Disable a counter and all its children. + */ +static void perf_counter_disable_family(struct perf_counter *counter) +{ + struct perf_counter *child; + + perf_counter_disable(counter); + + /* + * Lock the mutex to protect the list of children + */ + mutex_lock(&counter->mutex); + list_for_each_entry(child, &counter->child_list, child_list) + perf_counter_disable(child); + mutex_unlock(&counter->mutex); +} + +static int +counter_sched_in(struct perf_counter *counter, + struct perf_cpu_context *cpuctx, + struct perf_counter_context *ctx, + int cpu) +{ + if (counter->state <= PERF_COUNTER_STATE_OFF) + return 0; + + counter->state = PERF_COUNTER_STATE_ACTIVE; + counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ + /* + * The new state must be visible before we turn it on in the hardware: + */ + smp_wmb(); + + if (counter->hw_ops->enable(counter)) { + counter->state = PERF_COUNTER_STATE_INACTIVE; + counter->oncpu = -1; + return -EAGAIN; + } + + if (!is_software_counter(counter)) + cpuctx->active_oncpu++; + ctx->nr_active++; + + if (counter->hw_event.exclusive) + cpuctx->exclusive = 1; + + return 0; +} + +/* + * Return 1 for a group consisting entirely of software counters, + * 0 if the group contains any hardware counters. + */ +static int is_software_only_group(struct perf_counter *leader) +{ + struct perf_counter *counter; + + if (!is_software_counter(leader)) + return 0; + list_for_each_entry(counter, &leader->sibling_list, list_entry) + if (!is_software_counter(counter)) + return 0; + return 1; +} + +/* + * Work out whether we can put this counter group on the CPU now. + */ +static int group_can_go_on(struct perf_counter *counter, + struct perf_cpu_context *cpuctx, + int can_add_hw) +{ + /* + * Groups consisting entirely of software counters can always go on. + */ + if (is_software_only_group(counter)) + return 1; + /* + * If an exclusive group is already on, no other hardware + * counters can go on. + */ + if (cpuctx->exclusive) + return 0; + /* + * If this group is exclusive and there are already + * counters on the CPU, it can't go on. + */ + if (counter->hw_event.exclusive && cpuctx->active_oncpu) + return 0; + /* + * Otherwise, try to add it if all previous groups were able + * to go on. + */ + return can_add_hw; +} + +/* + * Cross CPU call to install and enable a performance counter + */ +static void __perf_install_in_context(void *info) +{ + struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); + struct perf_counter *counter = info; + struct perf_counter_context *ctx = counter->ctx; + struct perf_counter *leader = counter->group_leader; + int cpu = smp_processor_id(); + unsigned long flags; + u64 perf_flags; + int err; + + /* + * If this is a task context, we need to check whether it is + * the current task context of this cpu. If not it has been + * scheduled out before the smp call arrived. + */ + if (ctx->task && cpuctx->task_ctx != ctx) + return; + + curr_rq_lock_irq_save(&flags); + spin_lock(&ctx->lock); + + /* + * Protect the list operation against NMI by disabling the + * counters on a global level. NOP for non NMI based counters. + */ + perf_flags = hw_perf_save_disable(); + + list_add_counter(counter, ctx); + ctx->nr_counters++; + counter->prev_state = PERF_COUNTER_STATE_OFF; + + /* + * Don't put the counter on if it is disabled or if + * it is in a group and the group isn't on. + */ + if (counter->state != PERF_COUNTER_STATE_INACTIVE || + (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) + goto unlock; + + /* + * An exclusive counter can't go on if there are already active + * hardware counters, and no hardware counter can go on if there + * is already an exclusive counter on. + */ + if (!group_can_go_on(counter, cpuctx, 1)) + err = -EEXIST; + else + err = counter_sched_in(counter, cpuctx, ctx, cpu); + + if (err) { + /* + * This counter couldn't go on. If it is in a group + * then we have to pull the whole group off. + * If the counter group is pinned then put it in error state. + */ + if (leader != counter) + group_sched_out(leader, cpuctx, ctx); + if (leader->hw_event.pinned) + leader->state = PERF_COUNTER_STATE_ERROR; + } + + if (!err && !ctx->task && cpuctx->max_pertask) + cpuctx->max_pertask--; + + unlock: + hw_perf_restore(perf_flags); + + spin_unlock(&ctx->lock); + curr_rq_unlock_irq_restore(&flags); +} + +/* + * Attach a performance counter to a context + * + * First we add the counter to the list with the hardware enable bit + * in counter->hw_config cleared. + * + * If the counter is attached to a task which is on a CPU we use a smp + * call to enable it in the task context. The task might have been + * scheduled away, but we check this in the smp call again. + * + * Must be called with ctx->mutex held. + */ +static void +perf_install_in_context(struct perf_counter_context *ctx, + struct perf_counter *counter, + int cpu) +{ + struct task_struct *task = ctx->task; + + if (!task) { + /* + * Per cpu counters are installed via an smp call and + * the install is always sucessful. + */ + smp_call_function_single(cpu, __perf_install_in_context, + counter, 1); + return; + } + + counter->task = task; +retry: + task_oncpu_function_call(task, __perf_install_in_context, + counter); + + spin_lock_irq(&ctx->lock); + /* + * we need to retry the smp call. + */ + if (ctx->is_active && list_empty(&counter->list_entry)) { + spin_unlock_irq(&ctx->lock); + goto retry; + } + + /* + * The lock prevents that this context is scheduled in so we + * can add the counter safely, if it the call above did not + * succeed. + */ + if (list_empty(&counter->list_entry)) { + list_add_counter(counter, ctx); + ctx->nr_counters++; + } + spin_unlock_irq(&ctx->lock); +} + +/* + * Cross CPU call to enable a performance counter + */ +static void __perf_counter_enable(void *info) +{ + struct perf_counter *counter = info; + struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); + struct perf_counter_context *ctx = counter->ctx; + struct perf_counter *leader = counter->group_leader; + unsigned long flags; + int err; + + /* + * If this is a per-task counter, need to check whether this + * counter's task is the current task on this cpu. + */ + if (ctx->task && cpuctx->task_ctx != ctx) + return; + + curr_rq_lock_irq_save(&flags); + spin_lock(&ctx->lock); + + counter->prev_state = counter->state; + if (counter->state >= PERF_COUNTER_STATE_INACTIVE) + goto unlock; + counter->state = PERF_COUNTER_STATE_INACTIVE; + + /* + * If the counter is in a group and isn't the group leader, + * then don't put it on unless the group is on. + */ + if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) + goto unlock; + + if (!group_can_go_on(counter, cpuctx, 1)) + err = -EEXIST; + else + err = counter_sched_in(counter, cpuctx, ctx, + smp_processor_id()); + + if (err) { + /* + * If this counter can't go on and it's part of a + * group, then the whole group has to come off. + */ + if (leader != counter) + group_sched_out(leader, cpuctx, ctx); + if (leader->hw_event.pinned) + leader->state = PERF_COUNTER_STATE_ERROR; + } + + unlock: + spin_unlock(&ctx->lock); + curr_rq_unlock_irq_restore(&flags); +} + +/* + * Enable a counter. + */ +static void perf_counter_enable(struct perf_counter *counter) +{ + struct perf_counter_context *ctx = counter->ctx; + struct task_struct *task = ctx->task; + + if (!task) { + /* + * Enable the counter on the cpu that it's on + */ + smp_call_function_single(counter->cpu, __perf_counter_enable, + counter, 1); + return; + } + + spin_lock_irq(&ctx->lock); + if (counter->state >= PERF_COUNTER_STATE_INACTIVE) + goto out; + + /* + * If the counter is in error state, clear that first. + * That way, if we see the counter in error state below, we + * know that it has gone back into error state, as distinct + * from the task having been scheduled away before the + * cross-call arrived. + */ + if (counter->state == PERF_COUNTER_STATE_ERROR) + counter->state = PERF_COUNTER_STATE_OFF; + + retry: + spin_unlock_irq(&ctx->lock); + task_oncpu_function_call(task, __perf_counter_enable, counter); + + spin_lock_irq(&ctx->lock); + + /* + * If the context is active and the counter is still off, + * we need to retry the cross-call. + */ + if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) + goto retry; + + /* + * Since we have the lock this context can't be scheduled + * in, so we can change the state safely. + */ + if (counter->state == PERF_COUNTER_STATE_OFF) + counter->state = PERF_COUNTER_STATE_INACTIVE; + out: + spin_unlock_irq(&ctx->lock); +} + +/* + * Enable a counter and all its children. + */ +static void perf_counter_enable_family(struct perf_counter *counter) +{ + struct perf_counter *child; + + perf_counter_enable(counter); + + /* + * Lock the mutex to protect the list of children + */ + mutex_lock(&counter->mutex); + list_for_each_entry(child, &counter->child_list, child_list) + perf_counter_enable(child); + mutex_unlock(&counter->mutex); +} + +void __perf_counter_sched_out(struct perf_counter_context *ctx, + struct perf_cpu_context *cpuctx) +{ + struct perf_counter *counter; + u64 flags; + + spin_lock(&ctx->lock); + ctx->is_active = 0; + if (likely(!ctx->nr_counters)) + goto out; + + flags = hw_perf_save_disable(); + if (ctx->nr_active) { + list_for_each_entry(counter, &ctx->counter_list, list_entry) + group_sched_out(counter, cpuctx, ctx); + } + hw_perf_restore(flags); + out: + spin_unlock(&ctx->lock); +} + +/* + * Called from scheduler to remove the counters of the current task, + * with interrupts disabled. + * + * We stop each counter and update the counter value in counter->count. + * + * This does not protect us against NMI, but disable() + * sets the disabled bit in the control field of counter _before_ + * accessing the counter control register. If a NMI hits, then it will + * not restart the counter. + */ +void perf_counter_task_sched_out(struct task_struct *task, int cpu) +{ + struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); + struct perf_counter_context *ctx = &task->perf_counter_ctx; + + if (likely(!cpuctx->task_ctx)) + return; + + __perf_counter_sched_out(ctx, cpuctx); + + cpuctx->task_ctx = NULL; +} + +static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) +{ + __perf_counter_sched_out(&cpuctx->ctx, cpuctx); +} + +static int +group_sched_in(struct perf_counter *group_counter, + struct perf_cpu_context *cpuctx, + struct perf_counter_context *ctx, + int cpu) +{ + struct perf_counter *counter, *partial_group; + int ret; + + if (group_counter->state == PERF_COUNTER_STATE_OFF) + return 0; + + ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); + if (ret) + return ret < 0 ? ret : 0; + + group_counter->prev_state = group_counter->state; + if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) + return -EAGAIN; + + /* + * Schedule in siblings as one group (if any): + */ + list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { + counter->prev_state = counter->state; + if (counter_sched_in(counter, cpuctx, ctx, cpu)) { + partial_group = counter; + goto group_error; + } + } + + return 0; + +group_error: + /* + * Groups can be scheduled in as one unit only, so undo any + * partial group before returning: + */ + list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { + if (counter == partial_group) + break; + counter_sched_out(counter, cpuctx, ctx); + } + counter_sched_out(group_counter, cpuctx, ctx); + + return -EAGAIN; +} + +static void +__perf_counter_sched_in(struct perf_counter_context *ctx, + struct perf_cpu_context *cpuctx, int cpu) +{ + struct perf_counter *counter; + u64 flags; + int can_add_hw = 1; + + spin_lock(&ctx->lock); + ctx->is_active = 1; + if (likely(!ctx->nr_counters)) + goto out; + + flags = hw_perf_save_disable(); + + /* + * First go through the list and put on any pinned groups + * in order to give them the best chance of going on. + */ + list_for_each_entry(counter, &ctx->counter_list, list_entry) { + if (counter->state <= PERF_COUNTER_STATE_OFF || + !counter->hw_event.pinned) + continue; + if (counter->cpu != -1 && counter->cpu != cpu) + continue; + + if (group_can_go_on(counter, cpuctx, 1)) + group_sched_in(counter, cpuctx, ctx, cpu); + + /* + * If this pinned group hasn't been scheduled, + * put it in error state. + */ + if (counter->state == PERF_COUNTER_STATE_INACTIVE) + counter->state = PERF_COUNTER_STATE_ERROR; + } + + list_for_each_entry(counter, &ctx->counter_list, list_entry) { + /* + * Ignore counters in OFF or ERROR state, and + * ignore pinned counters since we did them already. + */ + if (counter->state <= PERF_COUNTER_STATE_OFF || + counter->hw_event.pinned) + continue; + + /* + * Listen to the 'cpu' scheduling filter constraint + * of counters: + */ + if (counter->cpu != -1 && counter->cpu != cpu) + continue; + + if (group_can_go_on(counter, cpuctx, can_add_hw)) { + if (group_sched_in(counter, cpuctx, ctx, cpu)) + can_add_hw = 0; + } + } + hw_perf_restore(flags); + out: + spin_unlock(&ctx->lock); +} + +/* + * Called from scheduler to add the counters of the current task + * with interrupts disabled. + * + * We restore the counter value and then enable it. + * + * This does not protect us against NMI, but enable() + * sets the enabled bit in the control field of counter _before_ + * accessing the counter control register. If a NMI hits, then it will + * keep the counter running. + */ +void perf_counter_task_sched_in(struct task_struct *task, int cpu) +{ + struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); + struct perf_counter_context *ctx = &task->perf_counter_ctx; + + __perf_counter_sched_in(ctx, cpuctx, cpu); + cpuctx->task_ctx = ctx; +} + +static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) +{ + struct perf_counter_context *ctx = &cpuctx->ctx; + + __perf_counter_sched_in(ctx, cpuctx, cpu); +} + +int perf_counter_task_disable(void) +{ + struct task_struct *curr = current; + struct perf_counter_context *ctx = &curr->perf_counter_ctx; + struct perf_counter *counter; + unsigned long flags; + u64 perf_flags; + int cpu; + + if (likely(!ctx->nr_counters)) + return 0; + + curr_rq_lock_irq_save(&flags); + cpu = smp_processor_id(); + + /* force the update of the task clock: */ + __task_delta_exec(curr, 1); + + perf_counter_task_sched_out(curr, cpu); + + spin_lock(&ctx->lock); + + /* + * Disable all the counters: + */ + perf_flags = hw_perf_save_disable(); + + list_for_each_entry(counter, &ctx->counter_list, list_entry) { + if (counter->state != PERF_COUNTER_STATE_ERROR) + counter->state = PERF_COUNTER_STATE_OFF; + } + + hw_perf_restore(perf_flags); + + spin_unlock(&ctx->lock); + + curr_rq_unlock_irq_restore(&flags); + + return 0; +} + +int perf_counter_task_enable(void) +{ + struct task_struct *curr = current; + struct perf_counter_context *ctx = &curr->perf_counter_ctx; + struct perf_counter *counter; + unsigned long flags; + u64 perf_flags; + int cpu; + + if (likely(!ctx->nr_counters)) + return 0; + + curr_rq_lock_irq_save(&flags); + cpu = smp_processor_id(); + + /* force the update of the task clock: */ + __task_delta_exec(curr, 1); + + perf_counter_task_sched_out(curr, cpu); + + spin_lock(&ctx->lock); + + /* + * Disable all the counters: + */ + perf_flags = hw_perf_save_disable(); + + list_for_each_entry(counter, &ctx->counter_list, list_entry) { + if (counter->state > PERF_COUNTER_STATE_OFF) + continue; + counter->state = PERF_COUNTER_STATE_INACTIVE; + counter->hw_event.disabled = 0; + } + hw_perf_restore(perf_flags); + + spin_unlock(&ctx->lock); + + perf_counter_task_sched_in(curr, cpu); + + curr_rq_unlock_irq_restore(&flags); + + return 0; +} + +/* + * Round-robin a context's counters: + */ +static void rotate_ctx(struct perf_counter_context *ctx) +{ + struct perf_counter *counter; + u64 perf_flags; + + if (!ctx->nr_counters) + return; + + spin_lock(&ctx->lock); + /* + * Rotate the first entry last (works just fine for group counters too): + */ + perf_flags = hw_perf_save_disable(); + list_for_each_entry(counter, &ctx->counter_list, list_entry) { + list_del(&counter->list_entry); + list_add_tail(&counter->list_entry, &ctx->counter_list); + break; + } + hw_perf_restore(perf_flags); + + spin_unlock(&ctx->lock); +} + +void perf_counter_task_tick(struct task_struct *curr, int cpu) +{ + struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); + struct perf_counter_context *ctx = &curr->perf_counter_ctx; + const int rotate_percpu = 0; + + if (rotate_percpu) + perf_counter_cpu_sched_out(cpuctx); + perf_counter_task_sched_out(curr, cpu); + + if (rotate_percpu) + rotate_ctx(&cpuctx->ctx); + rotate_ctx(ctx); + + if (rotate_percpu) + perf_counter_cpu_sched_in(cpuctx, cpu); + perf_counter_task_sched_in(curr, cpu); +} + +/* + * Cross CPU call to read the hardware counter + */ +static void __read(void *info) +{ + struct perf_counter *counter = info; + unsigned long flags; + + curr_rq_lock_irq_save(&flags); + counter->hw_ops->read(counter); + curr_rq_unlock_irq_restore(&flags); +} + +static u64 perf_counter_read(struct perf_counter *counter) +{ + /* + * If counter is enabled and currently active on a CPU, update the + * value in the counter structure: + */ + if (counter->state == PERF_COUNTER_STATE_ACTIVE) { + smp_call_function_single(counter->oncpu, + __read, counter, 1); + } + + return atomic64_read(&counter->count); +} + +/* + * Cross CPU call to switch performance data pointers + */ +static void __perf_switch_irq_data(void *info) +{ + struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); + struct perf_counter *counter = info; + struct perf_counter_context *ctx = counter->ctx; + struct perf_data *oldirqdata = counter->irqdata; + + /* + * If this is a task context, we need to check whether it is + * the current task context of this cpu. If not it has been + * scheduled out before the smp call arrived. + */ + if (ctx->task) { + if (cpuctx->task_ctx != ctx) + return; + spin_lock(&ctx->lock); + } + + /* Change the pointer NMI safe */ + atomic_long_set((atomic_long_t *)&counter->irqdata, + (unsigned long) counter->usrdata); + counter->usrdata = oldirqdata; + + if (ctx->task) + spin_unlock(&ctx->lock); +} + +static struct perf_data *perf_switch_irq_data(struct perf_counter *counter) +{ + struct perf_counter_context *ctx = counter->ctx; + struct perf_data *oldirqdata = counter->irqdata; + struct task_struct *task = ctx->task; + + if (!task) { + smp_call_function_single(counter->cpu, + __perf_switch_irq_data, + counter, 1); + return counter->usrdata; + } + +retry: + spin_lock_irq(&ctx->lock); + if (counter->state != PERF_COUNTER_STATE_ACTIVE) { + counter->irqdata = counter->usrdata; + counter->usrdata = oldirqdata; + spin_unlock_irq(&ctx->lock); + return oldirqdata; + } + spin_unlock_irq(&ctx->lock); + task_oncpu_function_call(task, __perf_switch_irq_data, counter); + /* Might have failed, because task was scheduled out */ + if (counter->irqdata == oldirqdata) + goto retry; + + return counter->usrdata; +} + +static void put_context(struct perf_counter_context *ctx) +{ + if (ctx->task) + put_task_struct(ctx->task); +} + +static struct perf_counter_context *find_get_context(pid_t pid, int cpu) +{ + struct perf_cpu_context *cpuctx; + struct perf_counter_context *ctx; + struct task_struct *task; + + /* + * If cpu is not a wildcard then this is a percpu counter: + */ + if (cpu != -1) { + /* Must be root to operate on a CPU counter: */ + if (!capable(CAP_SYS_ADMIN)) + return ERR_PTR(-EACCES); + + if (cpu < 0 || cpu > num_possible_cpus()) + return ERR_PTR(-EINVAL); + + /* + * We could be clever and allow to attach a counter to an + * offline CPU and activate it when the CPU comes up, but + * that's for later. + */ + if (!cpu_isset(cpu, cpu_online_map)) + return ERR_PTR(-ENODEV); + + cpuctx = &per_cpu(perf_cpu_context, cpu); + ctx = &cpuctx->ctx; + + return ctx; + } + + rcu_read_lock(); + if (!pid) + task = current; + else + task = find_task_by_vpid(pid); + if (task) + get_task_struct(task); + rcu_read_unlock(); + + if (!task) + return ERR_PTR(-ESRCH); + + ctx = &task->perf_counter_ctx; + ctx->task = task; + + /* Reuse ptrace permission checks for now. */ + if (!ptrace_may_access(task, PTRACE_MODE_READ)) { + put_context(ctx); + return ERR_PTR(-EACCES); + } + + return ctx; +} + +/* + * Called when the last reference to the file is gone. + */ +static int perf_release(struct inode *inode, struct file *file) +{ + struct perf_counter *counter = file->private_data; + struct perf_counter_context *ctx = counter->ctx; + + file->private_data = NULL; + + mutex_lock(&ctx->mutex); + mutex_lock(&counter->mutex); + + perf_counter_remove_from_context(counter); + + mutex_unlock(&counter->mutex); + mutex_unlock(&ctx->mutex); + + kfree(counter); + put_context(ctx); + + return 0; +} + +/* + * Read the performance counter - simple non blocking version for now + */ +static ssize_t +perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) +{ + u64 cntval; + + if (count != sizeof(cntval)) + return -EINVAL; + + /* + * Return end-of-file for a read on a counter that is in + * error state (i.e. because it was pinned but it couldn't be + * scheduled on to the CPU at some point). + */ + if (counter->state == PERF_COUNTER_STATE_ERROR) + return 0; + + mutex_lock(&counter->mutex); + cntval = perf_counter_read(counter); + mutex_unlock(&counter->mutex); + + return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval); +} + +static ssize_t +perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count) +{ + if (!usrdata->len) + return 0; + + count = min(count, (size_t)usrdata->len); + if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count)) + return -EFAULT; + + /* Adjust the counters */ + usrdata->len -= count; + if (!usrdata->len) + usrdata->rd_idx = 0; + else + usrdata->rd_idx += count; + + return count; +} + +static ssize_t +perf_read_irq_data(struct perf_counter *counter, + char __user *buf, + size_t count, + int nonblocking) +{ + struct perf_data *irqdata, *usrdata; + DECLARE_WAITQUEUE(wait, current); + ssize_t res, res2; + + irqdata = counter->irqdata; + usrdata = counter->usrdata; + + if (usrdata->len + irqdata->len >= count) + goto read_pending; + + if (nonblocking) + return -EAGAIN; + + spin_lock_irq(&counter->waitq.lock); + __add_wait_queue(&counter->waitq, &wait); + for (;;) { + set_current_state(TASK_INTERRUPTIBLE); + if (usrdata->len + irqdata->len >= count) + break; + + if (signal_pending(current)) + break; + + if (counter->state == PERF_COUNTER_STATE_ERROR) + break; + + spin_unlock_irq(&counter->waitq.lock); + schedule(); + spin_lock_irq(&counter->waitq.lock); + } + __remove_wait_queue(&counter->waitq, &wait); + __set_current_state(TASK_RUNNING); + spin_unlock_irq(&counter->waitq.lock); + + if (usrdata->len + irqdata->len < count && + counter->state != PERF_COUNTER_STATE_ERROR) + return -ERESTARTSYS; +read_pending: + mutex_lock(&counter->mutex); + + /* Drain pending data first: */ + res = perf_copy_usrdata(usrdata, buf, count); + if (res < 0 || res == count) + goto out; + + /* Switch irq buffer: */ + usrdata = perf_switch_irq_data(counter); + res2 = perf_copy_usrdata(usrdata, buf + res, count - res); + if (res2 < 0) { + if (!res) + res = -EFAULT; + } else { + res += res2; + } +out: + mutex_unlock(&counter->mutex); + + return res; +} + +static ssize_t +perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) +{ + struct perf_counter *counter = file->private_data; + + switch (counter->hw_event.record_type) { + case PERF_RECORD_SIMPLE: + return perf_read_hw(counter, buf, count); + + case PERF_RECORD_IRQ: + case PERF_RECORD_GROUP: + return perf_read_irq_data(counter, buf, count, + file->f_flags & O_NONBLOCK); + } + return -EINVAL; +} + +static unsigned int perf_poll(struct file *file, poll_table *wait) +{ + struct perf_counter *counter = file->private_data; + unsigned int events = 0; + unsigned long flags; + + poll_wait(file, &counter->waitq, wait); + + spin_lock_irqsave(&counter->waitq.lock, flags); + if (counter->usrdata->len || counter->irqdata->len) + events |= POLLIN; + spin_unlock_irqrestore(&counter->waitq.lock, flags); + + return events; +} + +static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) +{ + struct perf_counter *counter = file->private_data; + int err = 0; + + switch (cmd) { + case PERF_COUNTER_IOC_ENABLE: + perf_counter_enable_family(counter); + break; + case PERF_COUNTER_IOC_DISABLE: + perf_counter_disable_family(counter); + break; + default: + err = -ENOTTY; + } + return err; +} + +static const struct file_operations perf_fops = { + .release = perf_release, + .read = perf_read, + .poll = perf_poll, + .unlocked_ioctl = perf_ioctl, + .compat_ioctl = perf_ioctl, +}; + +static int cpu_clock_perf_counter_enable(struct perf_counter *counter) +{ + int cpu = raw_smp_processor_id(); + + atomic64_set(&counter->hw.prev_count, cpu_clock(cpu)); + return 0; +} + +static void cpu_clock_perf_counter_update(struct perf_counter *counter) +{ + int cpu = raw_smp_processor_id(); + s64 prev; + u64 now; + + now = cpu_clock(cpu); + prev = atomic64_read(&counter->hw.prev_count); + atomic64_set(&counter->hw.prev_count, now); + atomic64_add(now - prev, &counter->count); +} + +static void cpu_clock_perf_counter_disable(struct perf_counter *counter) +{ + cpu_clock_perf_counter_update(counter); +} + +static void cpu_clock_perf_counter_read(struct perf_counter *counter) +{ + cpu_clock_perf_counter_update(counter); +} + +static const struct hw_perf_counter_ops perf_ops_cpu_clock = { + .enable = cpu_clock_perf_counter_enable, + .disable = cpu_clock_perf_counter_disable, + .read = cpu_clock_perf_counter_read, +}; + +/* + * Called from within the scheduler: + */ +static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update) +{ + struct task_struct *curr = counter->task; + u64 delta; + + delta = __task_delta_exec(curr, update); + + return curr->se.sum_exec_runtime + delta; +} + +static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) +{ + u64 prev; + s64 delta; + + prev = atomic64_read(&counter->hw.prev_count); + + atomic64_set(&counter->hw.prev_count, now); + + delta = now - prev; + + atomic64_add(delta, &counter->count); +} + +static void task_clock_perf_counter_read(struct perf_counter *counter) +{ + u64 now = task_clock_perf_counter_val(counter, 1); + + task_clock_perf_counter_update(counter, now); +} + +static int task_clock_perf_counter_enable(struct perf_counter *counter) +{ + if (counter->prev_state <= PERF_COUNTER_STATE_OFF) + atomic64_set(&counter->hw.prev_count, + task_clock_perf_counter_val(counter, 0)); + + return 0; +} + +static void task_clock_perf_counter_disable(struct perf_counter *counter) +{ + u64 now = task_clock_perf_counter_val(counter, 0); + + task_clock_perf_counter_update(counter, now); +} + +static const struct hw_perf_counter_ops perf_ops_task_clock = { + .enable = task_clock_perf_counter_enable, + .disable = task_clock_perf_counter_disable, + .read = task_clock_perf_counter_read, +}; + +#ifdef CONFIG_VM_EVENT_COUNTERS +#define cpu_page_faults() __get_cpu_var(vm_event_states).event[PGFAULT] +#else +#define cpu_page_faults() 0 +#endif + +static u64 get_page_faults(struct perf_counter *counter) +{ + struct task_struct *curr = counter->ctx->task; + + if (curr) + return curr->maj_flt + curr->min_flt; + return cpu_page_faults(); +} + +static void page_faults_perf_counter_update(struct perf_counter *counter) +{ + u64 prev, now; + s64 delta; + + prev = atomic64_read(&counter->hw.prev_count); + now = get_page_faults(counter); + + atomic64_set(&counter->hw.prev_count, now); + + delta = now - prev; + + atomic64_add(delta, &counter->count); +} + +static void page_faults_perf_counter_read(struct perf_counter *counter) +{ + page_faults_perf_counter_update(counter); +} + +static int page_faults_perf_counter_enable(struct perf_counter *counter) +{ + if (counter->prev_state <= PERF_COUNTER_STATE_OFF) + atomic64_set(&counter->hw.prev_count, get_page_faults(counter)); + return 0; +} + +static void page_faults_perf_counter_disable(struct perf_counter *counter) +{ + page_faults_perf_counter_update(counter); +} + +static const struct hw_perf_counter_ops perf_ops_page_faults = { + .enable = page_faults_perf_counter_enable, + .disable = page_faults_perf_counter_disable, + .read = page_faults_perf_counter_read, +}; + +static u64 get_context_switches(struct perf_counter *counter) +{ + struct task_struct *curr = counter->ctx->task; + + if (curr) + return curr->nvcsw + curr->nivcsw; + return cpu_nr_switches(smp_processor_id()); +} + +static void context_switches_perf_counter_update(struct perf_counter *counter) +{ + u64 prev, now; + s64 delta; + + prev = atomic64_read(&counter->hw.prev_count); + now = get_context_switches(counter); + + atomic64_set(&counter->hw.prev_count, now); + + delta = now - prev; + + atomic64_add(delta, &counter->count); +} + +static void context_switches_perf_counter_read(struct perf_counter *counter) +{ + context_switches_perf_counter_update(counter); +} + +static int context_switches_perf_counter_enable(struct perf_counter *counter) +{ + if (counter->prev_state <= PERF_COUNTER_STATE_OFF) + atomic64_set(&counter->hw.prev_count, + get_context_switches(counter)); + return 0; +} + +static void context_switches_perf_counter_disable(struct perf_counter *counter) +{ + context_switches_perf_counter_update(counter); +} + +static const struct hw_perf_counter_ops perf_ops_context_switches = { + .enable = context_switches_perf_counter_enable, + .disable = context_switches_perf_counter_disable, + .read = context_switches_perf_counter_read, +}; + +static inline u64 get_cpu_migrations(struct perf_counter *counter) +{ + struct task_struct *curr = counter->ctx->task; + + if (curr) + return curr->se.nr_migrations; + return cpu_nr_migrations(smp_processor_id()); +} + +static void cpu_migrations_perf_counter_update(struct perf_counter *counter) +{ + u64 prev, now; + s64 delta; + + prev = atomic64_read(&counter->hw.prev_count); + now = get_cpu_migrations(counter); + + atomic64_set(&counter->hw.prev_count, now); + + delta = now - prev; + + atomic64_add(delta, &counter->count); +} + +static void cpu_migrations_perf_counter_read(struct perf_counter *counter) +{ + cpu_migrations_perf_counter_update(counter); +} + +static int cpu_migrations_perf_counter_enable(struct perf_counter *counter) +{ + if (counter->prev_state <= PERF_COUNTER_STATE_OFF) + atomic64_set(&counter->hw.prev_count, + get_cpu_migrations(counter)); + return 0; +} + +static void cpu_migrations_perf_counter_disable(struct perf_counter *counter) +{ + cpu_migrations_perf_counter_update(counter); +} + +static const struct hw_perf_counter_ops perf_ops_cpu_migrations = { + .enable = cpu_migrations_perf_counter_enable, + .disable = cpu_migrations_perf_counter_disable, + .read = cpu_migrations_perf_counter_read, +}; + +static const struct hw_perf_counter_ops * +sw_perf_counter_init(struct perf_counter *counter) +{ + const struct hw_perf_counter_ops *hw_ops = NULL; + + /* + * Software counters (currently) can't in general distinguish + * between user, kernel and hypervisor events. + * However, context switches and cpu migrations are considered + * to be kernel events, and page faults are never hypervisor + * events. + */ + switch (counter->hw_event.type) { + case PERF_COUNT_CPU_CLOCK: + if (!(counter->hw_event.exclude_user || + counter->hw_event.exclude_kernel || + counter->hw_event.exclude_hv)) + hw_ops = &perf_ops_cpu_clock; + break; + case PERF_COUNT_TASK_CLOCK: + if (counter->hw_event.exclude_user || + counter->hw_event.exclude_kernel || + counter->hw_event.exclude_hv) + break; + /* + * If the user instantiates this as a per-cpu counter, + * use the cpu_clock counter instead. + */ + if (counter->ctx->task) + hw_ops = &perf_ops_task_clock; + else + hw_ops = &perf_ops_cpu_clock; + break; + case PERF_COUNT_PAGE_FAULTS: + if (!(counter->hw_event.exclude_user || + counter->hw_event.exclude_kernel)) + hw_ops = &perf_ops_page_faults; + break; + case PERF_COUNT_CONTEXT_SWITCHES: + if (!counter->hw_event.exclude_kernel) + hw_ops = &perf_ops_context_switches; + break; + case PERF_COUNT_CPU_MIGRATIONS: + if (!counter->hw_event.exclude_kernel) + hw_ops = &perf_ops_cpu_migrations; + break; + default: + break; + } + return hw_ops; +} + +/* + * Allocate and initialize a counter structure + */ +static struct perf_counter * +perf_counter_alloc(struct perf_counter_hw_event *hw_event, + int cpu, + struct perf_counter_context *ctx, + struct perf_counter *group_leader, + gfp_t gfpflags) +{ + const struct hw_perf_counter_ops *hw_ops; + struct perf_counter *counter; + + counter = kzalloc(sizeof(*counter), gfpflags); + if (!counter) + return NULL; + + /* + * Single counters are their own group leaders, with an + * empty sibling list: + */ + if (!group_leader) + group_leader = counter; + + mutex_init(&counter->mutex); + INIT_LIST_HEAD(&counter->list_entry); + INIT_LIST_HEAD(&counter->sibling_list); + init_waitqueue_head(&counter->waitq); + + INIT_LIST_HEAD(&counter->child_list); + + counter->irqdata = &counter->data[0]; + counter->usrdata = &counter->data[1]; + counter->cpu = cpu; + counter->hw_event = *hw_event; + counter->wakeup_pending = 0; + counter->group_leader = group_leader; + counter->hw_ops = NULL; + counter->ctx = ctx; + + counter->state = PERF_COUNTER_STATE_INACTIVE; + if (hw_event->disabled) + counter->state = PERF_COUNTER_STATE_OFF; + + hw_ops = NULL; + if (!hw_event->raw && hw_event->type < 0) + hw_ops = sw_perf_counter_init(counter); + else + hw_ops = hw_perf_counter_init(counter); + + if (!hw_ops) { + kfree(counter); + return NULL; + } + counter->hw_ops = hw_ops; + + return counter; +} + +/** + * sys_perf_counter_open - open a performance counter, associate it to a task/cpu + * + * @hw_event_uptr: event type attributes for monitoring/sampling + * @pid: target pid + * @cpu: target cpu + * @group_fd: group leader counter fd + */ +SYSCALL_DEFINE5(perf_counter_open, + const struct perf_counter_hw_event __user *, hw_event_uptr, + pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) +{ + struct perf_counter *counter, *group_leader; + struct perf_counter_hw_event hw_event; + struct perf_counter_context *ctx; + struct file *counter_file = NULL; + struct file *group_file = NULL; + int fput_needed = 0; + int fput_needed2 = 0; + int ret; + + /* for future expandability... */ + if (flags) + return -EINVAL; + + if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0) + return -EFAULT; + + /* + * Get the target context (task or percpu): + */ + ctx = find_get_context(pid, cpu); + if (IS_ERR(ctx)) + return PTR_ERR(ctx); + + /* + * Look up the group leader (we will attach this counter to it): + */ + group_leader = NULL; + if (group_fd != -1) { + ret = -EINVAL; + group_file = fget_light(group_fd, &fput_needed); + if (!group_file) + goto err_put_context; + if (group_file->f_op != &perf_fops) + goto err_put_context; + + group_leader = group_file->private_data; + /* + * Do not allow a recursive hierarchy (this new sibling + * becoming part of another group-sibling): + */ + if (group_leader->group_leader != group_leader) + goto err_put_context; + /* + * Do not allow to attach to a group in a different + * task or CPU context: + */ + if (group_leader->ctx != ctx) + goto err_put_context; + /* + * Only a group leader can be exclusive or pinned + */ + if (hw_event.exclusive || hw_event.pinned) + goto err_put_context; + } + + ret = -EINVAL; + counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader, + GFP_KERNEL); + if (!counter) + goto err_put_context; + + ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); + if (ret < 0) + goto err_free_put_context; + + counter_file = fget_light(ret, &fput_needed2); + if (!counter_file) + goto err_free_put_context; + + counter->filp = counter_file; + mutex_lock(&ctx->mutex); + perf_install_in_context(ctx, counter, cpu); + mutex_unlock(&ctx->mutex); + + fput_light(counter_file, fput_needed2); + +out_fput: + fput_light(group_file, fput_needed); + + return ret; + +err_free_put_context: + kfree(counter); + +err_put_context: + put_context(ctx); + + goto out_fput; +} + +/* + * Initialize the perf_counter context in a task_struct: + */ +static void +__perf_counter_init_context(struct perf_counter_context *ctx, + struct task_struct *task) +{ + memset(ctx, 0, sizeof(*ctx)); + spin_lock_init(&ctx->lock); + mutex_init(&ctx->mutex); + INIT_LIST_HEAD(&ctx->counter_list); + ctx->task = task; +} + +/* + * inherit a counter from parent task to child task: + */ +static struct perf_counter * +inherit_counter(struct perf_counter *parent_counter, + struct task_struct *parent, + struct perf_counter_context *parent_ctx, + struct task_struct *child, + struct perf_counter *group_leader, + struct perf_counter_context *child_ctx) +{ + struct perf_counter *child_counter; + + /* + * Instead of creating recursive hierarchies of counters, + * we link inherited counters back to the original parent, + * which has a filp for sure, which we use as the reference + * count: + */ + if (parent_counter->parent) + parent_counter = parent_counter->parent; + + child_counter = perf_counter_alloc(&parent_counter->hw_event, + parent_counter->cpu, child_ctx, + group_leader, GFP_KERNEL); + if (!child_counter) + return NULL; + + /* + * Link it up in the child's context: + */ + child_counter->task = child; + list_add_counter(child_counter, child_ctx); + child_ctx->nr_counters++; + + child_counter->parent = parent_counter; + /* + * inherit into child's child as well: + */ + child_counter->hw_event.inherit = 1; + + /* + * Get a reference to the parent filp - we will fput it + * when the child counter exits. This is safe to do because + * we are in the parent and we know that the filp still + * exists and has a nonzero count: + */ + atomic_long_inc(&parent_counter->filp->f_count); + + /* + * Link this into the parent counter's child list + */ + mutex_lock(&parent_counter->mutex); + list_add_tail(&child_counter->child_list, &parent_counter->child_list); + + /* + * Make the child state follow the state of the parent counter, + * not its hw_event.disabled bit. We hold the parent's mutex, + * so we won't race with perf_counter_{en,dis}able_family. + */ + if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) + child_counter->state = PERF_COUNTER_STATE_INACTIVE; + else + child_counter->state = PERF_COUNTER_STATE_OFF; + + mutex_unlock(&parent_counter->mutex); + + return child_counter; +} + +static int inherit_group(struct perf_counter *parent_counter, + struct task_struct *parent, + struct perf_counter_context *parent_ctx, + struct task_struct *child, + struct perf_counter_context *child_ctx) +{ + struct perf_counter *leader; + struct perf_counter *sub; + + leader = inherit_counter(parent_counter, parent, parent_ctx, + child, NULL, child_ctx); + if (!leader) + return -ENOMEM; + list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { + if (!inherit_counter(sub, parent, parent_ctx, + child, leader, child_ctx)) + return -ENOMEM; + } + return 0; +} + +static void sync_child_counter(struct perf_counter *child_counter, + struct perf_counter *parent_counter) +{ + u64 parent_val, child_val; + + parent_val = atomic64_read(&parent_counter->count); + child_val = atomic64_read(&child_counter->count); + + /* + * Add back the child's count to the parent's count: + */ + atomic64_add(child_val, &parent_counter->count); + + /* + * Remove this counter from the parent's list + */ + mutex_lock(&parent_counter->mutex); + list_del_init(&child_counter->child_list); + mutex_unlock(&parent_counter->mutex); + + /* + * Release the parent counter, if this was the last + * reference to it. + */ + fput(parent_counter->filp); +} + +static void +__perf_counter_exit_task(struct task_struct *child, + struct perf_counter *child_counter, + struct perf_counter_context *child_ctx) +{ + struct perf_counter *parent_counter; + struct perf_counter *sub, *tmp; + + /* + * If we do not self-reap then we have to wait for the + * child task to unschedule (it will happen for sure), + * so that its counter is at its final count. (This + * condition triggers rarely - child tasks usually get + * off their CPU before the parent has a chance to + * get this far into the reaping action) + */ + if (child != current) { + wait_task_inactive(child, 0); + list_del_init(&child_counter->list_entry); + } else { + struct perf_cpu_context *cpuctx; + unsigned long flags; + u64 perf_flags; + + /* + * Disable and unlink this counter. + * + * Be careful about zapping the list - IRQ/NMI context + * could still be processing it: + */ + curr_rq_lock_irq_save(&flags); + perf_flags = hw_perf_save_disable(); + + cpuctx = &__get_cpu_var(perf_cpu_context); + + group_sched_out(child_counter, cpuctx, child_ctx); + + list_del_init(&child_counter->list_entry); + + child_ctx->nr_counters--; + + hw_perf_restore(perf_flags); + curr_rq_unlock_irq_restore(&flags); + } + + parent_counter = child_counter->parent; + /* + * It can happen that parent exits first, and has counters + * that are still around due to the child reference. These + * counters need to be zapped - but otherwise linger. + */ + if (parent_counter) { + sync_child_counter(child_counter, parent_counter); + list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list, + list_entry) { + if (sub->parent) { + sync_child_counter(sub, sub->parent); + kfree(sub); + } + } + kfree(child_counter); + } +} + +/* + * When a child task exits, feed back counter values to parent counters. + * + * Note: we may be running in child context, but the PID is not hashed + * anymore so new counters will not be added. + */ +void perf_counter_exit_task(struct task_struct *child) +{ + struct perf_counter *child_counter, *tmp; + struct perf_counter_context *child_ctx; + + child_ctx = &child->perf_counter_ctx; + + if (likely(!child_ctx->nr_counters)) + return; + + list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, + list_entry) + __perf_counter_exit_task(child, child_counter, child_ctx); +} + +/* + * Initialize the perf_counter context in task_struct + */ +void perf_counter_init_task(struct task_struct *child) +{ + struct perf_counter_context *child_ctx, *parent_ctx; + struct perf_counter *counter; + struct task_struct *parent = current; + + child_ctx = &child->perf_counter_ctx; + parent_ctx = &parent->perf_counter_ctx; + + __perf_counter_init_context(child_ctx, child); + + /* + * This is executed from the parent task context, so inherit + * counters that have been marked for cloning: + */ + + if (likely(!parent_ctx->nr_counters)) + return; + + /* + * Lock the parent list. No need to lock the child - not PID + * hashed yet and not running, so nobody can access it. + */ + mutex_lock(&parent_ctx->mutex); + + /* + * We dont have to disable NMIs - we are only looking at + * the list, not manipulating it: + */ + list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) { + if (!counter->hw_event.inherit) + continue; + + if (inherit_group(counter, parent, + parent_ctx, child, child_ctx)) + break; + } + + mutex_unlock(&parent_ctx->mutex); +} + +static void __cpuinit perf_counter_init_cpu(int cpu) +{ + struct perf_cpu_context *cpuctx; + + cpuctx = &per_cpu(perf_cpu_context, cpu); + __perf_counter_init_context(&cpuctx->ctx, NULL); + + mutex_lock(&perf_resource_mutex); + cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; + mutex_unlock(&perf_resource_mutex); + + hw_perf_counter_setup(cpu); +} + +#ifdef CONFIG_HOTPLUG_CPU +static void __perf_counter_exit_cpu(void *info) +{ + struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); + struct perf_counter_context *ctx = &cpuctx->ctx; + struct perf_counter *counter, *tmp; + + list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) + __perf_counter_remove_from_context(counter); +} +static void perf_counter_exit_cpu(int cpu) +{ + struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); + struct perf_counter_context *ctx = &cpuctx->ctx; + + mutex_lock(&ctx->mutex); + smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); + mutex_unlock(&ctx->mutex); +} +#else +static inline void perf_counter_exit_cpu(int cpu) { } +#endif + +static int __cpuinit +perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) +{ + unsigned int cpu = (long)hcpu; + + switch (action) { + + case CPU_UP_PREPARE: + case CPU_UP_PREPARE_FROZEN: + perf_counter_init_cpu(cpu); + break; + + case CPU_DOWN_PREPARE: + case CPU_DOWN_PREPARE_FROZEN: + perf_counter_exit_cpu(cpu); + break; + + default: + break; + } + + return NOTIFY_OK; +} + +static struct notifier_block __cpuinitdata perf_cpu_nb = { + .notifier_call = perf_cpu_notify, +}; + +static int __init perf_counter_init(void) +{ + perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, + (void *)(long)smp_processor_id()); + register_cpu_notifier(&perf_cpu_nb); + + return 0; +} +early_initcall(perf_counter_init); + +static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) +{ + return sprintf(buf, "%d\n", perf_reserved_percpu); +} + +static ssize_t +perf_set_reserve_percpu(struct sysdev_class *class, + const char *buf, + size_t count) +{ + struct perf_cpu_context *cpuctx; + unsigned long val; + int err, cpu, mpt; + + err = strict_strtoul(buf, 10, &val); + if (err) + return err; + if (val > perf_max_counters) + return -EINVAL; + + mutex_lock(&perf_resource_mutex); + perf_reserved_percpu = val; + for_each_online_cpu(cpu) { + cpuctx = &per_cpu(perf_cpu_context, cpu); + spin_lock_irq(&cpuctx->ctx.lock); + mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, + perf_max_counters - perf_reserved_percpu); + cpuctx->max_pertask = mpt; + spin_unlock_irq(&cpuctx->ctx.lock); + } + mutex_unlock(&perf_resource_mutex); + + return count; +} + +static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) +{ + return sprintf(buf, "%d\n", perf_overcommit); +} + +static ssize_t +perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) +{ + unsigned long val; + int err; + + err = strict_strtoul(buf, 10, &val); + if (err) + return err; + if (val > 1) + return -EINVAL; + + mutex_lock(&perf_resource_mutex); + perf_overcommit = val; + mutex_unlock(&perf_resource_mutex); + + return count; +} + +static SYSDEV_CLASS_ATTR( + reserve_percpu, + 0644, + perf_show_reserve_percpu, + perf_set_reserve_percpu + ); + +static SYSDEV_CLASS_ATTR( + overcommit, + 0644, + perf_show_overcommit, + perf_set_overcommit + ); + +static struct attribute *perfclass_attrs[] = { + &attr_reserve_percpu.attr, + &attr_overcommit.attr, + NULL +}; + +static struct attribute_group perfclass_attr_group = { + .attrs = perfclass_attrs, + .name = "perf_counters", +}; + +static int __init perf_counter_sysfs_init(void) +{ + return sysfs_create_group(&cpu_sysdev_class.kset.kobj, + &perfclass_attr_group); +} +device_initcall(perf_counter_sysfs_init); diff --git a/kernel/sched.c b/kernel/sched.c index bec249885e1..39e70860216 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -577,6 +577,7 @@ struct rq { struct load_weight load; unsigned long nr_load_updates; u64 nr_switches; + u64 nr_migrations_in; struct cfs_rq cfs; struct rt_rq rt; @@ -685,7 +686,7 @@ static inline int cpu_of(struct rq *rq) #define task_rq(p) cpu_rq(task_cpu(p)) #define cpu_curr(cpu) (cpu_rq(cpu)->curr) -static inline void update_rq_clock(struct rq *rq) +inline void update_rq_clock(struct rq *rq) { rq->clock = sched_clock_cpu(cpu_of(rq)); } @@ -996,6 +997,26 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) } } +void curr_rq_lock_irq_save(unsigned long *flags) + __acquires(rq->lock) +{ + struct rq *rq; + + local_irq_save(*flags); + rq = cpu_rq(smp_processor_id()); + spin_lock(&rq->lock); +} + +void curr_rq_unlock_irq_restore(unsigned long *flags) + __releases(rq->lock) +{ + struct rq *rq; + + rq = cpu_rq(smp_processor_id()); + spin_unlock(&rq->lock); + local_irq_restore(*flags); +} + void task_rq_unlock_wait(struct task_struct *p) { struct rq *rq = task_rq(p); @@ -1947,12 +1968,15 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) p->se.sleep_start -= clock_offset; if (p->se.block_start) p->se.block_start -= clock_offset; +#endif if (old_cpu != new_cpu) { - schedstat_inc(p, se.nr_migrations); + p->se.nr_migrations++; + new_rq->nr_migrations_in++; +#ifdef CONFIG_SCHEDSTATS if (task_hot(p, old_rq->clock, NULL)) schedstat_inc(p, se.nr_forced2_migrations); - } #endif + } p->se.vruntime -= old_cfsrq->min_vruntime - new_cfsrq->min_vruntime; @@ -2304,6 +2328,27 @@ static int sched_balance_self(int cpu, int flag) #endif /* CONFIG_SMP */ +/** + * task_oncpu_function_call - call a function on the cpu on which a task runs + * @p: the task to evaluate + * @func: the function to be called + * @info: the function call argument + * + * Calls the function @func when the task is currently running. This might + * be on the current CPU, which just calls the function directly + */ +void task_oncpu_function_call(struct task_struct *p, + void (*func) (void *info), void *info) +{ + int cpu; + + preempt_disable(); + cpu = task_cpu(p); + if (task_curr(p)) + smp_call_function_single(cpu, func, info, 1); + preempt_enable(); +} + /*** * try_to_wake_up - wake up a thread * @p: the to-be-woken-up thread @@ -2460,6 +2505,7 @@ static void __sched_fork(struct task_struct *p) p->se.exec_start = 0; p->se.sum_exec_runtime = 0; p->se.prev_sum_exec_runtime = 0; + p->se.nr_migrations = 0; p->se.last_wakeup = 0; p->se.avg_overlap = 0; p->se.start_runtime = 0; @@ -2690,6 +2736,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) */ prev_state = prev->state; finish_arch_switch(prev); + perf_counter_task_sched_in(current, cpu_of(rq)); finish_lock_switch(rq, prev); #ifdef CONFIG_SMP if (post_schedule) @@ -2852,6 +2899,21 @@ unsigned long nr_active(void) } /* + * Externally visible per-cpu scheduler statistics: + * cpu_nr_switches(cpu) - number of context switches on that cpu + * cpu_nr_migrations(cpu) - number of migrations into that cpu + */ +u64 cpu_nr_switches(int cpu) +{ + return cpu_rq(cpu)->nr_switches; +} + +u64 cpu_nr_migrations(int cpu) +{ + return cpu_rq(cpu)->nr_migrations_in; +} + +/* * Update rq->cpu_load[] statistics. This function is usually called every * scheduler tick (TICK_NSEC). */ @@ -4506,6 +4568,29 @@ EXPORT_PER_CPU_SYMBOL(kstat); * Return any ns on the sched_clock that have not yet been banked in * @p in case that task is currently running. */ +unsigned long long __task_delta_exec(struct task_struct *p, int update) +{ + s64 delta_exec; + struct rq *rq; + + rq = task_rq(p); + WARN_ON_ONCE(!runqueue_is_locked()); + WARN_ON_ONCE(!task_current(rq, p)); + + if (update) + update_rq_clock(rq); + + delta_exec = rq->clock - p->se.exec_start; + + WARN_ON_ONCE(delta_exec < 0); + + return delta_exec; +} + +/* + * Return any ns on the sched_clock that have not yet been banked in + * @p in case that task is currently running. + */ unsigned long long task_delta_exec(struct task_struct *p) { unsigned long flags; @@ -4765,6 +4850,7 @@ void scheduler_tick(void) update_rq_clock(rq); update_cpu_load(rq); curr->sched_class->task_tick(rq, curr, 0); + perf_counter_task_tick(curr, cpu); spin_unlock(&rq->lock); #ifdef CONFIG_SMP @@ -4980,6 +5066,7 @@ need_resched_nonpreemptible: if (likely(prev != next)) { sched_info_switch(prev, next); + perf_counter_task_sched_out(prev, cpu); rq->nr_switches++; rq->curr = next; diff --git a/kernel/sys.c b/kernel/sys.c index 51dbb55604e..14c4c561311 100644 --- a/kernel/sys.c +++ b/kernel/sys.c @@ -14,6 +14,7 @@ #include <linux/prctl.h> #include <linux/highuid.h> #include <linux/fs.h> +#include <linux/perf_counter.h> #include <linux/resource.h> #include <linux/kernel.h> #include <linux/kexec.h> @@ -1799,6 +1800,12 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, case PR_SET_TSC: error = SET_TSC_CTL(arg2); break; + case PR_TASK_PERF_COUNTERS_DISABLE: + error = perf_counter_task_disable(); + break; + case PR_TASK_PERF_COUNTERS_ENABLE: + error = perf_counter_task_enable(); + break; case PR_GET_TIMERSLACK: error = current->timer_slack_ns; break; diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 27dad296738..68320f6b07b 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c @@ -175,3 +175,6 @@ cond_syscall(compat_sys_timerfd_settime); cond_syscall(compat_sys_timerfd_gettime); cond_syscall(sys_eventfd); cond_syscall(sys_eventfd2); + +/* performance counters: */ +cond_syscall(sys_perf_counter_open); |