aboutsummaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig5
-rw-r--r--mm/Makefile3
-rw-r--r--mm/backing-dev.c16
-rw-r--r--mm/bounce.c2
-rw-r--r--mm/filemap.c227
-rw-r--r--mm/filemap_xip.c55
-rw-r--r--mm/highmem.c9
-rw-r--r--mm/hugetlb.c33
-rw-r--r--mm/internal.h2
-rw-r--r--mm/madvise.c51
-rw-r--r--mm/memory.c106
-rw-r--r--mm/migrate.c15
-rw-r--r--mm/mmap.c50
-rw-r--r--mm/nommu.c37
-rw-r--r--mm/oom_kill.c23
-rw-r--r--mm/page-writeback.c61
-rw-r--r--mm/page_alloc.c130
-rw-r--r--mm/quicklist.c88
-rw-r--r--mm/readahead.c29
-rw-r--r--mm/rmap.c14
-rw-r--r--mm/shmem.c135
-rw-r--r--mm/slab.c295
-rw-r--r--mm/slob.c57
-rw-r--r--mm/slub.c3669
-rw-r--r--mm/sparse.c14
-rw-r--r--mm/swap.c4
-rw-r--r--mm/swapfile.c3
-rw-r--r--mm/truncate.c3
-rw-r--r--mm/vmalloc.c21
-rw-r--r--mm/vmscan.c23
-rw-r--r--mm/vmstat.c95
31 files changed, 4800 insertions, 475 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 7942b333e46..a17da8bafe6 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -163,3 +163,8 @@ config ZONE_DMA_FLAG
default "0" if !ZONE_DMA
default "1"
+config NR_QUICK
+ int
+ depends on QUICKLIST
+ default "2" if SUPERH
+ default "1"
diff --git a/mm/Makefile b/mm/Makefile
index f3c077eb0b8..a9148ea329a 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -25,7 +25,10 @@ obj-$(CONFIG_TMPFS_POSIX_ACL) += shmem_acl.o
obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o
obj-$(CONFIG_SLOB) += slob.o
obj-$(CONFIG_SLAB) += slab.o
+obj-$(CONFIG_SLUB) += slub.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o
obj-$(CONFIG_SMP) += allocpercpu.o
+obj-$(CONFIG_QUICKLIST) += quicklist.o
+
diff --git a/mm/backing-dev.c b/mm/backing-dev.c
index f50a2811f9d..e5de3781d3f 100644
--- a/mm/backing-dev.c
+++ b/mm/backing-dev.c
@@ -55,6 +55,22 @@ long congestion_wait(int rw, long timeout)
}
EXPORT_SYMBOL(congestion_wait);
+long congestion_wait_interruptible(int rw, long timeout)
+{
+ long ret;
+ DEFINE_WAIT(wait);
+ wait_queue_head_t *wqh = &congestion_wqh[rw];
+
+ prepare_to_wait(wqh, &wait, TASK_INTERRUPTIBLE);
+ if (signal_pending(current))
+ ret = -ERESTARTSYS;
+ else
+ ret = io_schedule_timeout(timeout);
+ finish_wait(wqh, &wait);
+ return ret;
+}
+EXPORT_SYMBOL(congestion_wait_interruptible);
+
/**
* congestion_end - wake up sleepers on a congested backing_dev_info
* @rw: READ or WRITE
diff --git a/mm/bounce.c b/mm/bounce.c
index 643efbe8240..ad401fc5744 100644
--- a/mm/bounce.c
+++ b/mm/bounce.c
@@ -204,7 +204,7 @@ static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
/*
* is destination page below bounce pfn?
*/
- if (page_to_pfn(page) < q->bounce_pfn)
+ if (page_to_pfn(page) <= q->bounce_pfn)
continue;
/*
diff --git a/mm/filemap.c b/mm/filemap.c
index d1060b8d3cd..7b48b2ad00e 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -750,6 +750,7 @@ unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
read_unlock_irq(&mapping->tree_lock);
return i;
}
+EXPORT_SYMBOL(find_get_pages_contig);
/**
* find_get_pages_tag - find and return pages that match @tag
@@ -778,6 +779,7 @@ unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
read_unlock_irq(&mapping->tree_lock);
return ret;
}
+EXPORT_SYMBOL(find_get_pages_tag);
/**
* grab_cache_page_nowait - returns locked page at given index in given cache
@@ -868,6 +870,7 @@ void do_generic_mapping_read(struct address_space *mapping,
unsigned long last_index;
unsigned long next_index;
unsigned long prev_index;
+ unsigned int prev_offset;
loff_t isize;
struct page *cached_page;
int error;
@@ -876,7 +879,8 @@ void do_generic_mapping_read(struct address_space *mapping,
cached_page = NULL;
index = *ppos >> PAGE_CACHE_SHIFT;
next_index = index;
- prev_index = ra.prev_page;
+ prev_index = ra.prev_index;
+ prev_offset = ra.prev_offset;
last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
offset = *ppos & ~PAGE_CACHE_MASK;
@@ -924,10 +928,10 @@ page_ok:
flush_dcache_page(page);
/*
- * When (part of) the same page is read multiple times
- * in succession, only mark it as accessed the first time.
+ * When a sequential read accesses a page several times,
+ * only mark it as accessed the first time.
*/
- if (prev_index != index)
+ if (prev_index != index || offset != prev_offset)
mark_page_accessed(page);
prev_index = index;
@@ -945,6 +949,8 @@ page_ok:
offset += ret;
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
+ prev_offset = offset;
+ ra.prev_offset = offset;
page_cache_release(page);
if (ret == nr && desc->count)
@@ -1106,6 +1112,45 @@ success:
return size;
}
+/*
+ * Performs necessary checks before doing a write
+ * @iov: io vector request
+ * @nr_segs: number of segments in the iovec
+ * @count: number of bytes to write
+ * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
+ *
+ * Adjust number of segments and amount of bytes to write (nr_segs should be
+ * properly initialized first). Returns appropriate error code that caller
+ * should return or zero in case that write should be allowed.
+ */
+int generic_segment_checks(const struct iovec *iov,
+ unsigned long *nr_segs, size_t *count, int access_flags)
+{
+ unsigned long seg;
+ size_t cnt = 0;
+ for (seg = 0; seg < *nr_segs; seg++) {
+ const struct iovec *iv = &iov[seg];
+
+ /*
+ * If any segment has a negative length, or the cumulative
+ * length ever wraps negative then return -EINVAL.
+ */
+ cnt += iv->iov_len;
+ if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
+ return -EINVAL;
+ if (access_ok(access_flags, iv->iov_base, iv->iov_len))
+ continue;
+ if (seg == 0)
+ return -EFAULT;
+ *nr_segs = seg;
+ cnt -= iv->iov_len; /* This segment is no good */
+ break;
+ }
+ *count = cnt;
+ return 0;
+}
+EXPORT_SYMBOL(generic_segment_checks);
+
/**
* generic_file_aio_read - generic filesystem read routine
* @iocb: kernel I/O control block
@@ -1127,24 +1172,9 @@ generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
loff_t *ppos = &iocb->ki_pos;
count = 0;
- for (seg = 0; seg < nr_segs; seg++) {
- const struct iovec *iv = &iov[seg];
-
- /*
- * If any segment has a negative length, or the cumulative
- * length ever wraps negative then return -EINVAL.
- */
- count += iv->iov_len;
- if (unlikely((ssize_t)(count|iv->iov_len) < 0))
- return -EINVAL;
- if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
- continue;
- if (seg == 0)
- return -EFAULT;
- nr_segs = seg;
- count -= iv->iov_len; /* This segment is no good */
- break;
- }
+ retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
+ if (retval)
+ return retval;
/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
if (filp->f_flags & O_DIRECT) {
@@ -1446,30 +1476,6 @@ page_not_uptodate:
majmin = VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
}
- lock_page(page);
-
- /* Did it get unhashed while we waited for it? */
- if (!page->mapping) {
- unlock_page(page);
- page_cache_release(page);
- goto retry_all;
- }
-
- /* Did somebody else get it up-to-date? */
- if (PageUptodate(page)) {
- unlock_page(page);
- goto success;
- }
-
- error = mapping->a_ops->readpage(file, page);
- if (!error) {
- wait_on_page_locked(page);
- if (PageUptodate(page))
- goto success;
- } else if (error == AOP_TRUNCATED_PAGE) {
- page_cache_release(page);
- goto retry_find;
- }
/*
* Umm, take care of errors if the page isn't up-to-date.
@@ -1726,7 +1732,7 @@ int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);
-static inline struct page *__read_cache_page(struct address_space *mapping,
+static struct page *__read_cache_page(struct address_space *mapping,
unsigned long index,
int (*filler)(void *,struct page*),
void *data)
@@ -1763,17 +1769,11 @@ repeat:
return page;
}
-/**
- * read_cache_page - read into page cache, fill it if needed
- * @mapping: the page's address_space
- * @index: the page index
- * @filler: function to perform the read
- * @data: destination for read data
- *
- * Read into the page cache. If a page already exists,
- * and PageUptodate() is not set, try to fill the page.
+/*
+ * Same as read_cache_page, but don't wait for page to become unlocked
+ * after submitting it to the filler.
*/
-struct page *read_cache_page(struct address_space *mapping,
+struct page *read_cache_page_async(struct address_space *mapping,
unsigned long index,
int (*filler)(void *,struct page*),
void *data)
@@ -1784,7 +1784,7 @@ struct page *read_cache_page(struct address_space *mapping,
retry:
page = __read_cache_page(mapping, index, filler, data);
if (IS_ERR(page))
- goto out;
+ return page;
mark_page_accessed(page);
if (PageUptodate(page))
goto out;
@@ -1802,7 +1802,40 @@ retry:
err = filler(data, page);
if (err < 0) {
page_cache_release(page);
- page = ERR_PTR(err);
+ return ERR_PTR(err);
+ }
+out:
+ mark_page_accessed(page);
+ return page;
+}
+EXPORT_SYMBOL(read_cache_page_async);
+
+/**
+ * read_cache_page - read into page cache, fill it if needed
+ * @mapping: the page's address_space
+ * @index: the page index
+ * @filler: function to perform the read
+ * @data: destination for read data
+ *
+ * Read into the page cache. If a page already exists, and PageUptodate() is
+ * not set, try to fill the page then wait for it to become unlocked.
+ *
+ * If the page does not get brought uptodate, return -EIO.
+ */
+struct page *read_cache_page(struct address_space *mapping,
+ unsigned long index,
+ int (*filler)(void *,struct page*),
+ void *data)
+{
+ struct page *page;
+
+ page = read_cache_page_async(mapping, index, filler, data);
+ if (IS_ERR(page))
+ goto out;
+ wait_on_page_locked(page);
+ if (!PageUptodate(page)) {
+ page_cache_release(page);
+ page = ERR_PTR(-EIO);
}
out:
return page;
@@ -2211,30 +2244,14 @@ __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
size_t ocount; /* original count */
size_t count; /* after file limit checks */
struct inode *inode = mapping->host;
- unsigned long seg;
loff_t pos;
ssize_t written;
ssize_t err;
ocount = 0;
- for (seg = 0; seg < nr_segs; seg++) {
- const struct iovec *iv = &iov[seg];
-
- /*
- * If any segment has a negative length, or the cumulative
- * length ever wraps negative then return -EINVAL.
- */
- ocount += iv->iov_len;
- if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
- return -EINVAL;
- if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
- continue;
- if (seg == 0)
- return -EFAULT;
- nr_segs = seg;
- ocount -= iv->iov_len; /* This segment is no good */
- break;
- }
+ err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
+ if (err)
+ return err;
count = ocount;
pos = *ppos;
@@ -2294,10 +2311,10 @@ __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
* semantics.
*/
endbyte = pos + written_buffered - written - 1;
- err = do_sync_file_range(file, pos, endbyte,
- SYNC_FILE_RANGE_WAIT_BEFORE|
- SYNC_FILE_RANGE_WRITE|
- SYNC_FILE_RANGE_WAIT_AFTER);
+ err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
+ SYNC_FILE_RANGE_WAIT_BEFORE|
+ SYNC_FILE_RANGE_WRITE|
+ SYNC_FILE_RANGE_WAIT_AFTER);
if (err == 0) {
written = written_buffered;
invalidate_mapping_pages(mapping,
@@ -2379,7 +2396,8 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
ssize_t retval;
- size_t write_len = 0;
+ size_t write_len;
+ pgoff_t end = 0; /* silence gcc */
/*
* If it's a write, unmap all mmappings of the file up-front. This
@@ -2388,23 +2406,46 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
*/
if (rw == WRITE) {
write_len = iov_length(iov, nr_segs);
+ end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
if (mapping_mapped(mapping))
unmap_mapping_range(mapping, offset, write_len, 0);
}
retval = filemap_write_and_wait(mapping);
- if (retval == 0) {
- retval = mapping->a_ops->direct_IO(rw, iocb, iov,
- offset, nr_segs);
- if (rw == WRITE && mapping->nrpages) {
- pgoff_t end = (offset + write_len - 1)
- >> PAGE_CACHE_SHIFT;
- int err = invalidate_inode_pages2_range(mapping,
+ if (retval)
+ goto out;
+
+ /*
+ * After a write we want buffered reads to be sure to go to disk to get
+ * the new data. We invalidate clean cached page from the region we're
+ * about to write. We do this *before* the write so that we can return
+ * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
+ */
+ if (rw == WRITE && mapping->nrpages) {
+ retval = invalidate_inode_pages2_range(mapping,
offset >> PAGE_CACHE_SHIFT, end);
- if (err)
- retval = err;
- }
+ if (retval)
+ goto out;
}
+
+ retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
+ if (retval)
+ goto out;
+
+ /*
+ * Finally, try again to invalidate clean pages which might have been
+ * faulted in by get_user_pages() if the source of the write was an
+ * mmap()ed region of the file we're writing. That's a pretty crazy
+ * thing to do, so we don't support it 100%. If this invalidation
+ * fails and we have -EIOCBQUEUED we ignore the failure.
+ */
+ if (rw == WRITE && mapping->nrpages) {
+ int err = invalidate_inode_pages2_range(mapping,
+ offset >> PAGE_CACHE_SHIFT, end);
+ if (err && retval >= 0)
+ retval = err;
+ }
+out:
return retval;
}
diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c
index 9dd9fbb7513..1b49dab9b25 100644
--- a/mm/filemap_xip.c
+++ b/mm/filemap_xip.c
@@ -17,6 +17,29 @@
#include "filemap.h"
/*
+ * We do use our own empty page to avoid interference with other users
+ * of ZERO_PAGE(), such as /dev/zero
+ */
+static struct page *__xip_sparse_page;
+
+static struct page *xip_sparse_page(void)
+{
+ if (!__xip_sparse_page) {
+ unsigned long zeroes = get_zeroed_page(GFP_HIGHUSER);
+ if (zeroes) {
+ static DEFINE_SPINLOCK(xip_alloc_lock);
+ spin_lock(&xip_alloc_lock);
+ if (!__xip_sparse_page)
+ __xip_sparse_page = virt_to_page(zeroes);
+ else
+ free_page(zeroes);
+ spin_unlock(&xip_alloc_lock);
+ }
+ }
+ return __xip_sparse_page;
+}
+
+/*
* This is a file read routine for execute in place files, and uses
* the mapping->a_ops->get_xip_page() function for the actual low-level
* stuff.
@@ -162,7 +185,7 @@ EXPORT_SYMBOL_GPL(xip_file_sendfile);
* xip_write
*
* This function walks all vmas of the address_space and unmaps the
- * ZERO_PAGE when found at pgoff. Should it go in rmap.c?
+ * __xip_sparse_page when found at pgoff.
*/
static void
__xip_unmap (struct address_space * mapping,
@@ -177,13 +200,16 @@ __xip_unmap (struct address_space * mapping,
spinlock_t *ptl;
struct page *page;
+ page = __xip_sparse_page;
+ if (!page)
+ return;
+
spin_lock(&mapping->i_mmap_lock);
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
mm = vma->vm_mm;
address = vma->vm_start +
((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
- page = ZERO_PAGE(0);
pte = page_check_address(page, mm, address, &ptl);
if (pte) {
/* Nuke the page table entry. */
@@ -222,16 +248,14 @@ xip_file_nopage(struct vm_area_struct * area,
+ area->vm_pgoff;
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- if (pgoff >= size) {
- return NULL;
- }
+ if (pgoff >= size)
+ return NOPAGE_SIGBUS;
page = mapping->a_ops->get_xip_page(mapping, pgoff*(PAGE_SIZE/512), 0);
- if (!IS_ERR(page)) {
+ if (!IS_ERR(page))
goto out;
- }
if (PTR_ERR(page) != -ENODATA)
- return NULL;
+ return NOPAGE_SIGBUS;
/* sparse block */
if ((area->vm_flags & (VM_WRITE | VM_MAYWRITE)) &&
@@ -241,12 +265,14 @@ xip_file_nopage(struct vm_area_struct * area,
page = mapping->a_ops->get_xip_page (mapping,
pgoff*(PAGE_SIZE/512), 1);
if (IS_ERR(page))
- return NULL;
+ return NOPAGE_SIGBUS;
/* unmap page at pgoff from all other vmas */
__xip_unmap(mapping, pgoff);
} else {
- /* not shared and writable, use ZERO_PAGE() */
- page = ZERO_PAGE(0);
+ /* not shared and writable, use xip_sparse_page() */
+ page = xip_sparse_page();
+ if (!page)
+ return NOPAGE_OOM;
}
out:
@@ -408,7 +434,6 @@ xip_truncate_page(struct address_space *mapping, loff_t from)
unsigned blocksize;
unsigned length;
struct page *page;
- void *kaddr;
BUG_ON(!mapping->a_ops->get_xip_page);
@@ -432,11 +457,7 @@ xip_truncate_page(struct address_space *mapping, loff_t from)
else
return PTR_ERR(page);
}
- kaddr = kmap_atomic(page, KM_USER0);
- memset(kaddr + offset, 0, length);
- kunmap_atomic(kaddr, KM_USER0);
-
- flush_dcache_page(page);
+ zero_user_page(page, offset, length, KM_USER0);
return 0;
}
EXPORT_SYMBOL_GPL(xip_truncate_page);
diff --git a/mm/highmem.c b/mm/highmem.c
index 51e1c1995fe..be8f8d36a8b 100644
--- a/mm/highmem.c
+++ b/mm/highmem.c
@@ -99,6 +99,15 @@ static void flush_all_zero_pkmaps(void)
flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
}
+/* Flush all unused kmap mappings in order to remove stray
+ mappings. */
+void kmap_flush_unused(void)
+{
+ spin_lock(&kmap_lock);
+ flush_all_zero_pkmaps();
+ spin_unlock(&kmap_lock);
+}
+
static inline unsigned long map_new_virtual(struct page *page)
{
unsigned long vaddr;
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 36db012b38d..eb7180db303 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -140,6 +140,8 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
return page;
fail:
+ if (vma->vm_flags & VM_MAYSHARE)
+ resv_huge_pages++;
spin_unlock(&hugetlb_lock);
return NULL;
}
@@ -172,6 +174,17 @@ static int __init hugetlb_setup(char *s)
}
__setup("hugepages=", hugetlb_setup);
+static unsigned int cpuset_mems_nr(unsigned int *array)
+{
+ int node;
+ unsigned int nr = 0;
+
+ for_each_node_mask(node, cpuset_current_mems_allowed)
+ nr += array[node];
+
+ return nr;
+}
+
#ifdef CONFIG_SYSCTL
static void update_and_free_page(struct page *page)
{
@@ -817,6 +830,26 @@ int hugetlb_reserve_pages(struct inode *inode, long from, long to)
chg = region_chg(&inode->i_mapping->private_list, from, to);
if (chg < 0)
return chg;
+ /*
+ * When cpuset is configured, it breaks the strict hugetlb page
+ * reservation as the accounting is done on a global variable. Such
+ * reservation is completely rubbish in the presence of cpuset because
+ * the reservation is not checked against page availability for the
+ * current cpuset. Application can still potentially OOM'ed by kernel
+ * with lack of free htlb page in cpuset that the task is in.
+ * Attempt to enforce strict accounting with cpuset is almost
+ * impossible (or too ugly) because cpuset is too fluid that
+ * task or memory node can be dynamically moved between cpusets.
+ *
+ * The change of semantics for shared hugetlb mapping with cpuset is
+ * undesirable. However, in order to preserve some of the semantics,
+ * we fall back to check against current free page availability as
+ * a best attempt and hopefully to minimize the impact of changing
+ * semantics that cpuset has.
+ */
+ if (chg > cpuset_mems_nr(free_huge_pages_node))
+ return -ENOMEM;
+
ret = hugetlb_acct_memory(chg);
if (ret < 0)
return ret;
diff --git a/mm/internal.h b/mm/internal.h
index d527b80b292..a3110c02aea 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -24,7 +24,7 @@ static inline void set_page_count(struct page *page, int v)
*/
static inline void set_page_refcounted(struct page *page)
{
- VM_BUG_ON(PageCompound(page) && page_private(page) != (unsigned long)page);
+ VM_BUG_ON(PageCompound(page) && PageTail(page));
VM_BUG_ON(atomic_read(&page->_count));
set_page_count(page, 1);
}
diff --git a/mm/madvise.c b/mm/madvise.c
index 4e196155a0c..e75096b5a6d 100644
--- a/mm/madvise.c
+++ b/mm/madvise.c
@@ -12,6 +12,24 @@
#include <linux/hugetlb.h>
/*
+ * Any behaviour which results in changes to the vma->vm_flags needs to
+ * take mmap_sem for writing. Others, which simply traverse vmas, need
+ * to only take it for reading.
+ */
+static int madvise_need_mmap_write(int behavior)
+{
+ switch (behavior) {
+ case MADV_REMOVE:
+ case MADV_WILLNEED:
+ case MADV_DONTNEED:
+ return 0;
+ default:
+ /* be safe, default to 1. list exceptions explicitly */
+ return 1;
+ }
+}
+
+/*
* We can potentially split a vm area into separate
* areas, each area with its own behavior.
*/
@@ -155,10 +173,14 @@ static long madvise_dontneed(struct vm_area_struct * vma,
* Other filesystems return -ENOSYS.
*/
static long madvise_remove(struct vm_area_struct *vma,
+ struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
struct address_space *mapping;
- loff_t offset, endoff;
+ loff_t offset, endoff;
+ int error;
+
+ *prev = NULL; /* tell sys_madvise we drop mmap_sem */
if (vma->vm_flags & (VM_LOCKED|VM_NONLINEAR|VM_HUGETLB))
return -EINVAL;
@@ -177,7 +199,12 @@ static long madvise_remove(struct vm_area_struct *vma,
+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
endoff = (loff_t)(end - vma->vm_start - 1)
+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
- return vmtruncate_range(mapping->host, offset, endoff);
+
+ /* vmtruncate_range needs to take i_mutex and i_alloc_sem */
+ up_read(&current->mm->mmap_sem);
+ error = vmtruncate_range(mapping->host, offset, endoff);
+ down_read(&current->mm->mmap_sem);
+ return error;
}
static long
@@ -199,7 +226,7 @@ madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
error = madvise_behavior(vma, prev, start, end, behavior);
break;
case MADV_REMOVE:
- error = madvise_remove(vma, start, end);
+ error = madvise_remove(vma, prev, start, end);
break;
case MADV_WILLNEED:
@@ -261,7 +288,10 @@ asmlinkage long sys_madvise(unsigned long start, size_t len_in, int behavior)
int error = -EINVAL;
size_t len;
- down_write(&current->mm->mmap_sem);
+ if (madvise_need_mmap_write(behavior))
+ down_write(&current->mm->mmap_sem);
+ else
+ down_read(&current->mm->mmap_sem);
if (start & ~PAGE_MASK)
goto out;
@@ -312,14 +342,21 @@ asmlinkage long sys_madvise(unsigned long start, size_t len_in, int behavior)
if (error)
goto out;
start = tmp;
- if (start < prev->vm_end)
+ if (prev && start < prev->vm_end)
start = prev->vm_end;
error = unmapped_error;
if (start >= end)
goto out;
- vma = prev->vm_next;
+ if (prev)
+ vma = prev->vm_next;
+ else /* madvise_remove dropped mmap_sem */
+ vma = find_vma(current->mm, start);
}
out:
- up_write(&current->mm->mmap_sem);
+ if (madvise_need_mmap_write(behavior))
+ up_write(&current->mm->mmap_sem);
+ else
+ up_read(&current->mm->mmap_sem);
+
return error;
}
diff --git a/mm/memory.c b/mm/memory.c
index e7066e71dfa..1d647ab0ee7 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1448,6 +1448,100 @@ int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
}
EXPORT_SYMBOL(remap_pfn_range);
+static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
+ unsigned long addr, unsigned long end,
+ pte_fn_t fn, void *data)
+{
+ pte_t *pte;
+ int err;
+ struct page *pmd_page;
+ spinlock_t *uninitialized_var(ptl);
+
+ pte = (mm == &init_mm) ?
+ pte_alloc_kernel(pmd, addr) :
+ pte_alloc_map_lock(mm, pmd, addr, &ptl);
+ if (!pte)
+ return -ENOMEM;
+
+ BUG_ON(pmd_huge(*pmd));
+
+ pmd_page = pmd_page(*pmd);
+
+ do {
+ err = fn(pte, pmd_page, addr, data);
+ if (err)
+ break;
+ } while (pte++, addr += PAGE_SIZE, addr != end);
+
+ if (mm != &init_mm)
+ pte_unmap_unlock(pte-1, ptl);
+ return err;
+}
+
+static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
+ unsigned long addr, unsigned long end,
+ pte_fn_t fn, void *data)
+{
+ pmd_t *pmd;
+ unsigned long next;
+ int err;
+
+ pmd = pmd_alloc(mm, pud, addr);
+ if (!pmd)
+ return -ENOMEM;
+ do {
+ next = pmd_addr_end(addr, end);
+ err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
+ if (err)
+ break;
+ } while (pmd++, addr = next, addr != end);
+ return err;
+}
+
+static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
+ unsigned long addr, unsigned long end,
+ pte_fn_t fn, void *data)
+{
+ pud_t *pud;
+ unsigned long next;
+ int err;
+
+ pud = pud_alloc(mm, pgd, addr);
+ if (!pud)
+ return -ENOMEM;
+ do {
+ next = pud_addr_end(addr, end);
+ err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
+ if (err)
+ break;
+ } while (pud++, addr = next, addr != end);
+ return err;
+}
+
+/*
+ * Scan a region of virtual memory, filling in page tables as necessary
+ * and calling a provided function on each leaf page table.
+ */
+int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
+ unsigned long size, pte_fn_t fn, void *data)
+{
+ pgd_t *pgd;
+ unsigned long next;
+ unsigned long end = addr + size;
+ int err;
+
+ BUG_ON(addr >= end);
+ pgd = pgd_offset(mm, addr);
+ do {
+ next = pgd_addr_end(addr, end);
+ err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
+ if (err)
+ break;
+ } while (pgd++, addr = next, addr != end);
+ return err;
+}
+EXPORT_SYMBOL_GPL(apply_to_page_range);
+
/*
* handle_pte_fault chooses page fault handler according to an entry
* which was read non-atomically. Before making any commitment, on
@@ -2539,12 +2633,6 @@ int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
spin_unlock(&mm->page_table_lock);
return 0;
}
-#else
-/* Workaround for gcc 2.96 */
-int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
-{
- return 0;
-}
#endif /* __PAGETABLE_PUD_FOLDED */
#ifndef __PAGETABLE_PMD_FOLDED
@@ -2573,12 +2661,6 @@ int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
spin_unlock(&mm->page_table_lock);
return 0;
}
-#else
-/* Workaround for gcc 2.96 */
-int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
-{
- return 0;
-}
#endif /* __PAGETABLE_PMD_FOLDED */
int make_pages_present(unsigned long addr, unsigned long end)
diff --git a/mm/migrate.c b/mm/migrate.c
index 7a66ca25dc8..a91ca00abeb 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -297,7 +297,7 @@ static int migrate_page_move_mapping(struct address_space *mapping,
void **pslot;
if (!mapping) {
- /* Anonymous page */
+ /* Anonymous page without mapping */
if (page_count(page) != 1)
return -EAGAIN;
return 0;
@@ -333,6 +333,19 @@ static int migrate_page_move_mapping(struct address_space *mapping,
*/
__put_page(page);
+ /*
+ * If moved to a different zone then also account
+ * the page for that zone. Other VM counters will be
+ * taken care of when we establish references to the
+ * new page and drop references to the old page.
+ *
+ * Note that anonymous pages are accounted for
+ * via NR_FILE_PAGES and NR_ANON_PAGES if they
+ * are mapped to swap space.
+ */
+ __dec_zone_page_state(page, NR_FILE_PAGES);
+ __inc_zone_page_state(newpage, NR_FILE_PAGES);
+
write_unlock_irq(&mapping->tree_lock);
return 0;
diff --git a/mm/mmap.c b/mm/mmap.c
index 84f997da78d..68b9ad2ef1d 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -29,6 +29,7 @@
#include <asm/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
+#include <asm/mmu_context.h>
#ifndef arch_mmap_check
#define arch_mmap_check(addr, len, flags) (0)
@@ -1199,6 +1200,9 @@ arch_get_unmapped_area(struct file *filp, unsigned long addr,
if (len > TASK_SIZE)
return -ENOMEM;
+ if (flags & MAP_FIXED)
+ return addr;
+
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
@@ -1272,6 +1276,9 @@ arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
if (len > TASK_SIZE)
return -ENOMEM;
+ if (flags & MAP_FIXED)
+ return addr;
+
/* requesting a specific address */
if (addr) {
addr = PAGE_ALIGN(addr);
@@ -1359,39 +1366,21 @@ unsigned long
get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
- unsigned long ret;
-
- if (!(flags & MAP_FIXED)) {
- unsigned long (*get_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
-
- get_area = current->mm->get_unmapped_area;
- if (file && file->f_op && file->f_op->get_unmapped_area)
- get_area = file->f_op->get_unmapped_area;
- addr = get_area(file, addr, len, pgoff, flags);
- if (IS_ERR_VALUE(addr))
- return addr;
- }
+ unsigned long (*get_area)(struct file *, unsigned long,
+ unsigned long, unsigned long, unsigned long);
+
+ get_area = current->mm->get_unmapped_area;
+ if (file && file->f_op && file->f_op->get_unmapped_area)
+ get_area = file->f_op->get_unmapped_area;
+ addr = get_area(file, addr, len, pgoff, flags);
+ if (IS_ERR_VALUE(addr))
+ return addr;
if (addr > TASK_SIZE - len)
return -ENOMEM;
if (addr & ~PAGE_MASK)
return -EINVAL;
- if (file && is_file_hugepages(file)) {
- /*
- * Check if the given range is hugepage aligned, and
- * can be made suitable for hugepages.
- */
- ret = prepare_hugepage_range(addr, len, pgoff);
- } else {
- /*
- * Ensure that a normal request is not falling in a
- * reserved hugepage range. For some archs like IA-64,
- * there is a separate region for hugepages.
- */
- ret = is_hugepage_only_range(current->mm, addr, len);
- }
- if (ret)
- return -EINVAL;
+
return addr;
}
@@ -1731,7 +1720,7 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
/*
* Split a vma into two pieces at address 'addr', a new vma is allocated
- * either for the first part or the the tail.
+ * either for the first part or the tail.
*/
int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
unsigned long addr, int new_below)
@@ -1979,6 +1968,9 @@ void exit_mmap(struct mm_struct *mm)
unsigned long nr_accounted = 0;
unsigned long end;
+ /* mm's last user has gone, and its about to be pulled down */
+ arch_exit_mmap(mm);
+
lru_add_drain();
flush_cache_mm(mm);
tlb = tlb_gather_mmu(mm, 1);
diff --git a/mm/nommu.c b/mm/nommu.c
index 23fb033e596..2b16b00a5b1 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -45,6 +45,7 @@ int heap_stack_gap = 0;
EXPORT_SYMBOL(mem_map);
EXPORT_SYMBOL(__vm_enough_memory);
+EXPORT_SYMBOL(num_physpages);
/* list of shareable VMAs */
struct rb_root nommu_vma_tree = RB_ROOT;
@@ -261,6 +262,14 @@ void vunmap(void *addr)
}
/*
+ * Implement a stub for vmalloc_sync_all() if the architecture chose not to
+ * have one.
+ */
+void __attribute__((weak)) vmalloc_sync_all(void)
+{
+}
+
+/*
* sys_brk() for the most part doesn't need the global kernel
* lock, except when an application is doing something nasty
* like trying to un-brk an area that has already been mapped
@@ -826,6 +835,11 @@ unsigned long do_mmap_pgoff(struct file *file,
unsigned long pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
unsigned long vmpglen;
+ /* suppress VMA sharing for shared regions */
+ if (vm_flags & VM_SHARED &&
+ capabilities & BDI_CAP_MAP_DIRECT)
+ goto dont_share_VMAs;
+
for (rb = rb_first(&nommu_vma_tree); rb; rb = rb_next(rb)) {
vma = rb_entry(rb, struct vm_area_struct, vm_rb);
@@ -859,6 +873,7 @@ unsigned long do_mmap_pgoff(struct file *file,
goto shared;
}
+ dont_share_VMAs:
vma = NULL;
/* obtain the address at which to make a shared mapping
@@ -1193,6 +1208,28 @@ void unmap_mapping_range(struct address_space *mapping,
EXPORT_SYMBOL(unmap_mapping_range);
/*
+ * ask for an unmapped area at which to create a mapping on a file
+ */
+unsigned long get_unmapped_area(struct file *file, unsigned long addr,
+ unsigned long len, unsigned long pgoff,
+ unsigned long flags)
+{
+ unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
+ unsigned long, unsigned long);
+
+ get_area = current->mm->get_unmapped_area;
+ if (file && file->f_op && file->f_op->get_unmapped_area)
+ get_area = file->f_op->get_unmapped_area;
+
+ if (!get_area)
+ return -ENOSYS;
+
+ return get_area(file, addr, len, pgoff, flags);
+}
+
+EXPORT_SYMBOL(get_unmapped_area);
+
+/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
* succeed and -ENOMEM implies there is not.
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index b278b8d60ee..a7001410ab1 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -147,9 +147,11 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
* Adjust the score by oomkilladj.
*/
if (p->oomkilladj) {
- if (p->oomkilladj > 0)
+ if (p->oomkilladj > 0) {
+ if (!points)
+ points = 1;
points <<= p->oomkilladj;
- else
+ } else
points >>= -(p->oomkilladj);
}
@@ -176,6 +178,8 @@ static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
struct zone **z;
nodemask_t nodes;
int node;
+
+ nodes_clear(nodes);
/* node has memory ? */
for_each_online_node(node)
if (NODE_DATA(node)->node_present_pages)
@@ -320,7 +324,7 @@ static int oom_kill_task(struct task_struct *p)
* Don't kill the process if any threads are set to OOM_DISABLE
*/
do_each_thread(g, q) {
- if (q->mm == mm && p->oomkilladj == OOM_DISABLE)
+ if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
return 1;
} while_each_thread(g, q);
@@ -333,7 +337,7 @@ static int oom_kill_task(struct task_struct *p)
*/
do_each_thread(g, q) {
if (q->mm == mm && q->tgid != p->tgid)
- force_sig(SIGKILL, p);
+ force_sig(SIGKILL, q);
} while_each_thread(g, q);
return 0;
@@ -395,6 +399,7 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
struct task_struct *p;
unsigned long points = 0;
unsigned long freed = 0;
+ int constraint;
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
if (freed > 0)
@@ -409,14 +414,18 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
show_mem();
}
- cpuset_lock();
- read_lock(&tasklist_lock);
+ if (sysctl_panic_on_oom == 2)
+ panic("out of memory. Compulsory panic_on_oom is selected.\n");
/*
* Check if there were limitations on the allocation (only relevant for
* NUMA) that may require different handling.
*/
- switch (constrained_alloc(zonelist, gfp_mask)) {
+ constraint = constrained_alloc(zonelist, gfp_mask);
+ cpuset_lock();
+ read_lock(&tasklist_lock);
+
+ switch (constraint) {
case CONSTRAINT_MEMORY_POLICY:
oom_kill_process(current, points,
"No available memory (MPOL_BIND)");
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index f469e3cd08e..63cd88840eb 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -67,12 +67,12 @@ static inline long sync_writeback_pages(void)
/*
* Start background writeback (via pdflush) at this percentage
*/
-int dirty_background_ratio = 10;
+int dirty_background_ratio = 5;
/*
* The generator of dirty data starts writeback at this percentage
*/
-int vm_dirty_ratio = 40;
+int vm_dirty_ratio = 10;
/*
* The interval between `kupdate'-style writebacks, in jiffies
@@ -119,6 +119,44 @@ static void background_writeout(unsigned long _min_pages);
* We make sure that the background writeout level is below the adjusted
* clamping level.
*/
+
+static unsigned long highmem_dirtyable_memory(unsigned long total)
+{
+#ifdef CONFIG_HIGHMEM
+ int node;
+ unsigned long x = 0;
+
+ for_each_online_node(node) {
+ struct zone *z =
+ &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
+
+ x += zone_page_state(z, NR_FREE_PAGES)
+ + zone_page_state(z, NR_INACTIVE)
+ + zone_page_state(z, NR_ACTIVE);
+ }
+ /*
+ * Make sure that the number of highmem pages is never larger
+ * than the number of the total dirtyable memory. This can only
+ * occur in very strange VM situations but we want to make sure
+ * that this does not occur.
+ */
+ return min(x, total);
+#else
+ return 0;
+#endif
+}
+
+static unsigned long determine_dirtyable_memory(void)
+{
+ unsigned long x;
+
+ x = global_page_state(NR_FREE_PAGES)
+ + global_page_state(NR_INACTIVE)
+ + global_page_state(NR_ACTIVE);
+ x -= highmem_dirtyable_memory(x);
+ return x + 1; /* Ensure that we never return 0 */
+}
+
static void
get_dirty_limits(long *pbackground, long *pdirty,
struct address_space *mapping)
@@ -128,20 +166,12 @@ get_dirty_limits(long *pbackground, long *pdirty,
int unmapped_ratio;
long background;
long dirty;
- unsigned long available_memory = vm_total_pages;
+ unsigned long available_memory = determine_dirtyable_memory();
struct task_struct *tsk;
-#ifdef CONFIG_HIGHMEM
- /*
- * We always exclude high memory from our count.
- */
- available_memory -= totalhigh_pages;
-#endif
-
-
unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
global_page_state(NR_ANON_PAGES)) * 100) /
- vm_total_pages;
+ available_memory;
dirty_ratio = vm_dirty_ratio;
if (dirty_ratio > unmapped_ratio / 2)
@@ -653,12 +683,7 @@ retry:
}
ret = (*writepage)(page, wbc);
- if (ret) {
- if (ret == -ENOSPC)
- set_bit(AS_ENOSPC, &mapping->flags);
- else
- set_bit(AS_EIO, &mapping->flags);
- }
+ mapping_set_error(mapping, ret);
if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
unlock_page(page);
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 353ce9039a8..ae96dd84443 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -103,7 +103,7 @@ int min_free_kbytes = 1024;
unsigned long __meminitdata nr_kernel_pages;
unsigned long __meminitdata nr_all_pages;
-static unsigned long __initdata dma_reserve;
+static unsigned long __meminitdata dma_reserve;
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/*
@@ -126,10 +126,10 @@ static unsigned long __initdata dma_reserve;
#endif
#endif
- struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
- int __initdata nr_nodemap_entries;
- unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
- unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
+ struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
+ int __meminitdata nr_nodemap_entries;
+ unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
+ unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
@@ -156,10 +156,8 @@ static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
static int page_is_consistent(struct zone *zone, struct page *page)
{
-#ifdef CONFIG_HOLES_IN_ZONE
- if (!pfn_valid(page_to_pfn(page)))
+ if (!pfn_valid_within(page_to_pfn(page)))
return 0;
-#endif
if (zone != page_zone(page))
return 0;
@@ -227,7 +225,7 @@ static void bad_page(struct page *page)
static void free_compound_page(struct page *page)
{
- __free_pages_ok(page, (unsigned long)page[1].lru.prev);
+ __free_pages_ok(page, compound_order(page));
}
static void prep_compound_page(struct page *page, unsigned long order)
@@ -236,12 +234,13 @@ static void prep_compound_page(struct page *page, unsigned long order)
int nr_pages = 1 << order;
set_compound_page_dtor(page, free_compound_page);
- page[1].lru.prev = (void *)order;
- for (i = 0; i < nr_pages; i++) {
+ set_compound_order(page, order);
+ __SetPageHead(page);
+ for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
- __SetPageCompound(p);
- set_page_private(p, (unsigned long)page);
+ __SetPageTail(p);
+ p->first_page = page;
}
}
@@ -250,16 +249,19 @@ static void destroy_compound_page(struct page *page, unsigned long order)
int i;
int nr_pages = 1 << order;
- if (unlikely((unsigned long)page[1].lru.prev != order))
+ if (unlikely(compound_order(page) != order))
bad_page(page);
- for (i = 0; i < nr_pages; i++) {
+ if (unlikely(!PageHead(page)))
+ bad_page(page);
+ __ClearPageHead(page);
+ for (i = 1; i < nr_pages; i++) {
struct page *p = page + i;
- if (unlikely(!PageCompound(p) |
- (page_private(p) != (unsigned long)page)))
+ if (unlikely(!PageTail(p) |
+ (p->first_page != page)))
bad_page(page);
- __ClearPageCompound(p);
+ __ClearPageTail(p);
}
}
@@ -346,10 +348,8 @@ __find_combined_index(unsigned long page_idx, unsigned int order)
static inline int page_is_buddy(struct page *page, struct page *buddy,
int order)
{
-#ifdef CONFIG_HOLES_IN_ZONE
- if (!pfn_valid(page_to_pfn(buddy)))
+ if (!pfn_valid_within(page_to_pfn(buddy)))
return 0;
-#endif
if (page_zone_id(page) != page_zone_id(buddy))
return 0;
@@ -433,13 +433,18 @@ static inline int free_pages_check(struct page *page)
1 << PG_private |
1 << PG_locked |
1 << PG_active |
- 1 << PG_reclaim |
1 << PG_slab |
1 << PG_swapcache |
1 << PG_writeback |
1 << PG_reserved |
1 << PG_buddy ))))
bad_page(page);
+ /*
+ * PageReclaim == PageTail. It is only an error
+ * for PageReclaim to be set if PageCompound is clear.
+ */
+ if (unlikely(!PageCompound(page) && PageReclaim(page)))
+ bad_page(page);
if (PageDirty(page))
__ClearPageDirty(page);
/*
@@ -665,7 +670,7 @@ static int rmqueue_bulk(struct zone *zone, unsigned int order,
}
#if MAX_NUMNODES > 1
-int nr_node_ids __read_mostly;
+int nr_node_ids __read_mostly = MAX_NUMNODES;
EXPORT_SYMBOL(nr_node_ids);
/*
@@ -686,43 +691,26 @@ static void __init setup_nr_node_ids(void) {}
#ifdef CONFIG_NUMA
/*
- * Called from the slab reaper to drain pagesets on a particular node that
- * belongs to the currently executing processor.
+ * Called from the vmstat counter updater to drain pagesets of this
+ * currently executing processor on remote nodes after they have
+ * expired.
+ *
* Note that this function must be called with the thread pinned to
* a single processor.
*/
-void drain_node_pages(int nodeid)
+void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
{
- int i;
- enum zone_type z;
unsigned long flags;
+ int to_drain;
- for (z = 0; z < MAX_NR_ZONES; z++) {
- struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
- struct per_cpu_pageset *pset;
-
- if (!populated_zone(zone))
- continue;
-
- pset = zone_pcp(zone, smp_processor_id());
- for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
- struct per_cpu_pages *pcp;
-
- pcp = &pset->pcp[i];
- if (pcp->count) {
- int to_drain;
-
- local_irq_save(flags);
- if (pcp->count >= pcp->batch)
- to_drain = pcp->batch;
- else
- to_drain = pcp->count;
- free_pages_bulk(zone, to_drain, &pcp->list, 0);
- pcp->count -= to_drain;
- local_irq_restore(flags);
- }
- }
- }
+ local_irq_save(flags);
+ if (pcp->count >= pcp->batch)
+ to_drain = pcp->batch;
+ else
+ to_drain = pcp->count;
+ free_pages_bulk(zone, to_drain, &pcp->list, 0);
+ pcp->count -= to_drain;
+ local_irq_restore(flags);
}
#endif
@@ -770,8 +758,8 @@ void mark_free_pages(struct zone *zone)
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
- if (!PageNosave(page))
- ClearPageNosaveFree(page);
+ if (!swsusp_page_is_forbidden(page))
+ swsusp_unset_page_free(page);
}
for (order = MAX_ORDER - 1; order >= 0; --order)
@@ -780,7 +768,7 @@ void mark_free_pages(struct zone *zone)
pfn = page_to_pfn(list_entry(curr, struct page, lru));
for (i = 0; i < (1UL << order); i++)
- SetPageNosaveFree(pfn_to_page(pfn + i));
+ swsusp_set_page_free(pfn_to_page(pfn + i));
}
spin_unlock_irqrestore(&zone->lock, flags);
@@ -2143,11 +2131,14 @@ static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
switch (action) {
case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
if (process_zones(cpu))
ret = NOTIFY_BAD;
break;
case CPU_UP_CANCELED:
+ case CPU_UP_CANCELED_FROZEN:
case CPU_DEAD:
+ case CPU_DEAD_FROZEN:
free_zone_pagesets(cpu);
break;
default:
@@ -2174,7 +2165,7 @@ void __init setup_per_cpu_pageset(void)
#endif
-static __meminit
+static __meminit noinline
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
{
int i;
@@ -2262,7 +2253,7 @@ __meminit int init_currently_empty_zone(struct zone *zone,
* Basic iterator support. Return the first range of PFNs for a node
* Note: nid == MAX_NUMNODES returns first region regardless of node
*/
-static int __init first_active_region_index_in_nid(int nid)
+static int __meminit first_active_region_index_in_nid(int nid)
{
int i;
@@ -2277,7 +2268,7 @@ static int __init first_active_region_index_in_nid(int nid)
* Basic iterator support. Return the next active range of PFNs for a node
* Note: nid == MAX_NUMNODES returns next region regardles of node
*/
-static int __init next_active_region_index_in_nid(int index, int nid)
+static int __meminit next_active_region_index_in_nid(int index, int nid)
{
for (index = index + 1; index < nr_nodemap_entries; index++)
if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
@@ -2293,7 +2284,7 @@ static int __init next_active_region_index_in_nid(int index, int nid)
* was used and there are no special requirements, this is a convenient
* alternative
*/
-int __init early_pfn_to_nid(unsigned long pfn)
+int __meminit early_pfn_to_nid(unsigned long pfn)
{
int i;
@@ -2430,7 +2421,7 @@ static void __init account_node_boundary(unsigned int nid,
* with no available memory, a warning is printed and the start and end
* PFNs will be 0.
*/
-void __init get_pfn_range_for_nid(unsigned int nid,
+void __meminit get_pfn_range_for_nid(unsigned int nid,
unsigned long *start_pfn, unsigned long *end_pfn)
{
int i;
@@ -2455,7 +2446,7 @@ void __init get_pfn_range_for_nid(unsigned int nid,
* Return the number of pages a zone spans in a node, including holes
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
*/
-unsigned long __init zone_spanned_pages_in_node(int nid,
+unsigned long __meminit zone_spanned_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *ignored)
{
@@ -2483,7 +2474,7 @@ unsigned long __init zone_spanned_pages_in_node(int nid,
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
* then all holes in the requested range will be accounted for.
*/
-unsigned long __init __absent_pages_in_range(int nid,
+unsigned long __meminit __absent_pages_in_range(int nid,
unsigned long range_start_pfn,
unsigned long range_end_pfn)
{
@@ -2543,7 +2534,7 @@ unsigned long __init absent_pages_in_range(unsigned long start_pfn,
}
/* Return the number of page frames in holes in a zone on a node */
-unsigned long __init zone_absent_pages_in_node(int nid,
+unsigned long __meminit zone_absent_pages_in_node(int nid,
unsigned long zone_type,
unsigned long *ignored)
{
@@ -2579,7 +2570,7 @@ static inline unsigned long zone_absent_pages_in_node(int nid,
#endif
-static void __init calculate_node_totalpages(struct pglist_data *pgdat,
+static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
unsigned long *zones_size, unsigned long *zholes_size)
{
unsigned long realtotalpages, totalpages = 0;
@@ -2687,7 +2678,7 @@ static void __meminit free_area_init_core(struct pglist_data *pgdat,
}
}
-static void __init alloc_node_mem_map(struct pglist_data *pgdat)
+static void __meminit alloc_node_mem_map(struct pglist_data *pgdat)
{
/* Skip empty nodes */
if (!pgdat->node_spanned_pages)
@@ -3007,7 +2998,7 @@ static int page_alloc_cpu_notify(struct notifier_block *self,
{
int cpu = (unsigned long)hcpu;
- if (action == CPU_DEAD) {
+ if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
local_irq_disable();
__drain_pages(cpu);
vm_events_fold_cpu(cpu);
@@ -3203,7 +3194,8 @@ int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec(table, write, file, buffer, length, ppos);
- setup_per_zone_pages_min();
+ if (write)
+ setup_per_zone_pages_min();
return 0;
}
diff --git a/mm/quicklist.c b/mm/quicklist.c
new file mode 100644
index 00000000000..ae8189c2799
--- /dev/null
+++ b/mm/quicklist.c
@@ -0,0 +1,88 @@
+/*
+ * Quicklist support.
+ *
+ * Quicklists are light weight lists of pages that have a defined state
+ * on alloc and free. Pages must be in the quicklist specific defined state
+ * (zero by default) when the page is freed. It seems that the initial idea
+ * for such lists first came from Dave Miller and then various other people
+ * improved on it.
+ *
+ * Copyright (C) 2007 SGI,
+ * Christoph Lameter <clameter@sgi.com>
+ * Generalized, added support for multiple lists and
+ * constructors / destructors.
+ */
+#include <linux/kernel.h>
+
+#include <linux/mm.h>
+#include <linux/mmzone.h>
+#include <linux/module.h>
+#include <linux/quicklist.h>
+
+DEFINE_PER_CPU(struct quicklist, quicklist)[CONFIG_NR_QUICK];
+
+#define FRACTION_OF_NODE_MEM 16
+
+static unsigned long max_pages(unsigned long min_pages)
+{
+ unsigned long node_free_pages, max;
+
+ node_free_pages = node_page_state(numa_node_id(),
+ NR_FREE_PAGES);
+ max = node_free_pages / FRACTION_OF_NODE_MEM;
+ return max(max, min_pages);
+}
+
+static long min_pages_to_free(struct quicklist *q,
+ unsigned long min_pages, long max_free)
+{
+ long pages_to_free;
+
+ pages_to_free = q->nr_pages - max_pages(min_pages);
+
+ return min(pages_to_free, max_free);
+}
+
+/*
+ * Trim down the number of pages in the quicklist
+ */
+void quicklist_trim(int nr, void (*dtor)(void *),
+ unsigned long min_pages, unsigned long max_free)
+{
+ long pages_to_free;
+ struct quicklist *q;
+
+ q = &get_cpu_var(quicklist)[nr];
+ if (q->nr_pages > min_pages) {
+ pages_to_free = min_pages_to_free(q, min_pages, max_free);
+
+ while (pages_to_free > 0) {
+ /*
+ * We pass a gfp_t of 0 to quicklist_alloc here
+ * because we will never call into the page allocator.
+ */
+ void *p = quicklist_alloc(nr, 0, NULL);
+
+ if (dtor)
+ dtor(p);
+ free_page((unsigned long)p);
+ pages_to_free--;
+ }
+ }
+ put_cpu_var(quicklist);
+}
+
+unsigned long quicklist_total_size(void)
+{
+ unsigned long count = 0;
+ int cpu;
+ struct quicklist *ql, *q;
+
+ for_each_online_cpu(cpu) {
+ ql = per_cpu(quicklist, cpu);
+ for (q = ql; q < ql + CONFIG_NR_QUICK; q++)
+ count += q->nr_pages;
+ }
+ return count;
+}
+
diff --git a/mm/readahead.c b/mm/readahead.c
index 93d9ee692fd..9861e883fe5 100644
--- a/mm/readahead.c
+++ b/mm/readahead.c
@@ -37,7 +37,7 @@ void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
ra->ra_pages = mapping->backing_dev_info->ra_pages;
- ra->prev_page = -1;
+ ra->prev_index = -1;
}
EXPORT_SYMBOL_GPL(file_ra_state_init);
@@ -202,17 +202,19 @@ out:
* size: Number of pages in that read
* Together, these form the "current window".
* Together, start and size represent the `readahead window'.
- * prev_page: The page which the readahead algorithm most-recently inspected.
+ * prev_index: The page which the readahead algorithm most-recently inspected.
* It is mainly used to detect sequential file reading.
* If page_cache_readahead sees that it is again being called for
* a page which it just looked at, it can return immediately without
* making any state changes.
+ * offset: Offset in the prev_index where the last read ended - used for
+ * detection of sequential file reading.
* ahead_start,
* ahead_size: Together, these form the "ahead window".
* ra_pages: The externally controlled max readahead for this fd.
*
* When readahead is in the off state (size == 0), readahead is disabled.
- * In this state, prev_page is used to detect the resumption of sequential I/O.
+ * In this state, prev_index is used to detect the resumption of sequential I/O.
*
* The readahead code manages two windows - the "current" and the "ahead"
* windows. The intent is that while the application is walking the pages
@@ -415,7 +417,7 @@ static int make_ahead_window(struct address_space *mapping, struct file *filp,
ra->ahead_size = get_next_ra_size(ra);
ra->ahead_start = ra->start + ra->size;
- block = force || (ra->prev_page >= ra->ahead_start);
+ block = force || (ra->prev_index >= ra->ahead_start);
ret = blockable_page_cache_readahead(mapping, filp,
ra->ahead_start, ra->ahead_size, ra, block);
@@ -467,12 +469,13 @@ page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
* We avoid doing extra work and bogusly perturbing the readahead
* window expansion logic.
*/
- if (offset == ra->prev_page && --req_size)
+ if (offset == ra->prev_index && --req_size)
++offset;
- /* Note that prev_page == -1 if it is a first read */
- sequential = (offset == ra->prev_page + 1);
- ra->prev_page = offset;
+ /* Note that prev_index == -1 if it is a first read */
+ sequential = (offset == ra->prev_index + 1);
+ ra->prev_index = offset;
+ ra->prev_offset = 0;
max = get_max_readahead(ra);
newsize = min(req_size, max);
@@ -481,7 +484,7 @@ page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
if (newsize == 0 || (ra->flags & RA_FLAG_INCACHE))
goto out;
- ra->prev_page += newsize - 1;
+ ra->prev_index += newsize - 1;
/*
* Special case - first read at start of file. We'll assume it's
@@ -537,18 +540,18 @@ page_cache_readahead(struct address_space *mapping, struct file_ra_state *ra,
* we get called back on the first page of the ahead window which
* will allow us to submit more IO.
*/
- if (ra->prev_page >= ra->ahead_start) {
+ if (ra->prev_index >= ra->ahead_start) {
ra->start = ra->ahead_start;
ra->size = ra->ahead_size;
make_ahead_window(mapping, filp, ra, 0);
recheck:
- /* prev_page shouldn't overrun the ahead window */
- ra->prev_page = min(ra->prev_page,
+ /* prev_index shouldn't overrun the ahead window */
+ ra->prev_index = min(ra->prev_index,
ra->ahead_start + ra->ahead_size - 1);
}
out:
- return ra->prev_page + 1;
+ return ra->prev_index + 1;
}
EXPORT_SYMBOL_GPL(page_cache_readahead);
diff --git a/mm/rmap.c b/mm/rmap.c
index 22ed3f71a67..304f51985c7 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -162,8 +162,7 @@ void anon_vma_unlink(struct vm_area_struct *vma)
static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
unsigned long flags)
{
- if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
- SLAB_CTOR_CONSTRUCTOR) {
+ if (flags & SLAB_CTOR_CONSTRUCTOR) {
struct anon_vma *anon_vma = data;
spin_lock_init(&anon_vma->lock);
@@ -498,12 +497,15 @@ int page_mkclean(struct page *page)
struct address_space *mapping = page_mapping(page);
if (mapping)
ret = page_mkclean_file(mapping, page);
+ if (page_test_dirty(page)) {
+ page_clear_dirty(page);
+ ret = 1;
+ }
}
- if (page_test_and_clear_dirty(page))
- ret = 1;
return ret;
}
+EXPORT_SYMBOL_GPL(page_mkclean);
/**
* page_set_anon_rmap - setup new anonymous rmap
@@ -605,8 +607,10 @@ void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
* Leaving it set also helps swapoff to reinstate ptes
* faster for those pages still in swapcache.
*/
- if (page_test_and_clear_dirty(page))
+ if (page_test_dirty(page)) {
+ page_clear_dirty(page);
set_page_dirty(page);
+ }
__dec_zone_page_state(page,
PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
}
diff --git a/mm/shmem.c b/mm/shmem.c
index b8c429a2d27..f01e8deed64 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -402,26 +402,38 @@ static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long
/*
* shmem_free_swp - free some swap entries in a directory
*
- * @dir: pointer to the directory
- * @edir: pointer after last entry of the directory
+ * @dir: pointer to the directory
+ * @edir: pointer after last entry of the directory
+ * @punch_lock: pointer to spinlock when needed for the holepunch case
*/
-static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
+static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
+ spinlock_t *punch_lock)
{
+ spinlock_t *punch_unlock = NULL;
swp_entry_t *ptr;
int freed = 0;
for (ptr = dir; ptr < edir; ptr++) {
if (ptr->val) {
+ if (unlikely(punch_lock)) {
+ punch_unlock = punch_lock;
+ punch_lock = NULL;
+ spin_lock(punch_unlock);
+ if (!ptr->val)
+ continue;
+ }
free_swap_and_cache(*ptr);
*ptr = (swp_entry_t){0};
freed++;
}
}
+ if (punch_unlock)
+ spin_unlock(punch_unlock);
return freed;
}
-static int shmem_map_and_free_swp(struct page *subdir,
- int offset, int limit, struct page ***dir)
+static int shmem_map_and_free_swp(struct page *subdir, int offset,
+ int limit, struct page ***dir, spinlock_t *punch_lock)
{
swp_entry_t *ptr;
int freed = 0;
@@ -431,7 +443,8 @@ static int shmem_map_and_free_swp(struct page *subdir,
int size = limit - offset;
if (size > LATENCY_LIMIT)
size = LATENCY_LIMIT;
- freed += shmem_free_swp(ptr+offset, ptr+offset+size);
+ freed += shmem_free_swp(ptr+offset, ptr+offset+size,
+ punch_lock);
if (need_resched()) {
shmem_swp_unmap(ptr);
if (*dir) {
@@ -481,7 +494,10 @@ static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
long nr_swaps_freed = 0;
int offset;
int freed;
- int punch_hole = 0;
+ int punch_hole;
+ spinlock_t *needs_lock;
+ spinlock_t *punch_lock;
+ unsigned long upper_limit;
inode->i_ctime = inode->i_mtime = CURRENT_TIME;
idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
@@ -492,11 +508,20 @@ static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
info->flags |= SHMEM_TRUNCATE;
if (likely(end == (loff_t) -1)) {
limit = info->next_index;
+ upper_limit = SHMEM_MAX_INDEX;
info->next_index = idx;
+ needs_lock = NULL;
+ punch_hole = 0;
} else {
- limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
- if (limit > info->next_index)
- limit = info->next_index;
+ if (end + 1 >= inode->i_size) { /* we may free a little more */
+ limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
+ PAGE_CACHE_SHIFT;
+ upper_limit = SHMEM_MAX_INDEX;
+ } else {
+ limit = (end + 1) >> PAGE_CACHE_SHIFT;
+ upper_limit = limit;
+ }
+ needs_lock = &info->lock;
punch_hole = 1;
}
@@ -513,17 +538,30 @@ static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
size = limit;
if (size > SHMEM_NR_DIRECT)
size = SHMEM_NR_DIRECT;
- nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
+ nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
}
/*
* If there are no indirect blocks or we are punching a hole
* below indirect blocks, nothing to be done.
*/
- if (!topdir || (punch_hole && (limit <= SHMEM_NR_DIRECT)))
+ if (!topdir || limit <= SHMEM_NR_DIRECT)
goto done2;
- BUG_ON(limit <= SHMEM_NR_DIRECT);
+ /*
+ * The truncation case has already dropped info->lock, and we're safe
+ * because i_size and next_index have already been lowered, preventing
+ * access beyond. But in the punch_hole case, we still need to take
+ * the lock when updating the swap directory, because there might be
+ * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
+ * shmem_writepage. However, whenever we find we can remove a whole
+ * directory page (not at the misaligned start or end of the range),
+ * we first NULLify its pointer in the level above, and then have no
+ * need to take the lock when updating its contents: needs_lock and
+ * punch_lock (either pointing to info->lock or NULL) manage this.
+ */
+
+ upper_limit -= SHMEM_NR_DIRECT;
limit -= SHMEM_NR_DIRECT;
idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
offset = idx % ENTRIES_PER_PAGE;
@@ -543,8 +581,14 @@ static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
if (*dir) {
diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
- if (!diroff && !offset) {
- *dir = NULL;
+ if (!diroff && !offset && upper_limit >= stage) {
+ if (needs_lock) {
+ spin_lock(needs_lock);
+ *dir = NULL;
+ spin_unlock(needs_lock);
+ needs_lock = NULL;
+ } else
+ *dir = NULL;
nr_pages_to_free++;
list_add(&middir->lru, &pages_to_free);
}
@@ -570,39 +614,55 @@ static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
}
stage = idx + ENTRIES_PER_PAGEPAGE;
middir = *dir;
- *dir = NULL;
- nr_pages_to_free++;
- list_add(&middir->lru, &pages_to_free);
+ if (punch_hole)
+ needs_lock = &info->lock;
+ if (upper_limit >= stage) {
+ if (needs_lock) {
+ spin_lock(needs_lock);
+ *dir = NULL;
+ spin_unlock(needs_lock);
+ needs_lock = NULL;
+ } else
+ *dir = NULL;
+ nr_pages_to_free++;
+ list_add(&middir->lru, &pages_to_free);
+ }
shmem_dir_unmap(dir);
cond_resched();
dir = shmem_dir_map(middir);
diroff = 0;
}
+ punch_lock = needs_lock;
subdir = dir[diroff];
- if (subdir && page_private(subdir)) {
+ if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
+ if (needs_lock) {
+ spin_lock(needs_lock);
+ dir[diroff] = NULL;
+ spin_unlock(needs_lock);
+ punch_lock = NULL;
+ } else
+ dir[diroff] = NULL;
+ nr_pages_to_free++;
+ list_add(&subdir->lru, &pages_to_free);
+ }
+ if (subdir && page_private(subdir) /* has swap entries */) {
size = limit - idx;
if (size > ENTRIES_PER_PAGE)
size = ENTRIES_PER_PAGE;
freed = shmem_map_and_free_swp(subdir,
- offset, size, &dir);
+ offset, size, &dir, punch_lock);
if (!dir)
dir = shmem_dir_map(middir);
nr_swaps_freed += freed;
- if (offset)
+ if (offset || punch_lock) {
spin_lock(&info->lock);
- set_page_private(subdir, page_private(subdir) - freed);
- if (offset)
+ set_page_private(subdir,
+ page_private(subdir) - freed);
spin_unlock(&info->lock);
- if (!punch_hole)
- BUG_ON(page_private(subdir) > offset);
- }
- if (offset)
- offset = 0;
- else if (subdir && !page_private(subdir)) {
- dir[diroff] = NULL;
- nr_pages_to_free++;
- list_add(&subdir->lru, &pages_to_free);
+ } else
+ BUG_ON(page_private(subdir) != freed);
}
+ offset = 0;
}
done1:
shmem_dir_unmap(dir);
@@ -614,8 +674,16 @@ done2:
* generic_delete_inode did it, before we lowered next_index.
* Also, though shmem_getpage checks i_size before adding to
* cache, no recheck after: so fix the narrow window there too.
+ *
+ * Recalling truncate_inode_pages_range and unmap_mapping_range
+ * every time for punch_hole (which never got a chance to clear
+ * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
+ * yet hardly ever necessary: try to optimize them out later.
*/
truncate_inode_pages_range(inode->i_mapping, start, end);
+ if (punch_hole)
+ unmap_mapping_range(inode->i_mapping, start,
+ end - start, 1);
}
spin_lock(&info->lock);
@@ -2290,8 +2358,7 @@ static void init_once(void *foo, struct kmem_cache *cachep,
{
struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
- if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
- SLAB_CTOR_CONSTRUCTOR) {
+ if (flags & SLAB_CTOR_CONSTRUCTOR) {
inode_init_once(&p->vfs_inode);
#ifdef CONFIG_TMPFS_POSIX_ACL
p->i_acl = NULL;
diff --git a/mm/slab.c b/mm/slab.c
index 57f7aa42006..944b20581f8 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -116,8 +116,7 @@
#include <asm/page.h>
/*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
- * SLAB_RED_ZONE & SLAB_POISON.
+ * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
* 0 for faster, smaller code (especially in the critical paths).
*
* STATS - 1 to collect stats for /proc/slabinfo.
@@ -149,10 +148,11 @@
* Usually, the kmalloc caches are cache_line_size() aligned, except when
* DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
* Some archs want to perform DMA into kmalloc caches and need a guaranteed
- * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
- * Note that this flag disables some debug features.
+ * alignment larger than the alignment of a 64-bit integer.
+ * ARCH_KMALLOC_MINALIGN allows that.
+ * Note that increasing this value may disable some debug features.
*/
-#define ARCH_KMALLOC_MINALIGN 0
+#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif
#ifndef ARCH_SLAB_MINALIGN
@@ -172,15 +172,15 @@
/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
-# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
+# define CREATE_MASK (SLAB_RED_ZONE | \
SLAB_POISON | SLAB_HWCACHE_ALIGN | \
SLAB_CACHE_DMA | \
- SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
+ SLAB_STORE_USER | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
#else
# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
- SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
+ SLAB_CACHE_DMA | \
SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
#endif
@@ -389,7 +389,6 @@ struct kmem_cache {
unsigned int buffer_size;
u32 reciprocal_buffer_size;
/* 3) touched by every alloc & free from the backend */
- struct kmem_list3 *nodelists[MAX_NUMNODES];
unsigned int flags; /* constant flags */
unsigned int num; /* # of objs per slab */
@@ -444,6 +443,17 @@ struct kmem_cache {
int obj_offset;
int obj_size;
#endif
+ /*
+ * We put nodelists[] at the end of kmem_cache, because we want to size
+ * this array to nr_node_ids slots instead of MAX_NUMNODES
+ * (see kmem_cache_init())
+ * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
+ * is statically defined, so we reserve the max number of nodes.
+ */
+ struct kmem_list3 *nodelists[MAX_NUMNODES];
+ /*
+ * Do not add fields after nodelists[]
+ */
};
#define CFLGS_OFF_SLAB (0x80000000UL)
@@ -527,19 +537,22 @@ static int obj_size(struct kmem_cache *cachep)
return cachep->obj_size;
}
-static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
+static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
+ return (unsigned long long*) (objp + obj_offset(cachep) -
+ sizeof(unsigned long long));
}
-static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
+static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
{
BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long *)(objp + cachep->buffer_size -
- 2 * BYTES_PER_WORD);
- return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
+ return (unsigned long long *)(objp + cachep->buffer_size -
+ sizeof(unsigned long long) -
+ BYTES_PER_WORD);
+ return (unsigned long long *) (objp + cachep->buffer_size -
+ sizeof(unsigned long long));
}
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
@@ -552,8 +565,8 @@ static void **dbg_userword(struct kmem_cache *cachep, void *objp)
#define obj_offset(x) 0
#define obj_size(cachep) (cachep->buffer_size)
-#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
-#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
+#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
+#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
#endif
@@ -592,8 +605,7 @@ static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
static inline struct kmem_cache *page_get_cache(struct page *page)
{
- if (unlikely(PageCompound(page)))
- page = (struct page *)page_private(page);
+ page = compound_head(page);
BUG_ON(!PageSlab(page));
return (struct kmem_cache *)page->lru.next;
}
@@ -605,21 +617,19 @@ static inline void page_set_slab(struct page *page, struct slab *slab)
static inline struct slab *page_get_slab(struct page *page)
{
- if (unlikely(PageCompound(page)))
- page = (struct page *)page_private(page);
BUG_ON(!PageSlab(page));
return (struct slab *)page->lru.prev;
}
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
- struct page *page = virt_to_page(obj);
+ struct page *page = virt_to_head_page(obj);
return page_get_cache(page);
}
static inline struct slab *virt_to_slab(const void *obj)
{
- struct page *page = virt_to_page(obj);
+ struct page *page = virt_to_head_page(obj);
return page_get_slab(page);
}
@@ -678,9 +688,6 @@ static struct kmem_cache cache_cache = {
.shared = 1,
.buffer_size = sizeof(struct kmem_cache),
.name = "kmem_cache",
-#if DEBUG
- .obj_size = sizeof(struct kmem_cache),
-#endif
};
#define BAD_ALIEN_MAGIC 0x01020304ul
@@ -921,12 +928,6 @@ static void next_reap_node(void)
{
int node = __get_cpu_var(reap_node);
- /*
- * Also drain per cpu pages on remote zones
- */
- if (node != numa_node_id())
- drain_node_pages(node);
-
node = next_node(node, node_online_map);
if (unlikely(node >= MAX_NUMNODES))
node = first_node(node_online_map);
@@ -1146,7 +1147,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
* Make sure we are not freeing a object from another node to the array
* cache on this cpu.
*/
- if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
+ if (likely(slabp->nodeid == node))
return 0;
l3 = cachep->nodelists[node];
@@ -1179,8 +1180,11 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
int memsize = sizeof(struct kmem_list3);
switch (action) {
- case CPU_UP_PREPARE:
+ case CPU_LOCK_ACQUIRE:
mutex_lock(&cache_chain_mutex);
+ break;
+ case CPU_UP_PREPARE:
+ case CPU_UP_PREPARE_FROZEN:
/*
* We need to do this right in the beginning since
* alloc_arraycache's are going to use this list.
@@ -1223,19 +1227,20 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
*/
list_for_each_entry(cachep, &cache_chain, next) {
struct array_cache *nc;
- struct array_cache *shared;
+ struct array_cache *shared = NULL;
struct array_cache **alien = NULL;
nc = alloc_arraycache(node, cachep->limit,
cachep->batchcount);
if (!nc)
goto bad;
- shared = alloc_arraycache(node,
+ if (cachep->shared) {
+ shared = alloc_arraycache(node,
cachep->shared * cachep->batchcount,
0xbaadf00d);
- if (!shared)
- goto bad;
-
+ if (!shared)
+ goto bad;
+ }
if (use_alien_caches) {
alien = alloc_alien_cache(node, cachep->limit);
if (!alien)
@@ -1266,17 +1271,28 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
}
break;
case CPU_ONLINE:
- mutex_unlock(&cache_chain_mutex);
+ case CPU_ONLINE_FROZEN:
start_cpu_timer(cpu);
break;
#ifdef CONFIG_HOTPLUG_CPU
- case CPU_DOWN_PREPARE:
- mutex_lock(&cache_chain_mutex);
- break;
- case CPU_DOWN_FAILED:
- mutex_unlock(&cache_chain_mutex);
- break;
+ case CPU_DOWN_PREPARE:
+ case CPU_DOWN_PREPARE_FROZEN:
+ /*
+ * Shutdown cache reaper. Note that the cache_chain_mutex is
+ * held so that if cache_reap() is invoked it cannot do
+ * anything expensive but will only modify reap_work
+ * and reschedule the timer.
+ */
+ cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
+ /* Now the cache_reaper is guaranteed to be not running. */
+ per_cpu(reap_work, cpu).work.func = NULL;
+ break;
+ case CPU_DOWN_FAILED:
+ case CPU_DOWN_FAILED_FROZEN:
+ start_cpu_timer(cpu);
+ break;
case CPU_DEAD:
+ case CPU_DEAD_FROZEN:
/*
* Even if all the cpus of a node are down, we don't free the
* kmem_list3 of any cache. This to avoid a race between
@@ -1288,6 +1304,7 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
/* fall thru */
#endif
case CPU_UP_CANCELED:
+ case CPU_UP_CANCELED_FROZEN:
list_for_each_entry(cachep, &cache_chain, next) {
struct array_cache *nc;
struct array_cache *shared;
@@ -1317,8 +1334,8 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb,
shared = l3->shared;
if (shared) {
- free_block(cachep, l3->shared->entry,
- l3->shared->avail, node);
+ free_block(cachep, shared->entry,
+ shared->avail, node);
l3->shared = NULL;
}
@@ -1346,6 +1363,8 @@ free_array_cache:
continue;
drain_freelist(cachep, l3, l3->free_objects);
}
+ break;
+ case CPU_LOCK_RELEASE:
mutex_unlock(&cache_chain_mutex);
break;
}
@@ -1394,6 +1413,9 @@ void __init kmem_cache_init(void)
int order;
int node;
+ if (num_possible_nodes() == 1)
+ use_alien_caches = 0;
+
for (i = 0; i < NUM_INIT_LISTS; i++) {
kmem_list3_init(&initkmem_list3[i]);
if (i < MAX_NUMNODES)
@@ -1436,6 +1458,15 @@ void __init kmem_cache_init(void)
cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
+ /*
+ * struct kmem_cache size depends on nr_node_ids, which
+ * can be less than MAX_NUMNODES.
+ */
+ cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
+ nr_node_ids * sizeof(struct kmem_list3 *);
+#if DEBUG
+ cache_cache.obj_size = cache_cache.buffer_size;
+#endif
cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
cache_line_size());
cache_cache.reciprocal_buffer_size =
@@ -1760,7 +1791,7 @@ static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
char *realobj;
if (cachep->flags & SLAB_RED_ZONE) {
- printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
+ printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
*dbg_redzone1(cachep, objp),
*dbg_redzone2(cachep, objp));
}
@@ -1802,8 +1833,8 @@ static void check_poison_obj(struct kmem_cache *cachep, void *objp)
/* Print header */
if (lines == 0) {
printk(KERN_ERR
- "Slab corruption: start=%p, len=%d\n",
- realobj, size);
+ "Slab corruption: %s start=%p, len=%d\n",
+ cachep->name, realobj, size);
print_objinfo(cachep, objp, 0);
}
/* Hexdump the affected line */
@@ -1929,7 +1960,7 @@ static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
* For setting up all the kmem_list3s for cache whose buffer_size is same as
* size of kmem_list3.
*/
-static void set_up_list3s(struct kmem_cache *cachep, int index)
+static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
int node;
@@ -2151,13 +2182,15 @@ kmem_cache_create (const char *name, size_t size, size_t align,
*/
res = probe_kernel_address(pc->name, tmp);
if (res) {
- printk("SLAB: cache with size %d has lost its name\n",
+ printk(KERN_ERR
+ "SLAB: cache with size %d has lost its name\n",
pc->buffer_size);
continue;
}
if (!strcmp(pc->name, name)) {
- printk("kmem_cache_create: duplicate cache %s\n", name);
+ printk(KERN_ERR
+ "kmem_cache_create: duplicate cache %s\n", name);
dump_stack();
goto oops;
}
@@ -2165,12 +2198,6 @@ kmem_cache_create (const char *name, size_t size, size_t align,
#if DEBUG
WARN_ON(strchr(name, ' ')); /* It confuses parsers */
- if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
- /* No constructor, but inital state check requested */
- printk(KERN_ERR "%s: No con, but init state check "
- "requested - %s\n", __FUNCTION__, name);
- flags &= ~SLAB_DEBUG_INITIAL;
- }
#if FORCED_DEBUG
/*
* Enable redzoning and last user accounting, except for caches with
@@ -2227,7 +2254,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
* is greater than BYTES_PER_WORD.
*/
if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
- ralign = BYTES_PER_WORD;
+ ralign = __alignof__(unsigned long long);
/* 2) arch mandated alignment */
if (ralign < ARCH_SLAB_MINALIGN) {
@@ -2238,7 +2265,7 @@ kmem_cache_create (const char *name, size_t size, size_t align,
ralign = align;
}
/* disable debug if necessary */
- if (ralign > BYTES_PER_WORD)
+ if (ralign > __alignof__(unsigned long long))
flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
/*
* 4) Store it.
@@ -2259,8 +2286,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
*/
if (flags & SLAB_RED_ZONE) {
/* add space for red zone words */
- cachep->obj_offset += BYTES_PER_WORD;
- size += 2 * BYTES_PER_WORD;
+ cachep->obj_offset += sizeof(unsigned long long);
+ size += 2 * sizeof(unsigned long long);
}
if (flags & SLAB_STORE_USER) {
/* user store requires one word storage behind the end of
@@ -2294,7 +2321,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
left_over = calculate_slab_order(cachep, size, align, flags);
if (!cachep->num) {
- printk("kmem_cache_create: couldn't create cache %s.\n", name);
+ printk(KERN_ERR
+ "kmem_cache_create: couldn't create cache %s.\n", name);
kmem_cache_free(&cache_cache, cachep);
cachep = NULL;
goto oops;
@@ -2733,19 +2761,10 @@ static int cache_grow(struct kmem_cache *cachep,
* Be lazy and only check for valid flags here, keeping it out of the
* critical path in kmem_cache_alloc().
*/
- BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
- if (flags & __GFP_NO_GROW)
- return 0;
+ BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
ctor_flags = SLAB_CTOR_CONSTRUCTOR;
local_flags = (flags & GFP_LEVEL_MASK);
- if (!(local_flags & __GFP_WAIT))
- /*
- * Not allowed to sleep. Need to tell a constructor about
- * this - it might need to know...
- */
- ctor_flags |= SLAB_CTOR_ATOMIC;
-
/* Take the l3 list lock to change the colour_next on this node */
check_irq_off();
l3 = cachep->nodelists[nodeid];
@@ -2829,7 +2848,7 @@ static void kfree_debugcheck(const void *objp)
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
- unsigned long redzone1, redzone2;
+ unsigned long long redzone1, redzone2;
redzone1 = *dbg_redzone1(cache, obj);
redzone2 = *dbg_redzone2(cache, obj);
@@ -2845,7 +2864,7 @@ static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
else
slab_error(cache, "memory outside object was overwritten");
- printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
+ printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
obj, redzone1, redzone2);
}
@@ -2858,7 +2877,7 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
objp -= obj_offset(cachep);
kfree_debugcheck(objp);
- page = virt_to_page(objp);
+ page = virt_to_head_page(objp);
slabp = page_get_slab(page);
@@ -2875,15 +2894,6 @@ static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
BUG_ON(objnr >= cachep->num);
BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
- if (cachep->flags & SLAB_DEBUG_INITIAL) {
- /*
- * Need to call the slab's constructor so the caller can
- * perform a verify of its state (debugging). Called without
- * the cache-lock held.
- */
- cachep->ctor(objp + obj_offset(cachep),
- cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
- }
if (cachep->flags & SLAB_POISON && cachep->dtor) {
/* we want to cache poison the object,
* call the destruction callback
@@ -2987,6 +2997,14 @@ retry:
slabp = list_entry(entry, struct slab, list);
check_slabp(cachep, slabp);
check_spinlock_acquired(cachep);
+
+ /*
+ * The slab was either on partial or free list so
+ * there must be at least one object available for
+ * allocation.
+ */
+ BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
+
while (slabp->inuse < cachep->num && batchcount--) {
STATS_INC_ALLOCED(cachep);
STATS_INC_ACTIVE(cachep);
@@ -3062,7 +3080,7 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
slab_error(cachep, "double free, or memory outside"
" object was overwritten");
printk(KERN_ERR
- "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
+ "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
objp, *dbg_redzone1(cachep, objp),
*dbg_redzone2(cachep, objp));
}
@@ -3074,20 +3092,14 @@ static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
struct slab *slabp;
unsigned objnr;
- slabp = page_get_slab(virt_to_page(objp));
+ slabp = page_get_slab(virt_to_head_page(objp));
objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
}
#endif
objp += obj_offset(cachep);
- if (cachep->ctor && cachep->flags & SLAB_POISON) {
- unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
-
- if (!(flags & __GFP_WAIT))
- ctor_flags |= SLAB_CTOR_ATOMIC;
-
- cachep->ctor(objp, cachep, ctor_flags);
- }
+ if (cachep->ctor && cachep->flags & SLAB_POISON)
+ cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
#if ARCH_SLAB_MINALIGN
if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
@@ -3142,7 +3154,7 @@ static int __init failslab_debugfs(void)
struct dentry *dir;
int err;
- err = init_fault_attr_dentries(&failslab.attr, "failslab");
+ err = init_fault_attr_dentries(&failslab.attr, "failslab");
if (err)
return err;
dir = failslab.attr.dentries.dir;
@@ -3180,9 +3192,6 @@ static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
check_irq_off();
- if (should_failslab(cachep, flags))
- return NULL;
-
ac = cpu_cache_get(cachep);
if (likely(ac->avail)) {
STATS_INC_ALLOCHIT(cachep);
@@ -3256,7 +3265,7 @@ retry:
flags | GFP_THISNODE, nid);
}
- if (!obj && !(flags & __GFP_NO_GROW)) {
+ if (!obj) {
/*
* This allocation will be performed within the constraints
* of the current cpuset / memory policy requirements.
@@ -3374,6 +3383,9 @@ __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
unsigned long save_flags;
void *ptr;
+ if (should_failslab(cachep, flags))
+ return NULL;
+
cache_alloc_debugcheck_before(cachep, flags);
local_irq_save(save_flags);
@@ -3444,6 +3456,9 @@ __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
unsigned long save_flags;
void *objp;
+ if (should_failslab(cachep, flags))
+ return NULL;
+
cache_alloc_debugcheck_before(cachep, flags);
local_irq_save(save_flags);
objp = __do_cache_alloc(cachep, flags);
@@ -3563,7 +3578,7 @@ static inline void __cache_free(struct kmem_cache *cachep, void *objp)
check_irq_off();
objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
- if (cache_free_alien(cachep, objp))
+ if (use_alien_caches && cache_free_alien(cachep, objp))
return;
if (likely(ac->avail < ac->limit)) {
@@ -3737,6 +3752,52 @@ EXPORT_SYMBOL(__kmalloc);
#endif
/**
+ * krealloc - reallocate memory. The contents will remain unchanged.
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * The contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes. If @p is %NULL, krealloc()
+ * behaves exactly like kmalloc(). If @size is 0 and @p is not a
+ * %NULL pointer, the object pointed to is freed.
+ */
+void *krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+ struct kmem_cache *cache, *new_cache;
+ void *ret;
+
+ if (unlikely(!p))
+ return kmalloc_track_caller(new_size, flags);
+
+ if (unlikely(!new_size)) {
+ kfree(p);
+ return NULL;
+ }
+
+ cache = virt_to_cache(p);
+ new_cache = __find_general_cachep(new_size, flags);
+
+ /*
+ * If new size fits in the current cache, bail out.
+ */
+ if (likely(cache == new_cache))
+ return (void *)p;
+
+ /*
+ * We are on the slow-path here so do not use __cache_alloc
+ * because it bloats kernel text.
+ */
+ ret = kmalloc_track_caller(new_size, flags);
+ if (ret) {
+ memcpy(ret, p, min(new_size, ksize(p)));
+ kfree(p);
+ }
+ return ret;
+}
+EXPORT_SYMBOL(krealloc);
+
+/**
* kmem_cache_free - Deallocate an object
* @cachep: The cache the allocation was from.
* @objp: The previously allocated object.
@@ -3812,12 +3873,15 @@ static int alloc_kmemlist(struct kmem_cache *cachep)
goto fail;
}
- new_shared = alloc_arraycache(node,
+ new_shared = NULL;
+ if (cachep->shared) {
+ new_shared = alloc_arraycache(node,
cachep->shared*cachep->batchcount,
0xbaadf00d);
- if (!new_shared) {
- free_alien_cache(new_alien);
- goto fail;
+ if (!new_shared) {
+ free_alien_cache(new_alien);
+ goto fail;
+ }
}
l3 = cachep->nodelists[node];
@@ -3975,10 +4039,8 @@ static int enable_cpucache(struct kmem_cache *cachep)
* to a larger limit. Thus disabled by default.
*/
shared = 0;
-#ifdef CONFIG_SMP
- if (cachep->buffer_size <= PAGE_SIZE)
+ if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
shared = 8;
-#endif
#if DEBUG
/*
@@ -4088,7 +4150,6 @@ next:
check_irq_on();
mutex_unlock(&cache_chain_mutex);
next_reap_node();
- refresh_cpu_vm_stats(smp_processor_id());
out:
/* Set up the next iteration */
schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
@@ -4380,16 +4441,12 @@ static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
- char *modname;
- const char *name;
unsigned long offset, size;
- char namebuf[KSYM_NAME_LEN+1];
-
- name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
+ char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
- if (name) {
+ if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
- if (modname)
+ if (modname[0])
seq_printf(m, " [%s]", modname);
return;
}
@@ -4478,7 +4535,7 @@ const struct seq_operations slabstats_op = {
* allocated with either kmalloc() or kmem_cache_alloc(). The object
* must not be freed during the duration of the call.
*/
-unsigned int ksize(const void *objp)
+size_t ksize(const void *objp)
{
if (unlikely(objp == NULL))
return 0;
diff --git a/mm/slob.c b/mm/slob.c
index 5adc29cb58d..c6933bc19bc 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -21,7 +21,7 @@
*
* SLAB is emulated on top of SLOB by simply calling constructors and
* destructors for every SLAB allocation. Objects are returned with
- * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is
+ * the 8-byte alignment unless the SLAB_HWCACHE_ALIGN flag is
* set, in which case the low-level allocator will fragment blocks to
* create the proper alignment. Again, objects of page-size or greater
* are allocated by calling __get_free_pages. As SLAB objects know
@@ -150,15 +150,6 @@ static void slob_free(void *block, int size)
spin_unlock_irqrestore(&slob_lock, flags);
}
-static int FASTCALL(find_order(int size));
-static int fastcall find_order(int size)
-{
- int order = 0;
- for ( ; size > 4096 ; size >>=1)
- order++;
- return order;
-}
-
void *__kmalloc(size_t size, gfp_t gfp)
{
slob_t *m;
@@ -174,7 +165,7 @@ void *__kmalloc(size_t size, gfp_t gfp)
if (!bb)
return 0;
- bb->order = find_order(size);
+ bb->order = get_order(size);
bb->pages = (void *)__get_free_pages(gfp, bb->order);
if (bb->pages) {
@@ -190,6 +181,39 @@ void *__kmalloc(size_t size, gfp_t gfp)
}
EXPORT_SYMBOL(__kmalloc);
+/**
+ * krealloc - reallocate memory. The contents will remain unchanged.
+ *
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * The contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes. If @p is %NULL, krealloc()
+ * behaves exactly like kmalloc(). If @size is 0 and @p is not a
+ * %NULL pointer, the object pointed to is freed.
+ */
+void *krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+ void *ret;
+
+ if (unlikely(!p))
+ return kmalloc_track_caller(new_size, flags);
+
+ if (unlikely(!new_size)) {
+ kfree(p);
+ return NULL;
+ }
+
+ ret = kmalloc_track_caller(new_size, flags);
+ if (ret) {
+ memcpy(ret, p, min(new_size, ksize(p)));
+ kfree(p);
+ }
+ return ret;
+}
+EXPORT_SYMBOL(krealloc);
+
void kfree(const void *block)
{
bigblock_t *bb, **last = &bigblocks;
@@ -219,7 +243,7 @@ void kfree(const void *block)
EXPORT_SYMBOL(kfree);
-unsigned int ksize(const void *block)
+size_t ksize(const void *block)
{
bigblock_t *bb;
unsigned long flags;
@@ -262,10 +286,11 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
c->ctor = ctor;
c->dtor = dtor;
/* ignore alignment unless it's forced */
- c->align = (flags & SLAB_MUST_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
+ c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
if (c->align < align)
c->align = align;
- }
+ } else if (flags & SLAB_PANIC)
+ panic("Cannot create slab cache %s\n", name);
return c;
}
@@ -284,7 +309,7 @@ void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags)
if (c->size < PAGE_SIZE)
b = slob_alloc(c->size, flags, c->align);
else
- b = (void *)__get_free_pages(flags, find_order(c->size));
+ b = (void *)__get_free_pages(flags, get_order(c->size));
if (c->ctor)
c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR);
@@ -311,7 +336,7 @@ void kmem_cache_free(struct kmem_cache *c, void *b)
if (c->size < PAGE_SIZE)
slob_free(b, c->size);
else
- free_pages((unsigned long)b, find_order(c->size));
+ free_pages((unsigned long)b, get_order(c->size));
}
EXPORT_SYMBOL(kmem_cache_free);
diff --git a/mm/slub.c b/mm/slub.c
new file mode 100644
index 00000000000..b39c8a69a4f
--- /dev/null
+++ b/mm/slub.c
@@ -0,0 +1,3669 @@
+/*
+ * SLUB: A slab allocator that limits cache line use instead of queuing
+ * objects in per cpu and per node lists.
+ *
+ * The allocator synchronizes using per slab locks and only
+ * uses a centralized lock to manage a pool of partial slabs.
+ *
+ * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
+ */
+
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/bit_spinlock.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <linux/slab.h>
+#include <linux/seq_file.h>
+#include <linux/cpu.h>
+#include <linux/cpuset.h>
+#include <linux/mempolicy.h>
+#include <linux/ctype.h>
+#include <linux/kallsyms.h>
+
+/*
+ * Lock order:
+ * 1. slab_lock(page)
+ * 2. slab->list_lock
+ *
+ * The slab_lock protects operations on the object of a particular
+ * slab and its metadata in the page struct. If the slab lock
+ * has been taken then no allocations nor frees can be performed
+ * on the objects in the slab nor can the slab be added or removed
+ * from the partial or full lists since this would mean modifying
+ * the page_struct of the slab.
+ *
+ * The list_lock protects the partial and full list on each node and
+ * the partial slab counter. If taken then no new slabs may be added or
+ * removed from the lists nor make the number of partial slabs be modified.
+ * (Note that the total number of slabs is an atomic value that may be
+ * modified without taking the list lock).
+ *
+ * The list_lock is a centralized lock and thus we avoid taking it as
+ * much as possible. As long as SLUB does not have to handle partial
+ * slabs, operations can continue without any centralized lock. F.e.
+ * allocating a long series of objects that fill up slabs does not require
+ * the list lock.
+ *
+ * The lock order is sometimes inverted when we are trying to get a slab
+ * off a list. We take the list_lock and then look for a page on the list
+ * to use. While we do that objects in the slabs may be freed. We can
+ * only operate on the slab if we have also taken the slab_lock. So we use
+ * a slab_trylock() on the slab. If trylock was successful then no frees
+ * can occur anymore and we can use the slab for allocations etc. If the
+ * slab_trylock() does not succeed then frees are in progress in the slab and
+ * we must stay away from it for a while since we may cause a bouncing
+ * cacheline if we try to acquire the lock. So go onto the next slab.
+ * If all pages are busy then we may allocate a new slab instead of reusing
+ * a partial slab. A new slab has noone operating on it and thus there is
+ * no danger of cacheline contention.
+ *
+ * Interrupts are disabled during allocation and deallocation in order to
+ * make the slab allocator safe to use in the context of an irq. In addition
+ * interrupts are disabled to ensure that the processor does not change
+ * while handling per_cpu slabs, due to kernel preemption.
+ *
+ * SLUB assigns one slab for allocation to each processor.
+ * Allocations only occur from these slabs called cpu slabs.
+ *
+ * Slabs with free elements are kept on a partial list and during regular
+ * operations no list for full slabs is used. If an object in a full slab is
+ * freed then the slab will show up again on the partial lists.
+ * We track full slabs for debugging purposes though because otherwise we
+ * cannot scan all objects.
+ *
+ * Slabs are freed when they become empty. Teardown and setup is
+ * minimal so we rely on the page allocators per cpu caches for
+ * fast frees and allocs.
+ *
+ * Overloading of page flags that are otherwise used for LRU management.
+ *
+ * PageActive The slab is used as a cpu cache. Allocations
+ * may be performed from the slab. The slab is not
+ * on any slab list and cannot be moved onto one.
+ * The cpu slab may be equipped with an additioanl
+ * lockless_freelist that allows lockless access to
+ * free objects in addition to the regular freelist
+ * that requires the slab lock.
+ *
+ * PageError Slab requires special handling due to debug
+ * options set. This moves slab handling out of
+ * the fast path and disables lockless freelists.
+ */
+
+static inline int SlabDebug(struct page *page)
+{
+#ifdef CONFIG_SLUB_DEBUG
+ return PageError(page);
+#else
+ return 0;
+#endif
+}
+
+static inline void SetSlabDebug(struct page *page)
+{
+#ifdef CONFIG_SLUB_DEBUG
+ SetPageError(page);
+#endif
+}
+
+static inline void ClearSlabDebug(struct page *page)
+{
+#ifdef CONFIG_SLUB_DEBUG
+ ClearPageError(page);
+#endif
+}
+
+/*
+ * Issues still to be resolved:
+ *
+ * - The per cpu array is updated for each new slab and and is a remote
+ * cacheline for most nodes. This could become a bouncing cacheline given
+ * enough frequent updates. There are 16 pointers in a cacheline, so at
+ * max 16 cpus could compete for the cacheline which may be okay.
+ *
+ * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
+ *
+ * - Variable sizing of the per node arrays
+ */
+
+/* Enable to test recovery from slab corruption on boot */
+#undef SLUB_RESILIENCY_TEST
+
+#if PAGE_SHIFT <= 12
+
+/*
+ * Small page size. Make sure that we do not fragment memory
+ */
+#define DEFAULT_MAX_ORDER 1
+#define DEFAULT_MIN_OBJECTS 4
+
+#else
+
+/*
+ * Large page machines are customarily able to handle larger
+ * page orders.
+ */
+#define DEFAULT_MAX_ORDER 2
+#define DEFAULT_MIN_OBJECTS 8
+
+#endif
+
+/*
+ * Mininum number of partial slabs. These will be left on the partial
+ * lists even if they are empty. kmem_cache_shrink may reclaim them.
+ */
+#define MIN_PARTIAL 2
+
+/*
+ * Maximum number of desirable partial slabs.
+ * The existence of more partial slabs makes kmem_cache_shrink
+ * sort the partial list by the number of objects in the.
+ */
+#define MAX_PARTIAL 10
+
+#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
+ SLAB_POISON | SLAB_STORE_USER)
+
+/*
+ * Set of flags that will prevent slab merging
+ */
+#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
+ SLAB_TRACE | SLAB_DESTROY_BY_RCU)
+
+#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
+ SLAB_CACHE_DMA)
+
+#ifndef ARCH_KMALLOC_MINALIGN
+#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
+#endif
+
+#ifndef ARCH_SLAB_MINALIGN
+#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
+#endif
+
+/* Internal SLUB flags */
+#define __OBJECT_POISON 0x80000000 /* Poison object */
+
+/* Not all arches define cache_line_size */
+#ifndef cache_line_size
+#define cache_line_size() L1_CACHE_BYTES
+#endif
+
+static int kmem_size = sizeof(struct kmem_cache);
+
+#ifdef CONFIG_SMP
+static struct notifier_block slab_notifier;
+#endif
+
+static enum {
+ DOWN, /* No slab functionality available */
+ PARTIAL, /* kmem_cache_open() works but kmalloc does not */
+ UP, /* Everything works but does not show up in sysfs */
+ SYSFS /* Sysfs up */
+} slab_state = DOWN;
+
+/* A list of all slab caches on the system */
+static DECLARE_RWSEM(slub_lock);
+LIST_HEAD(slab_caches);
+
+/*
+ * Tracking user of a slab.
+ */
+struct track {
+ void *addr; /* Called from address */
+ int cpu; /* Was running on cpu */
+ int pid; /* Pid context */
+ unsigned long when; /* When did the operation occur */
+};
+
+enum track_item { TRACK_ALLOC, TRACK_FREE };
+
+#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
+static int sysfs_slab_add(struct kmem_cache *);
+static int sysfs_slab_alias(struct kmem_cache *, const char *);
+static void sysfs_slab_remove(struct kmem_cache *);
+#else
+static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
+static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
+static void sysfs_slab_remove(struct kmem_cache *s) {}
+#endif
+
+/********************************************************************
+ * Core slab cache functions
+ *******************************************************************/
+
+int slab_is_available(void)
+{
+ return slab_state >= UP;
+}
+
+static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
+{
+#ifdef CONFIG_NUMA
+ return s->node[node];
+#else
+ return &s->local_node;
+#endif
+}
+
+static inline int check_valid_pointer(struct kmem_cache *s,
+ struct page *page, const void *object)
+{
+ void *base;
+
+ if (!object)
+ return 1;
+
+ base = page_address(page);
+ if (object < base || object >= base + s->objects * s->size ||
+ (object - base) % s->size) {
+ return 0;
+ }
+
+ return 1;
+}
+
+/*
+ * Slow version of get and set free pointer.
+ *
+ * This version requires touching the cache lines of kmem_cache which
+ * we avoid to do in the fast alloc free paths. There we obtain the offset
+ * from the page struct.
+ */
+static inline void *get_freepointer(struct kmem_cache *s, void *object)
+{
+ return *(void **)(object + s->offset);
+}
+
+static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
+{
+ *(void **)(object + s->offset) = fp;
+}
+
+/* Loop over all objects in a slab */
+#define for_each_object(__p, __s, __addr) \
+ for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
+ __p += (__s)->size)
+
+/* Scan freelist */
+#define for_each_free_object(__p, __s, __free) \
+ for (__p = (__free); __p; __p = get_freepointer((__s), __p))
+
+/* Determine object index from a given position */
+static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
+{
+ return (p - addr) / s->size;
+}
+
+#ifdef CONFIG_SLUB_DEBUG
+/*
+ * Debug settings:
+ */
+static int slub_debug;
+
+static char *slub_debug_slabs;
+
+/*
+ * Object debugging
+ */
+static void print_section(char *text, u8 *addr, unsigned int length)
+{
+ int i, offset;
+ int newline = 1;
+ char ascii[17];
+
+ ascii[16] = 0;
+
+ for (i = 0; i < length; i++) {
+ if (newline) {
+ printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
+ newline = 0;
+ }
+ printk(" %02x", addr[i]);
+ offset = i % 16;
+ ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
+ if (offset == 15) {
+ printk(" %s\n",ascii);
+ newline = 1;
+ }
+ }
+ if (!newline) {
+ i %= 16;
+ while (i < 16) {
+ printk(" ");
+ ascii[i] = ' ';
+ i++;
+ }
+ printk(" %s\n", ascii);
+ }
+}
+
+static struct track *get_track(struct kmem_cache *s, void *object,
+ enum track_item alloc)
+{
+ struct track *p;
+
+ if (s->offset)
+ p = object + s->offset + sizeof(void *);
+ else
+ p = object + s->inuse;
+
+ return p + alloc;
+}
+
+static void set_track(struct kmem_cache *s, void *object,
+ enum track_item alloc, void *addr)
+{
+ struct track *p;
+
+ if (s->offset)
+ p = object + s->offset + sizeof(void *);
+ else
+ p = object + s->inuse;
+
+ p += alloc;
+ if (addr) {
+ p->addr = addr;
+ p->cpu = smp_processor_id();
+ p->pid = current ? current->pid : -1;
+ p->when = jiffies;
+ } else
+ memset(p, 0, sizeof(struct track));
+}
+
+static void init_tracking(struct kmem_cache *s, void *object)
+{
+ if (s->flags & SLAB_STORE_USER) {
+ set_track(s, object, TRACK_FREE, NULL);
+ set_track(s, object, TRACK_ALLOC, NULL);
+ }
+}
+
+static void print_track(const char *s, struct track *t)
+{
+ if (!t->addr)
+ return;
+
+ printk(KERN_ERR "%s: ", s);
+ __print_symbol("%s", (unsigned long)t->addr);
+ printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
+}
+
+static void print_trailer(struct kmem_cache *s, u8 *p)
+{
+ unsigned int off; /* Offset of last byte */
+
+ if (s->flags & SLAB_RED_ZONE)
+ print_section("Redzone", p + s->objsize,
+ s->inuse - s->objsize);
+
+ printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
+ p + s->offset,
+ get_freepointer(s, p));
+
+ if (s->offset)
+ off = s->offset + sizeof(void *);
+ else
+ off = s->inuse;
+
+ if (s->flags & SLAB_STORE_USER) {
+ print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
+ print_track("Last free ", get_track(s, p, TRACK_FREE));
+ off += 2 * sizeof(struct track);
+ }
+
+ if (off != s->size)
+ /* Beginning of the filler is the free pointer */
+ print_section("Filler", p + off, s->size - off);
+}
+
+static void object_err(struct kmem_cache *s, struct page *page,
+ u8 *object, char *reason)
+{
+ u8 *addr = page_address(page);
+
+ printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
+ s->name, reason, object, page);
+ printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
+ object - addr, page->flags, page->inuse, page->freelist);
+ if (object > addr + 16)
+ print_section("Bytes b4", object - 16, 16);
+ print_section("Object", object, min(s->objsize, 128));
+ print_trailer(s, object);
+ dump_stack();
+}
+
+static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
+{
+ va_list args;
+ char buf[100];
+
+ va_start(args, reason);
+ vsnprintf(buf, sizeof(buf), reason, args);
+ va_end(args);
+ printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
+ page);
+ dump_stack();
+}
+
+static void init_object(struct kmem_cache *s, void *object, int active)
+{
+ u8 *p = object;
+
+ if (s->flags & __OBJECT_POISON) {
+ memset(p, POISON_FREE, s->objsize - 1);
+ p[s->objsize -1] = POISON_END;
+ }
+
+ if (s->flags & SLAB_RED_ZONE)
+ memset(p + s->objsize,
+ active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
+ s->inuse - s->objsize);
+}
+
+static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
+{
+ while (bytes) {
+ if (*start != (u8)value)
+ return 0;
+ start++;
+ bytes--;
+ }
+ return 1;
+}
+
+/*
+ * Object layout:
+ *
+ * object address
+ * Bytes of the object to be managed.
+ * If the freepointer may overlay the object then the free
+ * pointer is the first word of the object.
+ *
+ * Poisoning uses 0x6b (POISON_FREE) and the last byte is
+ * 0xa5 (POISON_END)
+ *
+ * object + s->objsize
+ * Padding to reach word boundary. This is also used for Redzoning.
+ * Padding is extended by another word if Redzoning is enabled and
+ * objsize == inuse.
+ *
+ * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
+ * 0xcc (RED_ACTIVE) for objects in use.
+ *
+ * object + s->inuse
+ * Meta data starts here.
+ *
+ * A. Free pointer (if we cannot overwrite object on free)
+ * B. Tracking data for SLAB_STORE_USER
+ * C. Padding to reach required alignment boundary or at mininum
+ * one word if debuggin is on to be able to detect writes
+ * before the word boundary.
+ *
+ * Padding is done using 0x5a (POISON_INUSE)
+ *
+ * object + s->size
+ * Nothing is used beyond s->size.
+ *
+ * If slabcaches are merged then the objsize and inuse boundaries are mostly
+ * ignored. And therefore no slab options that rely on these boundaries
+ * may be used with merged slabcaches.
+ */
+
+static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
+ void *from, void *to)
+{
+ printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
+ s->name, message, data, from, to - 1);
+ memset(from, data, to - from);
+}
+
+static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
+{
+ unsigned long off = s->inuse; /* The end of info */
+
+ if (s->offset)
+ /* Freepointer is placed after the object. */
+ off += sizeof(void *);
+
+ if (s->flags & SLAB_STORE_USER)
+ /* We also have user information there */
+ off += 2 * sizeof(struct track);
+
+ if (s->size == off)
+ return 1;
+
+ if (check_bytes(p + off, POISON_INUSE, s->size - off))
+ return 1;
+
+ object_err(s, page, p, "Object padding check fails");
+
+ /*
+ * Restore padding
+ */
+ restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
+ return 0;
+}
+
+static int slab_pad_check(struct kmem_cache *s, struct page *page)
+{
+ u8 *p;
+ int length, remainder;
+
+ if (!(s->flags & SLAB_POISON))
+ return 1;
+
+ p = page_address(page);
+ length = s->objects * s->size;
+ remainder = (PAGE_SIZE << s->order) - length;
+ if (!remainder)
+ return 1;
+
+ if (!check_bytes(p + length, POISON_INUSE, remainder)) {
+ slab_err(s, page, "Padding check failed");
+ restore_bytes(s, "slab padding", POISON_INUSE, p + length,
+ p + length + remainder);
+ return 0;
+ }
+ return 1;
+}
+
+static int check_object(struct kmem_cache *s, struct page *page,
+ void *object, int active)
+{
+ u8 *p = object;
+ u8 *endobject = object + s->objsize;
+
+ if (s->flags & SLAB_RED_ZONE) {
+ unsigned int red =
+ active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
+
+ if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
+ object_err(s, page, object,
+ active ? "Redzone Active" : "Redzone Inactive");
+ restore_bytes(s, "redzone", red,
+ endobject, object + s->inuse);
+ return 0;
+ }
+ } else {
+ if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
+ !check_bytes(endobject, POISON_INUSE,
+ s->inuse - s->objsize)) {
+ object_err(s, page, p, "Alignment padding check fails");
+ /*
+ * Fix it so that there will not be another report.
+ *
+ * Hmmm... We may be corrupting an object that now expects
+ * to be longer than allowed.
+ */
+ restore_bytes(s, "alignment padding", POISON_INUSE,
+ endobject, object + s->inuse);
+ }
+ }
+
+ if (s->flags & SLAB_POISON) {
+ if (!active && (s->flags & __OBJECT_POISON) &&
+ (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
+ p[s->objsize - 1] != POISON_END)) {
+
+ object_err(s, page, p, "Poison check failed");
+ restore_bytes(s, "Poison", POISON_FREE,
+ p, p + s->objsize -1);
+ restore_bytes(s, "Poison", POISON_END,
+ p + s->objsize - 1, p + s->objsize);
+ return 0;
+ }
+ /*
+ * check_pad_bytes cleans up on its own.
+ */
+ check_pad_bytes(s, page, p);
+ }
+
+ if (!s->offset && active)
+ /*
+ * Object and freepointer overlap. Cannot check
+ * freepointer while object is allocated.
+ */
+ return 1;
+
+ /* Check free pointer validity */
+ if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
+ object_err(s, page, p, "Freepointer corrupt");
+ /*
+ * No choice but to zap it and thus loose the remainder
+ * of the free objects in this slab. May cause
+ * another error because the object count is now wrong.
+ */
+ set_freepointer(s, p, NULL);
+ return 0;
+ }
+ return 1;
+}
+
+static int check_slab(struct kmem_cache *s, struct page *page)
+{
+ VM_BUG_ON(!irqs_disabled());
+
+ if (!PageSlab(page)) {
+ slab_err(s, page, "Not a valid slab page flags=%lx "
+ "mapping=0x%p count=%d", page->flags, page->mapping,
+ page_count(page));
+ return 0;
+ }
+ if (page->offset * sizeof(void *) != s->offset) {
+ slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
+ "mapping=0x%p count=%d",
+ (unsigned long)(page->offset * sizeof(void *)),
+ page->flags,
+ page->mapping,
+ page_count(page));
+ return 0;
+ }
+ if (page->inuse > s->objects) {
+ slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
+ "mapping=0x%p count=%d",
+ s->name, page->inuse, s->objects, page->flags,
+ page->mapping, page_count(page));
+ return 0;
+ }
+ /* Slab_pad_check fixes things up after itself */
+ slab_pad_check(s, page);
+ return 1;
+}
+
+/*
+ * Determine if a certain object on a page is on the freelist. Must hold the
+ * slab lock to guarantee that the chains are in a consistent state.
+ */
+static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
+{
+ int nr = 0;
+ void *fp = page->freelist;
+ void *object = NULL;
+
+ while (fp && nr <= s->objects) {
+ if (fp == search)
+ return 1;
+ if (!check_valid_pointer(s, page, fp)) {
+ if (object) {
+ object_err(s, page, object,
+ "Freechain corrupt");
+ set_freepointer(s, object, NULL);
+ break;
+ } else {
+ slab_err(s, page, "Freepointer 0x%p corrupt",
+ fp);
+ page->freelist = NULL;
+ page->inuse = s->objects;
+ printk(KERN_ERR "@@@ SLUB %s: Freelist "
+ "cleared. Slab 0x%p\n",
+ s->name, page);
+ return 0;
+ }
+ break;
+ }
+ object = fp;
+ fp = get_freepointer(s, object);
+ nr++;
+ }
+
+ if (page->inuse != s->objects - nr) {
+ slab_err(s, page, "Wrong object count. Counter is %d but "
+ "counted were %d", s, page, page->inuse,
+ s->objects - nr);
+ page->inuse = s->objects - nr;
+ printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
+ "Slab @0x%p\n", s->name, page);
+ }
+ return search == NULL;
+}
+
+/*
+ * Tracking of fully allocated slabs for debugging purposes.
+ */
+static void add_full(struct kmem_cache_node *n, struct page *page)
+{
+ spin_lock(&n->list_lock);
+ list_add(&page->lru, &n->full);
+ spin_unlock(&n->list_lock);
+}
+
+static void remove_full(struct kmem_cache *s, struct page *page)
+{
+ struct kmem_cache_node *n;
+
+ if (!(s->flags & SLAB_STORE_USER))
+ return;
+
+ n = get_node(s, page_to_nid(page));
+
+ spin_lock(&n->list_lock);
+ list_del(&page->lru);
+ spin_unlock(&n->list_lock);
+}
+
+static int alloc_object_checks(struct kmem_cache *s, struct page *page,
+ void *object)
+{
+ if (!check_slab(s, page))
+ goto bad;
+
+ if (object && !on_freelist(s, page, object)) {
+ slab_err(s, page, "Object 0x%p already allocated", object);
+ goto bad;
+ }
+
+ if (!check_valid_pointer(s, page, object)) {
+ object_err(s, page, object, "Freelist Pointer check fails");
+ goto bad;
+ }
+
+ if (!object)
+ return 1;
+
+ if (!check_object(s, page, object, 0))
+ goto bad;
+
+ return 1;
+bad:
+ if (PageSlab(page)) {
+ /*
+ * If this is a slab page then lets do the best we can
+ * to avoid issues in the future. Marking all objects
+ * as used avoids touching the remaining objects.
+ */
+ printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
+ s->name, page);
+ page->inuse = s->objects;
+ page->freelist = NULL;
+ /* Fix up fields that may be corrupted */
+ page->offset = s->offset / sizeof(void *);
+ }
+ return 0;
+}
+
+static int free_object_checks(struct kmem_cache *s, struct page *page,
+ void *object)
+{
+ if (!check_slab(s, page))
+ goto fail;
+
+ if (!check_valid_pointer(s, page, object)) {
+ slab_err(s, page, "Invalid object pointer 0x%p", object);
+ goto fail;
+ }
+
+ if (on_freelist(s, page, object)) {
+ slab_err(s, page, "Object 0x%p already free", object);
+ goto fail;
+ }
+
+ if (!check_object(s, page, object, 1))
+ return 0;
+
+ if (unlikely(s != page->slab)) {
+ if (!PageSlab(page))
+ slab_err(s, page, "Attempt to free object(0x%p) "
+ "outside of slab", object);
+ else
+ if (!page->slab) {
+ printk(KERN_ERR
+ "SLUB <none>: no slab for object 0x%p.\n",
+ object);
+ dump_stack();
+ }
+ else
+ slab_err(s, page, "object at 0x%p belongs "
+ "to slab %s", object, page->slab->name);
+ goto fail;
+ }
+ return 1;
+fail:
+ printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
+ s->name, page, object);
+ return 0;
+}
+
+static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
+{
+ if (s->flags & SLAB_TRACE) {
+ printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
+ s->name,
+ alloc ? "alloc" : "free",
+ object, page->inuse,
+ page->freelist);
+
+ if (!alloc)
+ print_section("Object", (void *)object, s->objsize);
+
+ dump_stack();
+ }
+}
+
+static int __init setup_slub_debug(char *str)
+{
+ if (!str || *str != '=')
+ slub_debug = DEBUG_DEFAULT_FLAGS;
+ else {
+ str++;
+ if (*str == 0 || *str == ',')
+ slub_debug = DEBUG_DEFAULT_FLAGS;
+ else
+ for( ;*str && *str != ','; str++)
+ switch (*str) {
+ case 'f' : case 'F' :
+ slub_debug |= SLAB_DEBUG_FREE;
+ break;
+ case 'z' : case 'Z' :
+ slub_debug |= SLAB_RED_ZONE;
+ break;
+ case 'p' : case 'P' :
+ slub_debug |= SLAB_POISON;
+ break;
+ case 'u' : case 'U' :
+ slub_debug |= SLAB_STORE_USER;
+ break;
+ case 't' : case 'T' :
+ slub_debug |= SLAB_TRACE;
+ break;
+ default:
+ printk(KERN_ERR "slub_debug option '%c' "
+ "unknown. skipped\n",*str);
+ }
+ }
+
+ if (*str == ',')
+ slub_debug_slabs = str + 1;
+ return 1;
+}
+
+__setup("slub_debug", setup_slub_debug);
+
+static void kmem_cache_open_debug_check(struct kmem_cache *s)
+{
+ /*
+ * The page->offset field is only 16 bit wide. This is an offset
+ * in units of words from the beginning of an object. If the slab
+ * size is bigger then we cannot move the free pointer behind the
+ * object anymore.
+ *
+ * On 32 bit platforms the limit is 256k. On 64bit platforms
+ * the limit is 512k.
+ *
+ * Debugging or ctor/dtors may create a need to move the free
+ * pointer. Fail if this happens.
+ */
+ if (s->size >= 65535 * sizeof(void *)) {
+ BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
+ SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
+ BUG_ON(s->ctor || s->dtor);
+ }
+ else
+ /*
+ * Enable debugging if selected on the kernel commandline.
+ */
+ if (slub_debug && (!slub_debug_slabs ||
+ strncmp(slub_debug_slabs, s->name,
+ strlen(slub_debug_slabs)) == 0))
+ s->flags |= slub_debug;
+}
+#else
+
+static inline int alloc_object_checks(struct kmem_cache *s,
+ struct page *page, void *object) { return 0; }
+
+static inline int free_object_checks(struct kmem_cache *s,
+ struct page *page, void *object) { return 0; }
+
+static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
+static inline void remove_full(struct kmem_cache *s, struct page *page) {}
+static inline void trace(struct kmem_cache *s, struct page *page,
+ void *object, int alloc) {}
+static inline void init_object(struct kmem_cache *s,
+ void *object, int active) {}
+static inline void init_tracking(struct kmem_cache *s, void *object) {}
+static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
+ { return 1; }
+static inline int check_object(struct kmem_cache *s, struct page *page,
+ void *object, int active) { return 1; }
+static inline void set_track(struct kmem_cache *s, void *object,
+ enum track_item alloc, void *addr) {}
+static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
+#define slub_debug 0
+#endif
+/*
+ * Slab allocation and freeing
+ */
+static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
+{
+ struct page * page;
+ int pages = 1 << s->order;
+
+ if (s->order)
+ flags |= __GFP_COMP;
+
+ if (s->flags & SLAB_CACHE_DMA)
+ flags |= SLUB_DMA;
+
+ if (node == -1)
+ page = alloc_pages(flags, s->order);
+ else
+ page = alloc_pages_node(node, flags, s->order);
+
+ if (!page)
+ return NULL;
+
+ mod_zone_page_state(page_zone(page),
+ (s->flags & SLAB_RECLAIM_ACCOUNT) ?
+ NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
+ pages);
+
+ return page;
+}
+
+static void setup_object(struct kmem_cache *s, struct page *page,
+ void *object)
+{
+ if (SlabDebug(page)) {
+ init_object(s, object, 0);
+ init_tracking(s, object);
+ }
+
+ if (unlikely(s->ctor))
+ s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
+}
+
+static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
+{
+ struct page *page;
+ struct kmem_cache_node *n;
+ void *start;
+ void *end;
+ void *last;
+ void *p;
+
+ BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
+
+ if (flags & __GFP_WAIT)
+ local_irq_enable();
+
+ page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
+ if (!page)
+ goto out;
+
+ n = get_node(s, page_to_nid(page));
+ if (n)
+ atomic_long_inc(&n->nr_slabs);
+ page->offset = s->offset / sizeof(void *);
+ page->slab = s;
+ page->flags |= 1 << PG_slab;
+ if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
+ SLAB_STORE_USER | SLAB_TRACE))
+ SetSlabDebug(page);
+
+ start = page_address(page);
+ end = start + s->objects * s->size;
+
+ if (unlikely(s->flags & SLAB_POISON))
+ memset(start, POISON_INUSE, PAGE_SIZE << s->order);
+
+ last = start;
+ for_each_object(p, s, start) {
+ setup_object(s, page, last);
+ set_freepointer(s, last, p);
+ last = p;
+ }
+ setup_object(s, page, last);
+ set_freepointer(s, last, NULL);
+
+ page->freelist = start;
+ page->lockless_freelist = NULL;
+ page->inuse = 0;
+out:
+ if (flags & __GFP_WAIT)
+ local_irq_disable();
+ return page;
+}
+
+static void __free_slab(struct kmem_cache *s, struct page *page)
+{
+ int pages = 1 << s->order;
+
+ if (unlikely(SlabDebug(page) || s->dtor)) {
+ void *p;
+
+ slab_pad_check(s, page);
+ for_each_object(p, s, page_address(page)) {
+ if (s->dtor)
+ s->dtor(p, s, 0);
+ check_object(s, page, p, 0);
+ }
+ }
+
+ mod_zone_page_state(page_zone(page),
+ (s->flags & SLAB_RECLAIM_ACCOUNT) ?
+ NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
+ - pages);
+
+ page->mapping = NULL;
+ __free_pages(page, s->order);
+}
+
+static void rcu_free_slab(struct rcu_head *h)
+{
+ struct page *page;
+
+ page = container_of((struct list_head *)h, struct page, lru);
+ __free_slab(page->slab, page);
+}
+
+static void free_slab(struct kmem_cache *s, struct page *page)
+{
+ if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
+ /*
+ * RCU free overloads the RCU head over the LRU
+ */
+ struct rcu_head *head = (void *)&page->lru;
+
+ call_rcu(head, rcu_free_slab);
+ } else
+ __free_slab(s, page);
+}
+
+static void discard_slab(struct kmem_cache *s, struct page *page)
+{
+ struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+
+ atomic_long_dec(&n->nr_slabs);
+ reset_page_mapcount(page);
+ ClearSlabDebug(page);
+ __ClearPageSlab(page);
+ free_slab(s, page);
+}
+
+/*
+ * Per slab locking using the pagelock
+ */
+static __always_inline void slab_lock(struct page *page)
+{
+ bit_spin_lock(PG_locked, &page->flags);
+}
+
+static __always_inline void slab_unlock(struct page *page)
+{
+ bit_spin_unlock(PG_locked, &page->flags);
+}
+
+static __always_inline int slab_trylock(struct page *page)
+{
+ int rc = 1;
+
+ rc = bit_spin_trylock(PG_locked, &page->flags);
+ return rc;
+}
+
+/*
+ * Management of partially allocated slabs
+ */
+static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
+{
+ spin_lock(&n->list_lock);
+ n->nr_partial++;
+ list_add_tail(&page->lru, &n->partial);
+ spin_unlock(&n->list_lock);
+}
+
+static void add_partial(struct kmem_cache_node *n, struct page *page)
+{
+ spin_lock(&n->list_lock);
+ n->nr_partial++;
+ list_add(&page->lru, &n->partial);
+ spin_unlock(&n->list_lock);
+}
+
+static void remove_partial(struct kmem_cache *s,
+ struct page *page)
+{
+ struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+
+ spin_lock(&n->list_lock);
+ list_del(&page->lru);
+ n->nr_partial--;
+ spin_unlock(&n->list_lock);
+}
+
+/*
+ * Lock slab and remove from the partial list.
+ *
+ * Must hold list_lock.
+ */
+static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
+{
+ if (slab_trylock(page)) {
+ list_del(&page->lru);
+ n->nr_partial--;
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * Try to allocate a partial slab from a specific node.
+ */
+static struct page *get_partial_node(struct kmem_cache_node *n)
+{
+ struct page *page;
+
+ /*
+ * Racy check. If we mistakenly see no partial slabs then we
+ * just allocate an empty slab. If we mistakenly try to get a
+ * partial slab and there is none available then get_partials()
+ * will return NULL.
+ */
+ if (!n || !n->nr_partial)
+ return NULL;
+
+ spin_lock(&n->list_lock);
+ list_for_each_entry(page, &n->partial, lru)
+ if (lock_and_del_slab(n, page))
+ goto out;
+ page = NULL;
+out:
+ spin_unlock(&n->list_lock);
+ return page;
+}
+
+/*
+ * Get a page from somewhere. Search in increasing NUMA distances.
+ */
+static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
+{
+#ifdef CONFIG_NUMA
+ struct zonelist *zonelist;
+ struct zone **z;
+ struct page *page;
+
+ /*
+ * The defrag ratio allows a configuration of the tradeoffs between
+ * inter node defragmentation and node local allocations. A lower
+ * defrag_ratio increases the tendency to do local allocations
+ * instead of attempting to obtain partial slabs from other nodes.
+ *
+ * If the defrag_ratio is set to 0 then kmalloc() always
+ * returns node local objects. If the ratio is higher then kmalloc()
+ * may return off node objects because partial slabs are obtained
+ * from other nodes and filled up.
+ *
+ * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
+ * defrag_ratio = 1000) then every (well almost) allocation will
+ * first attempt to defrag slab caches on other nodes. This means
+ * scanning over all nodes to look for partial slabs which may be
+ * expensive if we do it every time we are trying to find a slab
+ * with available objects.
+ */
+ if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
+ return NULL;
+
+ zonelist = &NODE_DATA(slab_node(current->mempolicy))
+ ->node_zonelists[gfp_zone(flags)];
+ for (z = zonelist->zones; *z; z++) {
+ struct kmem_cache_node *n;
+
+ n = get_node(s, zone_to_nid(*z));
+
+ if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
+ n->nr_partial > MIN_PARTIAL) {
+ page = get_partial_node(n);
+ if (page)
+ return page;
+ }
+ }
+#endif
+ return NULL;
+}
+
+/*
+ * Get a partial page, lock it and return it.
+ */
+static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
+{
+ struct page *page;
+ int searchnode = (node == -1) ? numa_node_id() : node;
+
+ page = get_partial_node(get_node(s, searchnode));
+ if (page || (flags & __GFP_THISNODE))
+ return page;
+
+ return get_any_partial(s, flags);
+}
+
+/*
+ * Move a page back to the lists.
+ *
+ * Must be called with the slab lock held.
+ *
+ * On exit the slab lock will have been dropped.
+ */
+static void putback_slab(struct kmem_cache *s, struct page *page)
+{
+ struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+
+ if (page->inuse) {
+
+ if (page->freelist)
+ add_partial(n, page);
+ else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
+ add_full(n, page);
+ slab_unlock(page);
+
+ } else {
+ if (n->nr_partial < MIN_PARTIAL) {
+ /*
+ * Adding an empty slab to the partial slabs in order
+ * to avoid page allocator overhead. This slab needs
+ * to come after the other slabs with objects in
+ * order to fill them up. That way the size of the
+ * partial list stays small. kmem_cache_shrink can
+ * reclaim empty slabs from the partial list.
+ */
+ add_partial_tail(n, page);
+ slab_unlock(page);
+ } else {
+ slab_unlock(page);
+ discard_slab(s, page);
+ }
+ }
+}
+
+/*
+ * Remove the cpu slab
+ */
+static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
+{
+ /*
+ * Merge cpu freelist into freelist. Typically we get here
+ * because both freelists are empty. So this is unlikely
+ * to occur.
+ */
+ while (unlikely(page->lockless_freelist)) {
+ void **object;
+
+ /* Retrieve object from cpu_freelist */
+ object = page->lockless_freelist;
+ page->lockless_freelist = page->lockless_freelist[page->offset];
+
+ /* And put onto the regular freelist */
+ object[page->offset] = page->freelist;
+ page->freelist = object;
+ page->inuse--;
+ }
+ s->cpu_slab[cpu] = NULL;
+ ClearPageActive(page);
+
+ putback_slab(s, page);
+}
+
+static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
+{
+ slab_lock(page);
+ deactivate_slab(s, page, cpu);
+}
+
+/*
+ * Flush cpu slab.
+ * Called from IPI handler with interrupts disabled.
+ */
+static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
+{
+ struct page *page = s->cpu_slab[cpu];
+
+ if (likely(page))
+ flush_slab(s, page, cpu);
+}
+
+static void flush_cpu_slab(void *d)
+{
+ struct kmem_cache *s = d;
+ int cpu = smp_processor_id();
+
+ __flush_cpu_slab(s, cpu);
+}
+
+static void flush_all(struct kmem_cache *s)
+{
+#ifdef CONFIG_SMP
+ on_each_cpu(flush_cpu_slab, s, 1, 1);
+#else
+ unsigned long flags;
+
+ local_irq_save(flags);
+ flush_cpu_slab(s);
+ local_irq_restore(flags);
+#endif
+}
+
+/*
+ * Slow path. The lockless freelist is empty or we need to perform
+ * debugging duties.
+ *
+ * Interrupts are disabled.
+ *
+ * Processing is still very fast if new objects have been freed to the
+ * regular freelist. In that case we simply take over the regular freelist
+ * as the lockless freelist and zap the regular freelist.
+ *
+ * If that is not working then we fall back to the partial lists. We take the
+ * first element of the freelist as the object to allocate now and move the
+ * rest of the freelist to the lockless freelist.
+ *
+ * And if we were unable to get a new slab from the partial slab lists then
+ * we need to allocate a new slab. This is slowest path since we may sleep.
+ */
+static void *__slab_alloc(struct kmem_cache *s,
+ gfp_t gfpflags, int node, void *addr, struct page *page)
+{
+ void **object;
+ int cpu = smp_processor_id();
+
+ if (!page)
+ goto new_slab;
+
+ slab_lock(page);
+ if (unlikely(node != -1 && page_to_nid(page) != node))
+ goto another_slab;
+load_freelist:
+ object = page->freelist;
+ if (unlikely(!object))
+ goto another_slab;
+ if (unlikely(SlabDebug(page)))
+ goto debug;
+
+ object = page->freelist;
+ page->lockless_freelist = object[page->offset];
+ page->inuse = s->objects;
+ page->freelist = NULL;
+ slab_unlock(page);
+ return object;
+
+another_slab:
+ deactivate_slab(s, page, cpu);
+
+new_slab:
+ page = get_partial(s, gfpflags, node);
+ if (page) {
+have_slab:
+ s->cpu_slab[cpu] = page;
+ SetPageActive(page);
+ goto load_freelist;
+ }
+
+ page = new_slab(s, gfpflags, node);
+ if (page) {
+ cpu = smp_processor_id();
+ if (s->cpu_slab[cpu]) {
+ /*
+ * Someone else populated the cpu_slab while we
+ * enabled interrupts, or we have gotten scheduled
+ * on another cpu. The page may not be on the
+ * requested node even if __GFP_THISNODE was
+ * specified. So we need to recheck.
+ */
+ if (node == -1 ||
+ page_to_nid(s->cpu_slab[cpu]) == node) {
+ /*
+ * Current cpuslab is acceptable and we
+ * want the current one since its cache hot
+ */
+ discard_slab(s, page);
+ page = s->cpu_slab[cpu];
+ slab_lock(page);
+ goto load_freelist;
+ }
+ /* New slab does not fit our expectations */
+ flush_slab(s, s->cpu_slab[cpu], cpu);
+ }
+ slab_lock(page);
+ goto have_slab;
+ }
+ return NULL;
+debug:
+ object = page->freelist;
+ if (!alloc_object_checks(s, page, object))
+ goto another_slab;
+ if (s->flags & SLAB_STORE_USER)
+ set_track(s, object, TRACK_ALLOC, addr);
+ trace(s, page, object, 1);
+ init_object(s, object, 1);
+
+ page->inuse++;
+ page->freelist = object[page->offset];
+ slab_unlock(page);
+ return object;
+}
+
+/*
+ * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
+ * have the fastpath folded into their functions. So no function call
+ * overhead for requests that can be satisfied on the fastpath.
+ *
+ * The fastpath works by first checking if the lockless freelist can be used.
+ * If not then __slab_alloc is called for slow processing.
+ *
+ * Otherwise we can simply pick the next object from the lockless free list.
+ */
+static void __always_inline *slab_alloc(struct kmem_cache *s,
+ gfp_t gfpflags, int node, void *addr)
+{
+ struct page *page;
+ void **object;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ page = s->cpu_slab[smp_processor_id()];
+ if (unlikely(!page || !page->lockless_freelist ||
+ (node != -1 && page_to_nid(page) != node)))
+
+ object = __slab_alloc(s, gfpflags, node, addr, page);
+
+ else {
+ object = page->lockless_freelist;
+ page->lockless_freelist = object[page->offset];
+ }
+ local_irq_restore(flags);
+ return object;
+}
+
+void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
+{
+ return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(kmem_cache_alloc);
+
+#ifdef CONFIG_NUMA
+void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
+{
+ return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(kmem_cache_alloc_node);
+#endif
+
+/*
+ * Slow patch handling. This may still be called frequently since objects
+ * have a longer lifetime than the cpu slabs in most processing loads.
+ *
+ * So we still attempt to reduce cache line usage. Just take the slab
+ * lock and free the item. If there is no additional partial page
+ * handling required then we can return immediately.
+ */
+static void __slab_free(struct kmem_cache *s, struct page *page,
+ void *x, void *addr)
+{
+ void *prior;
+ void **object = (void *)x;
+
+ slab_lock(page);
+
+ if (unlikely(SlabDebug(page)))
+ goto debug;
+checks_ok:
+ prior = object[page->offset] = page->freelist;
+ page->freelist = object;
+ page->inuse--;
+
+ if (unlikely(PageActive(page)))
+ /*
+ * Cpu slabs are never on partial lists and are
+ * never freed.
+ */
+ goto out_unlock;
+
+ if (unlikely(!page->inuse))
+ goto slab_empty;
+
+ /*
+ * Objects left in the slab. If it
+ * was not on the partial list before
+ * then add it.
+ */
+ if (unlikely(!prior))
+ add_partial(get_node(s, page_to_nid(page)), page);
+
+out_unlock:
+ slab_unlock(page);
+ return;
+
+slab_empty:
+ if (prior)
+ /*
+ * Slab still on the partial list.
+ */
+ remove_partial(s, page);
+
+ slab_unlock(page);
+ discard_slab(s, page);
+ return;
+
+debug:
+ if (!free_object_checks(s, page, x))
+ goto out_unlock;
+ if (!PageActive(page) && !page->freelist)
+ remove_full(s, page);
+ if (s->flags & SLAB_STORE_USER)
+ set_track(s, x, TRACK_FREE, addr);
+ trace(s, page, object, 0);
+ init_object(s, object, 0);
+ goto checks_ok;
+}
+
+/*
+ * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
+ * can perform fastpath freeing without additional function calls.
+ *
+ * The fastpath is only possible if we are freeing to the current cpu slab
+ * of this processor. This typically the case if we have just allocated
+ * the item before.
+ *
+ * If fastpath is not possible then fall back to __slab_free where we deal
+ * with all sorts of special processing.
+ */
+static void __always_inline slab_free(struct kmem_cache *s,
+ struct page *page, void *x, void *addr)
+{
+ void **object = (void *)x;
+ unsigned long flags;
+
+ local_irq_save(flags);
+ if (likely(page == s->cpu_slab[smp_processor_id()] &&
+ !SlabDebug(page))) {
+ object[page->offset] = page->lockless_freelist;
+ page->lockless_freelist = object;
+ } else
+ __slab_free(s, page, x, addr);
+
+ local_irq_restore(flags);
+}
+
+void kmem_cache_free(struct kmem_cache *s, void *x)
+{
+ struct page *page;
+
+ page = virt_to_head_page(x);
+
+ slab_free(s, page, x, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(kmem_cache_free);
+
+/* Figure out on which slab object the object resides */
+static struct page *get_object_page(const void *x)
+{
+ struct page *page = virt_to_head_page(x);
+
+ if (!PageSlab(page))
+ return NULL;
+
+ return page;
+}
+
+/*
+ * Object placement in a slab is made very easy because we always start at
+ * offset 0. If we tune the size of the object to the alignment then we can
+ * get the required alignment by putting one properly sized object after
+ * another.
+ *
+ * Notice that the allocation order determines the sizes of the per cpu
+ * caches. Each processor has always one slab available for allocations.
+ * Increasing the allocation order reduces the number of times that slabs
+ * must be moved on and off the partial lists and is therefore a factor in
+ * locking overhead.
+ */
+
+/*
+ * Mininum / Maximum order of slab pages. This influences locking overhead
+ * and slab fragmentation. A higher order reduces the number of partial slabs
+ * and increases the number of allocations possible without having to
+ * take the list_lock.
+ */
+static int slub_min_order;
+static int slub_max_order = DEFAULT_MAX_ORDER;
+static int slub_min_objects = DEFAULT_MIN_OBJECTS;
+
+/*
+ * Merge control. If this is set then no merging of slab caches will occur.
+ * (Could be removed. This was introduced to pacify the merge skeptics.)
+ */
+static int slub_nomerge;
+
+/*
+ * Calculate the order of allocation given an slab object size.
+ *
+ * The order of allocation has significant impact on performance and other
+ * system components. Generally order 0 allocations should be preferred since
+ * order 0 does not cause fragmentation in the page allocator. Larger objects
+ * be problematic to put into order 0 slabs because there may be too much
+ * unused space left. We go to a higher order if more than 1/8th of the slab
+ * would be wasted.
+ *
+ * In order to reach satisfactory performance we must ensure that a minimum
+ * number of objects is in one slab. Otherwise we may generate too much
+ * activity on the partial lists which requires taking the list_lock. This is
+ * less a concern for large slabs though which are rarely used.
+ *
+ * slub_max_order specifies the order where we begin to stop considering the
+ * number of objects in a slab as critical. If we reach slub_max_order then
+ * we try to keep the page order as low as possible. So we accept more waste
+ * of space in favor of a small page order.
+ *
+ * Higher order allocations also allow the placement of more objects in a
+ * slab and thereby reduce object handling overhead. If the user has
+ * requested a higher mininum order then we start with that one instead of
+ * the smallest order which will fit the object.
+ */
+static inline int slab_order(int size, int min_objects,
+ int max_order, int fract_leftover)
+{
+ int order;
+ int rem;
+
+ for (order = max(slub_min_order,
+ fls(min_objects * size - 1) - PAGE_SHIFT);
+ order <= max_order; order++) {
+
+ unsigned long slab_size = PAGE_SIZE << order;
+
+ if (slab_size < min_objects * size)
+ continue;
+
+ rem = slab_size % size;
+
+ if (rem <= slab_size / fract_leftover)
+ break;
+
+ }
+
+ return order;
+}
+
+static inline int calculate_order(int size)
+{
+ int order;
+ int min_objects;
+ int fraction;
+
+ /*
+ * Attempt to find best configuration for a slab. This
+ * works by first attempting to generate a layout with
+ * the best configuration and backing off gradually.
+ *
+ * First we reduce the acceptable waste in a slab. Then
+ * we reduce the minimum objects required in a slab.
+ */
+ min_objects = slub_min_objects;
+ while (min_objects > 1) {
+ fraction = 8;
+ while (fraction >= 4) {
+ order = slab_order(size, min_objects,
+ slub_max_order, fraction);
+ if (order <= slub_max_order)
+ return order;
+ fraction /= 2;
+ }
+ min_objects /= 2;
+ }
+
+ /*
+ * We were unable to place multiple objects in a slab. Now
+ * lets see if we can place a single object there.
+ */
+ order = slab_order(size, 1, slub_max_order, 1);
+ if (order <= slub_max_order)
+ return order;
+
+ /*
+ * Doh this slab cannot be placed using slub_max_order.
+ */
+ order = slab_order(size, 1, MAX_ORDER, 1);
+ if (order <= MAX_ORDER)
+ return order;
+ return -ENOSYS;
+}
+
+/*
+ * Figure out what the alignment of the objects will be.
+ */
+static unsigned long calculate_alignment(unsigned long flags,
+ unsigned long align, unsigned long size)
+{
+ /*
+ * If the user wants hardware cache aligned objects then
+ * follow that suggestion if the object is sufficiently
+ * large.
+ *
+ * The hardware cache alignment cannot override the
+ * specified alignment though. If that is greater
+ * then use it.
+ */
+ if ((flags & SLAB_HWCACHE_ALIGN) &&
+ size > cache_line_size() / 2)
+ return max_t(unsigned long, align, cache_line_size());
+
+ if (align < ARCH_SLAB_MINALIGN)
+ return ARCH_SLAB_MINALIGN;
+
+ return ALIGN(align, sizeof(void *));
+}
+
+static void init_kmem_cache_node(struct kmem_cache_node *n)
+{
+ n->nr_partial = 0;
+ atomic_long_set(&n->nr_slabs, 0);
+ spin_lock_init(&n->list_lock);
+ INIT_LIST_HEAD(&n->partial);
+ INIT_LIST_HEAD(&n->full);
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * No kmalloc_node yet so do it by hand. We know that this is the first
+ * slab on the node for this slabcache. There are no concurrent accesses
+ * possible.
+ *
+ * Note that this function only works on the kmalloc_node_cache
+ * when allocating for the kmalloc_node_cache.
+ */
+static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
+ int node)
+{
+ struct page *page;
+ struct kmem_cache_node *n;
+
+ BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
+
+ page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
+ /* new_slab() disables interupts */
+ local_irq_enable();
+
+ BUG_ON(!page);
+ n = page->freelist;
+ BUG_ON(!n);
+ page->freelist = get_freepointer(kmalloc_caches, n);
+ page->inuse++;
+ kmalloc_caches->node[node] = n;
+ init_object(kmalloc_caches, n, 1);
+ init_kmem_cache_node(n);
+ atomic_long_inc(&n->nr_slabs);
+ add_partial(n, page);
+ return n;
+}
+
+static void free_kmem_cache_nodes(struct kmem_cache *s)
+{
+ int node;
+
+ for_each_online_node(node) {
+ struct kmem_cache_node *n = s->node[node];
+ if (n && n != &s->local_node)
+ kmem_cache_free(kmalloc_caches, n);
+ s->node[node] = NULL;
+ }
+}
+
+static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
+{
+ int node;
+ int local_node;
+
+ if (slab_state >= UP)
+ local_node = page_to_nid(virt_to_page(s));
+ else
+ local_node = 0;
+
+ for_each_online_node(node) {
+ struct kmem_cache_node *n;
+
+ if (local_node == node)
+ n = &s->local_node;
+ else {
+ if (slab_state == DOWN) {
+ n = early_kmem_cache_node_alloc(gfpflags,
+ node);
+ continue;
+ }
+ n = kmem_cache_alloc_node(kmalloc_caches,
+ gfpflags, node);
+
+ if (!n) {
+ free_kmem_cache_nodes(s);
+ return 0;
+ }
+
+ }
+ s->node[node] = n;
+ init_kmem_cache_node(n);
+ }
+ return 1;
+}
+#else
+static void free_kmem_cache_nodes(struct kmem_cache *s)
+{
+}
+
+static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
+{
+ init_kmem_cache_node(&s->local_node);
+ return 1;
+}
+#endif
+
+/*
+ * calculate_sizes() determines the order and the distribution of data within
+ * a slab object.
+ */
+static int calculate_sizes(struct kmem_cache *s)
+{
+ unsigned long flags = s->flags;
+ unsigned long size = s->objsize;
+ unsigned long align = s->align;
+
+ /*
+ * Determine if we can poison the object itself. If the user of
+ * the slab may touch the object after free or before allocation
+ * then we should never poison the object itself.
+ */
+ if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
+ !s->ctor && !s->dtor)
+ s->flags |= __OBJECT_POISON;
+ else
+ s->flags &= ~__OBJECT_POISON;
+
+ /*
+ * Round up object size to the next word boundary. We can only
+ * place the free pointer at word boundaries and this determines
+ * the possible location of the free pointer.
+ */
+ size = ALIGN(size, sizeof(void *));
+
+#ifdef CONFIG_SLUB_DEBUG
+ /*
+ * If we are Redzoning then check if there is some space between the
+ * end of the object and the free pointer. If not then add an
+ * additional word to have some bytes to store Redzone information.
+ */
+ if ((flags & SLAB_RED_ZONE) && size == s->objsize)
+ size += sizeof(void *);
+#endif
+
+ /*
+ * With that we have determined the number of bytes in actual use
+ * by the object. This is the potential offset to the free pointer.
+ */
+ s->inuse = size;
+
+#ifdef CONFIG_SLUB_DEBUG
+ if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
+ s->ctor || s->dtor)) {
+ /*
+ * Relocate free pointer after the object if it is not
+ * permitted to overwrite the first word of the object on
+ * kmem_cache_free.
+ *
+ * This is the case if we do RCU, have a constructor or
+ * destructor or are poisoning the objects.
+ */
+ s->offset = size;
+ size += sizeof(void *);
+ }
+
+ if (flags & SLAB_STORE_USER)
+ /*
+ * Need to store information about allocs and frees after
+ * the object.
+ */
+ size += 2 * sizeof(struct track);
+
+ if (flags & SLAB_RED_ZONE)
+ /*
+ * Add some empty padding so that we can catch
+ * overwrites from earlier objects rather than let
+ * tracking information or the free pointer be
+ * corrupted if an user writes before the start
+ * of the object.
+ */
+ size += sizeof(void *);
+#endif
+
+ /*
+ * Determine the alignment based on various parameters that the
+ * user specified and the dynamic determination of cache line size
+ * on bootup.
+ */
+ align = calculate_alignment(flags, align, s->objsize);
+
+ /*
+ * SLUB stores one object immediately after another beginning from
+ * offset 0. In order to align the objects we have to simply size
+ * each object to conform to the alignment.
+ */
+ size = ALIGN(size, align);
+ s->size = size;
+
+ s->order = calculate_order(size);
+ if (s->order < 0)
+ return 0;
+
+ /*
+ * Determine the number of objects per slab
+ */
+ s->objects = (PAGE_SIZE << s->order) / size;
+
+ /*
+ * Verify that the number of objects is within permitted limits.
+ * The page->inuse field is only 16 bit wide! So we cannot have
+ * more than 64k objects per slab.
+ */
+ if (!s->objects || s->objects > 65535)
+ return 0;
+ return 1;
+
+}
+
+static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
+ const char *name, size_t size,
+ size_t align, unsigned long flags,
+ void (*ctor)(void *, struct kmem_cache *, unsigned long),
+ void (*dtor)(void *, struct kmem_cache *, unsigned long))
+{
+ memset(s, 0, kmem_size);
+ s->name = name;
+ s->ctor = ctor;
+ s->dtor = dtor;
+ s->objsize = size;
+ s->flags = flags;
+ s->align = align;
+ kmem_cache_open_debug_check(s);
+
+ if (!calculate_sizes(s))
+ goto error;
+
+ s->refcount = 1;
+#ifdef CONFIG_NUMA
+ s->defrag_ratio = 100;
+#endif
+
+ if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
+ return 1;
+error:
+ if (flags & SLAB_PANIC)
+ panic("Cannot create slab %s size=%lu realsize=%u "
+ "order=%u offset=%u flags=%lx\n",
+ s->name, (unsigned long)size, s->size, s->order,
+ s->offset, flags);
+ return 0;
+}
+EXPORT_SYMBOL(kmem_cache_open);
+
+/*
+ * Check if a given pointer is valid
+ */
+int kmem_ptr_validate(struct kmem_cache *s, const void *object)
+{
+ struct page * page;
+
+ page = get_object_page(object);
+
+ if (!page || s != page->slab)
+ /* No slab or wrong slab */
+ return 0;
+
+ if (!check_valid_pointer(s, page, object))
+ return 0;
+
+ /*
+ * We could also check if the object is on the slabs freelist.
+ * But this would be too expensive and it seems that the main
+ * purpose of kmem_ptr_valid is to check if the object belongs
+ * to a certain slab.
+ */
+ return 1;
+}
+EXPORT_SYMBOL(kmem_ptr_validate);
+
+/*
+ * Determine the size of a slab object
+ */
+unsigned int kmem_cache_size(struct kmem_cache *s)
+{
+ return s->objsize;
+}
+EXPORT_SYMBOL(kmem_cache_size);
+
+const char *kmem_cache_name(struct kmem_cache *s)
+{
+ return s->name;
+}
+EXPORT_SYMBOL(kmem_cache_name);
+
+/*
+ * Attempt to free all slabs on a node. Return the number of slabs we
+ * were unable to free.
+ */
+static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
+ struct list_head *list)
+{
+ int slabs_inuse = 0;
+ unsigned long flags;
+ struct page *page, *h;
+
+ spin_lock_irqsave(&n->list_lock, flags);
+ list_for_each_entry_safe(page, h, list, lru)
+ if (!page->inuse) {
+ list_del(&page->lru);
+ discard_slab(s, page);
+ } else
+ slabs_inuse++;
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return slabs_inuse;
+}
+
+/*
+ * Release all resources used by a slab cache.
+ */
+static int kmem_cache_close(struct kmem_cache *s)
+{
+ int node;
+
+ flush_all(s);
+
+ /* Attempt to free all objects */
+ for_each_online_node(node) {
+ struct kmem_cache_node *n = get_node(s, node);
+
+ n->nr_partial -= free_list(s, n, &n->partial);
+ if (atomic_long_read(&n->nr_slabs))
+ return 1;
+ }
+ free_kmem_cache_nodes(s);
+ return 0;
+}
+
+/*
+ * Close a cache and release the kmem_cache structure
+ * (must be used for caches created using kmem_cache_create)
+ */
+void kmem_cache_destroy(struct kmem_cache *s)
+{
+ down_write(&slub_lock);
+ s->refcount--;
+ if (!s->refcount) {
+ list_del(&s->list);
+ if (kmem_cache_close(s))
+ WARN_ON(1);
+ sysfs_slab_remove(s);
+ kfree(s);
+ }
+ up_write(&slub_lock);
+}
+EXPORT_SYMBOL(kmem_cache_destroy);
+
+/********************************************************************
+ * Kmalloc subsystem
+ *******************************************************************/
+
+struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
+EXPORT_SYMBOL(kmalloc_caches);
+
+#ifdef CONFIG_ZONE_DMA
+static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
+#endif
+
+static int __init setup_slub_min_order(char *str)
+{
+ get_option (&str, &slub_min_order);
+
+ return 1;
+}
+
+__setup("slub_min_order=", setup_slub_min_order);
+
+static int __init setup_slub_max_order(char *str)
+{
+ get_option (&str, &slub_max_order);
+
+ return 1;
+}
+
+__setup("slub_max_order=", setup_slub_max_order);
+
+static int __init setup_slub_min_objects(char *str)
+{
+ get_option (&str, &slub_min_objects);
+
+ return 1;
+}
+
+__setup("slub_min_objects=", setup_slub_min_objects);
+
+static int __init setup_slub_nomerge(char *str)
+{
+ slub_nomerge = 1;
+ return 1;
+}
+
+__setup("slub_nomerge", setup_slub_nomerge);
+
+static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
+ const char *name, int size, gfp_t gfp_flags)
+{
+ unsigned int flags = 0;
+
+ if (gfp_flags & SLUB_DMA)
+ flags = SLAB_CACHE_DMA;
+
+ down_write(&slub_lock);
+ if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
+ flags, NULL, NULL))
+ goto panic;
+
+ list_add(&s->list, &slab_caches);
+ up_write(&slub_lock);
+ if (sysfs_slab_add(s))
+ goto panic;
+ return s;
+
+panic:
+ panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
+}
+
+static struct kmem_cache *get_slab(size_t size, gfp_t flags)
+{
+ int index = kmalloc_index(size);
+
+ if (!index)
+ return NULL;
+
+ /* Allocation too large? */
+ BUG_ON(index < 0);
+
+#ifdef CONFIG_ZONE_DMA
+ if ((flags & SLUB_DMA)) {
+ struct kmem_cache *s;
+ struct kmem_cache *x;
+ char *text;
+ size_t realsize;
+
+ s = kmalloc_caches_dma[index];
+ if (s)
+ return s;
+
+ /* Dynamically create dma cache */
+ x = kmalloc(kmem_size, flags & ~SLUB_DMA);
+ if (!x)
+ panic("Unable to allocate memory for dma cache\n");
+
+ if (index <= KMALLOC_SHIFT_HIGH)
+ realsize = 1 << index;
+ else {
+ if (index == 1)
+ realsize = 96;
+ else
+ realsize = 192;
+ }
+
+ text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
+ (unsigned int)realsize);
+ s = create_kmalloc_cache(x, text, realsize, flags);
+ kmalloc_caches_dma[index] = s;
+ return s;
+ }
+#endif
+ return &kmalloc_caches[index];
+}
+
+void *__kmalloc(size_t size, gfp_t flags)
+{
+ struct kmem_cache *s = get_slab(size, flags);
+
+ if (s)
+ return slab_alloc(s, flags, -1, __builtin_return_address(0));
+ return NULL;
+}
+EXPORT_SYMBOL(__kmalloc);
+
+#ifdef CONFIG_NUMA
+void *__kmalloc_node(size_t size, gfp_t flags, int node)
+{
+ struct kmem_cache *s = get_slab(size, flags);
+
+ if (s)
+ return slab_alloc(s, flags, node, __builtin_return_address(0));
+ return NULL;
+}
+EXPORT_SYMBOL(__kmalloc_node);
+#endif
+
+size_t ksize(const void *object)
+{
+ struct page *page = get_object_page(object);
+ struct kmem_cache *s;
+
+ BUG_ON(!page);
+ s = page->slab;
+ BUG_ON(!s);
+
+ /*
+ * Debugging requires use of the padding between object
+ * and whatever may come after it.
+ */
+ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
+ return s->objsize;
+
+ /*
+ * If we have the need to store the freelist pointer
+ * back there or track user information then we can
+ * only use the space before that information.
+ */
+ if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
+ return s->inuse;
+
+ /*
+ * Else we can use all the padding etc for the allocation
+ */
+ return s->size;
+}
+EXPORT_SYMBOL(ksize);
+
+void kfree(const void *x)
+{
+ struct kmem_cache *s;
+ struct page *page;
+
+ if (!x)
+ return;
+
+ page = virt_to_head_page(x);
+ s = page->slab;
+
+ slab_free(s, page, (void *)x, __builtin_return_address(0));
+}
+EXPORT_SYMBOL(kfree);
+
+/*
+ * kmem_cache_shrink removes empty slabs from the partial lists and sorts
+ * the remaining slabs by the number of items in use. The slabs with the
+ * most items in use come first. New allocations will then fill those up
+ * and thus they can be removed from the partial lists.
+ *
+ * The slabs with the least items are placed last. This results in them
+ * being allocated from last increasing the chance that the last objects
+ * are freed in them.
+ */
+int kmem_cache_shrink(struct kmem_cache *s)
+{
+ int node;
+ int i;
+ struct kmem_cache_node *n;
+ struct page *page;
+ struct page *t;
+ struct list_head *slabs_by_inuse =
+ kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
+ unsigned long flags;
+
+ if (!slabs_by_inuse)
+ return -ENOMEM;
+
+ flush_all(s);
+ for_each_online_node(node) {
+ n = get_node(s, node);
+
+ if (!n->nr_partial)
+ continue;
+
+ for (i = 0; i < s->objects; i++)
+ INIT_LIST_HEAD(slabs_by_inuse + i);
+
+ spin_lock_irqsave(&n->list_lock, flags);
+
+ /*
+ * Build lists indexed by the items in use in each slab.
+ *
+ * Note that concurrent frees may occur while we hold the
+ * list_lock. page->inuse here is the upper limit.
+ */
+ list_for_each_entry_safe(page, t, &n->partial, lru) {
+ if (!page->inuse && slab_trylock(page)) {
+ /*
+ * Must hold slab lock here because slab_free
+ * may have freed the last object and be
+ * waiting to release the slab.
+ */
+ list_del(&page->lru);
+ n->nr_partial--;
+ slab_unlock(page);
+ discard_slab(s, page);
+ } else {
+ if (n->nr_partial > MAX_PARTIAL)
+ list_move(&page->lru,
+ slabs_by_inuse + page->inuse);
+ }
+ }
+
+ if (n->nr_partial <= MAX_PARTIAL)
+ goto out;
+
+ /*
+ * Rebuild the partial list with the slabs filled up most
+ * first and the least used slabs at the end.
+ */
+ for (i = s->objects - 1; i >= 0; i--)
+ list_splice(slabs_by_inuse + i, n->partial.prev);
+
+ out:
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ }
+
+ kfree(slabs_by_inuse);
+ return 0;
+}
+EXPORT_SYMBOL(kmem_cache_shrink);
+
+/**
+ * krealloc - reallocate memory. The contents will remain unchanged.
+ * @p: object to reallocate memory for.
+ * @new_size: how many bytes of memory are required.
+ * @flags: the type of memory to allocate.
+ *
+ * The contents of the object pointed to are preserved up to the
+ * lesser of the new and old sizes. If @p is %NULL, krealloc()
+ * behaves exactly like kmalloc(). If @size is 0 and @p is not a
+ * %NULL pointer, the object pointed to is freed.
+ */
+void *krealloc(const void *p, size_t new_size, gfp_t flags)
+{
+ void *ret;
+ size_t ks;
+
+ if (unlikely(!p))
+ return kmalloc(new_size, flags);
+
+ if (unlikely(!new_size)) {
+ kfree(p);
+ return NULL;
+ }
+
+ ks = ksize(p);
+ if (ks >= new_size)
+ return (void *)p;
+
+ ret = kmalloc(new_size, flags);
+ if (ret) {
+ memcpy(ret, p, min(new_size, ks));
+ kfree(p);
+ }
+ return ret;
+}
+EXPORT_SYMBOL(krealloc);
+
+/********************************************************************
+ * Basic setup of slabs
+ *******************************************************************/
+
+void __init kmem_cache_init(void)
+{
+ int i;
+
+#ifdef CONFIG_NUMA
+ /*
+ * Must first have the slab cache available for the allocations of the
+ * struct kmem_cache_node's. There is special bootstrap code in
+ * kmem_cache_open for slab_state == DOWN.
+ */
+ create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
+ sizeof(struct kmem_cache_node), GFP_KERNEL);
+#endif
+
+ /* Able to allocate the per node structures */
+ slab_state = PARTIAL;
+
+ /* Caches that are not of the two-to-the-power-of size */
+ create_kmalloc_cache(&kmalloc_caches[1],
+ "kmalloc-96", 96, GFP_KERNEL);
+ create_kmalloc_cache(&kmalloc_caches[2],
+ "kmalloc-192", 192, GFP_KERNEL);
+
+ for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
+ create_kmalloc_cache(&kmalloc_caches[i],
+ "kmalloc", 1 << i, GFP_KERNEL);
+
+ slab_state = UP;
+
+ /* Provide the correct kmalloc names now that the caches are up */
+ for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
+ kmalloc_caches[i]. name =
+ kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
+
+#ifdef CONFIG_SMP
+ register_cpu_notifier(&slab_notifier);
+#endif
+
+ kmem_size = offsetof(struct kmem_cache, cpu_slab) +
+ nr_cpu_ids * sizeof(struct page *);
+
+ printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
+ " Processors=%d, Nodes=%d\n",
+ KMALLOC_SHIFT_HIGH, cache_line_size(),
+ slub_min_order, slub_max_order, slub_min_objects,
+ nr_cpu_ids, nr_node_ids);
+}
+
+/*
+ * Find a mergeable slab cache
+ */
+static int slab_unmergeable(struct kmem_cache *s)
+{
+ if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
+ return 1;
+
+ if (s->ctor || s->dtor)
+ return 1;
+
+ return 0;
+}
+
+static struct kmem_cache *find_mergeable(size_t size,
+ size_t align, unsigned long flags,
+ void (*ctor)(void *, struct kmem_cache *, unsigned long),
+ void (*dtor)(void *, struct kmem_cache *, unsigned long))
+{
+ struct list_head *h;
+
+ if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
+ return NULL;
+
+ if (ctor || dtor)
+ return NULL;
+
+ size = ALIGN(size, sizeof(void *));
+ align = calculate_alignment(flags, align, size);
+ size = ALIGN(size, align);
+
+ list_for_each(h, &slab_caches) {
+ struct kmem_cache *s =
+ container_of(h, struct kmem_cache, list);
+
+ if (slab_unmergeable(s))
+ continue;
+
+ if (size > s->size)
+ continue;
+
+ if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
+ (s->flags & SLUB_MERGE_SAME))
+ continue;
+ /*
+ * Check if alignment is compatible.
+ * Courtesy of Adrian Drzewiecki
+ */
+ if ((s->size & ~(align -1)) != s->size)
+ continue;
+
+ if (s->size - size >= sizeof(void *))
+ continue;
+
+ return s;
+ }
+ return NULL;
+}
+
+struct kmem_cache *kmem_cache_create(const char *name, size_t size,
+ size_t align, unsigned long flags,
+ void (*ctor)(void *, struct kmem_cache *, unsigned long),
+ void (*dtor)(void *, struct kmem_cache *, unsigned long))
+{
+ struct kmem_cache *s;
+
+ down_write(&slub_lock);
+ s = find_mergeable(size, align, flags, dtor, ctor);
+ if (s) {
+ s->refcount++;
+ /*
+ * Adjust the object sizes so that we clear
+ * the complete object on kzalloc.
+ */
+ s->objsize = max(s->objsize, (int)size);
+ s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
+ if (sysfs_slab_alias(s, name))
+ goto err;
+ } else {
+ s = kmalloc(kmem_size, GFP_KERNEL);
+ if (s && kmem_cache_open(s, GFP_KERNEL, name,
+ size, align, flags, ctor, dtor)) {
+ if (sysfs_slab_add(s)) {
+ kfree(s);
+ goto err;
+ }
+ list_add(&s->list, &slab_caches);
+ } else
+ kfree(s);
+ }
+ up_write(&slub_lock);
+ return s;
+
+err:
+ up_write(&slub_lock);
+ if (flags & SLAB_PANIC)
+ panic("Cannot create slabcache %s\n", name);
+ else
+ s = NULL;
+ return s;
+}
+EXPORT_SYMBOL(kmem_cache_create);
+
+void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
+{
+ void *x;
+
+ x = slab_alloc(s, flags, -1, __builtin_return_address(0));
+ if (x)
+ memset(x, 0, s->objsize);
+ return x;
+}
+EXPORT_SYMBOL(kmem_cache_zalloc);
+
+#ifdef CONFIG_SMP
+static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
+{
+ struct list_head *h;
+
+ down_read(&slub_lock);
+ list_for_each(h, &slab_caches) {
+ struct kmem_cache *s =
+ container_of(h, struct kmem_cache, list);
+
+ func(s, cpu);
+ }
+ up_read(&slub_lock);
+}
+
+/*
+ * Use the cpu notifier to insure that the cpu slabs are flushed when
+ * necessary.
+ */
+static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
+ unsigned long action, void *hcpu)
+{
+ long cpu = (long)hcpu;
+
+ switch (action) {
+ case CPU_UP_CANCELED:
+ case CPU_UP_CANCELED_FROZEN:
+ case CPU_DEAD:
+ case CPU_DEAD_FROZEN:
+ for_all_slabs(__flush_cpu_slab, cpu);
+ break;
+ default:
+ break;
+ }
+ return NOTIFY_OK;
+}
+
+static struct notifier_block __cpuinitdata slab_notifier =
+ { &slab_cpuup_callback, NULL, 0 };
+
+#endif
+
+void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
+{
+ struct kmem_cache *s = get_slab(size, gfpflags);
+
+ if (!s)
+ return NULL;
+
+ return slab_alloc(s, gfpflags, -1, caller);
+}
+
+void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
+ int node, void *caller)
+{
+ struct kmem_cache *s = get_slab(size, gfpflags);
+
+ if (!s)
+ return NULL;
+
+ return slab_alloc(s, gfpflags, node, caller);
+}
+
+#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
+static int validate_slab(struct kmem_cache *s, struct page *page)
+{
+ void *p;
+ void *addr = page_address(page);
+ DECLARE_BITMAP(map, s->objects);
+
+ if (!check_slab(s, page) ||
+ !on_freelist(s, page, NULL))
+ return 0;
+
+ /* Now we know that a valid freelist exists */
+ bitmap_zero(map, s->objects);
+
+ for_each_free_object(p, s, page->freelist) {
+ set_bit(slab_index(p, s, addr), map);
+ if (!check_object(s, page, p, 0))
+ return 0;
+ }
+
+ for_each_object(p, s, addr)
+ if (!test_bit(slab_index(p, s, addr), map))
+ if (!check_object(s, page, p, 1))
+ return 0;
+ return 1;
+}
+
+static void validate_slab_slab(struct kmem_cache *s, struct page *page)
+{
+ if (slab_trylock(page)) {
+ validate_slab(s, page);
+ slab_unlock(page);
+ } else
+ printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
+ s->name, page);
+
+ if (s->flags & DEBUG_DEFAULT_FLAGS) {
+ if (!SlabDebug(page))
+ printk(KERN_ERR "SLUB %s: SlabDebug not set "
+ "on slab 0x%p\n", s->name, page);
+ } else {
+ if (SlabDebug(page))
+ printk(KERN_ERR "SLUB %s: SlabDebug set on "
+ "slab 0x%p\n", s->name, page);
+ }
+}
+
+static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
+{
+ unsigned long count = 0;
+ struct page *page;
+ unsigned long flags;
+
+ spin_lock_irqsave(&n->list_lock, flags);
+
+ list_for_each_entry(page, &n->partial, lru) {
+ validate_slab_slab(s, page);
+ count++;
+ }
+ if (count != n->nr_partial)
+ printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
+ "counter=%ld\n", s->name, count, n->nr_partial);
+
+ if (!(s->flags & SLAB_STORE_USER))
+ goto out;
+
+ list_for_each_entry(page, &n->full, lru) {
+ validate_slab_slab(s, page);
+ count++;
+ }
+ if (count != atomic_long_read(&n->nr_slabs))
+ printk(KERN_ERR "SLUB: %s %ld slabs counted but "
+ "counter=%ld\n", s->name, count,
+ atomic_long_read(&n->nr_slabs));
+
+out:
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return count;
+}
+
+static unsigned long validate_slab_cache(struct kmem_cache *s)
+{
+ int node;
+ unsigned long count = 0;
+
+ flush_all(s);
+ for_each_online_node(node) {
+ struct kmem_cache_node *n = get_node(s, node);
+
+ count += validate_slab_node(s, n);
+ }
+ return count;
+}
+
+#ifdef SLUB_RESILIENCY_TEST
+static void resiliency_test(void)
+{
+ u8 *p;
+
+ printk(KERN_ERR "SLUB resiliency testing\n");
+ printk(KERN_ERR "-----------------------\n");
+ printk(KERN_ERR "A. Corruption after allocation\n");
+
+ p = kzalloc(16, GFP_KERNEL);
+ p[16] = 0x12;
+ printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
+ " 0x12->0x%p\n\n", p + 16);
+
+ validate_slab_cache(kmalloc_caches + 4);
+
+ /* Hmmm... The next two are dangerous */
+ p = kzalloc(32, GFP_KERNEL);
+ p[32 + sizeof(void *)] = 0x34;
+ printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
+ " 0x34 -> -0x%p\n", p);
+ printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+
+ validate_slab_cache(kmalloc_caches + 5);
+ p = kzalloc(64, GFP_KERNEL);
+ p += 64 + (get_cycles() & 0xff) * sizeof(void *);
+ *p = 0x56;
+ printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
+ p);
+ printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+ validate_slab_cache(kmalloc_caches + 6);
+
+ printk(KERN_ERR "\nB. Corruption after free\n");
+ p = kzalloc(128, GFP_KERNEL);
+ kfree(p);
+ *p = 0x78;
+ printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
+ validate_slab_cache(kmalloc_caches + 7);
+
+ p = kzalloc(256, GFP_KERNEL);
+ kfree(p);
+ p[50] = 0x9a;
+ printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
+ validate_slab_cache(kmalloc_caches + 8);
+
+ p = kzalloc(512, GFP_KERNEL);
+ kfree(p);
+ p[512] = 0xab;
+ printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
+ validate_slab_cache(kmalloc_caches + 9);
+}
+#else
+static void resiliency_test(void) {};
+#endif
+
+/*
+ * Generate lists of code addresses where slabcache objects are allocated
+ * and freed.
+ */
+
+struct location {
+ unsigned long count;
+ void *addr;
+ long long sum_time;
+ long min_time;
+ long max_time;
+ long min_pid;
+ long max_pid;
+ cpumask_t cpus;
+ nodemask_t nodes;
+};
+
+struct loc_track {
+ unsigned long max;
+ unsigned long count;
+ struct location *loc;
+};
+
+static void free_loc_track(struct loc_track *t)
+{
+ if (t->max)
+ free_pages((unsigned long)t->loc,
+ get_order(sizeof(struct location) * t->max));
+}
+
+static int alloc_loc_track(struct loc_track *t, unsigned long max)
+{
+ struct location *l;
+ int order;
+
+ if (!max)
+ max = PAGE_SIZE / sizeof(struct location);
+
+ order = get_order(sizeof(struct location) * max);
+
+ l = (void *)__get_free_pages(GFP_KERNEL, order);
+
+ if (!l)
+ return 0;
+
+ if (t->count) {
+ memcpy(l, t->loc, sizeof(struct location) * t->count);
+ free_loc_track(t);
+ }
+ t->max = max;
+ t->loc = l;
+ return 1;
+}
+
+static int add_location(struct loc_track *t, struct kmem_cache *s,
+ const struct track *track)
+{
+ long start, end, pos;
+ struct location *l;
+ void *caddr;
+ unsigned long age = jiffies - track->when;
+
+ start = -1;
+ end = t->count;
+
+ for ( ; ; ) {
+ pos = start + (end - start + 1) / 2;
+
+ /*
+ * There is nothing at "end". If we end up there
+ * we need to add something to before end.
+ */
+ if (pos == end)
+ break;
+
+ caddr = t->loc[pos].addr;
+ if (track->addr == caddr) {
+
+ l = &t->loc[pos];
+ l->count++;
+ if (track->when) {
+ l->sum_time += age;
+ if (age < l->min_time)
+ l->min_time = age;
+ if (age > l->max_time)
+ l->max_time = age;
+
+ if (track->pid < l->min_pid)
+ l->min_pid = track->pid;
+ if (track->pid > l->max_pid)
+ l->max_pid = track->pid;
+
+ cpu_set(track->cpu, l->cpus);
+ }
+ node_set(page_to_nid(virt_to_page(track)), l->nodes);
+ return 1;
+ }
+
+ if (track->addr < caddr)
+ end = pos;
+ else
+ start = pos;
+ }
+
+ /*
+ * Not found. Insert new tracking element.
+ */
+ if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
+ return 0;
+
+ l = t->loc + pos;
+ if (pos < t->count)
+ memmove(l + 1, l,
+ (t->count - pos) * sizeof(struct location));
+ t->count++;
+ l->count = 1;
+ l->addr = track->addr;
+ l->sum_time = age;
+ l->min_time = age;
+ l->max_time = age;
+ l->min_pid = track->pid;
+ l->max_pid = track->pid;
+ cpus_clear(l->cpus);
+ cpu_set(track->cpu, l->cpus);
+ nodes_clear(l->nodes);
+ node_set(page_to_nid(virt_to_page(track)), l->nodes);
+ return 1;
+}
+
+static void process_slab(struct loc_track *t, struct kmem_cache *s,
+ struct page *page, enum track_item alloc)
+{
+ void *addr = page_address(page);
+ DECLARE_BITMAP(map, s->objects);
+ void *p;
+
+ bitmap_zero(map, s->objects);
+ for_each_free_object(p, s, page->freelist)
+ set_bit(slab_index(p, s, addr), map);
+
+ for_each_object(p, s, addr)
+ if (!test_bit(slab_index(p, s, addr), map))
+ add_location(t, s, get_track(s, p, alloc));
+}
+
+static int list_locations(struct kmem_cache *s, char *buf,
+ enum track_item alloc)
+{
+ int n = 0;
+ unsigned long i;
+ struct loc_track t;
+ int node;
+
+ t.count = 0;
+ t.max = 0;
+
+ /* Push back cpu slabs */
+ flush_all(s);
+
+ for_each_online_node(node) {
+ struct kmem_cache_node *n = get_node(s, node);
+ unsigned long flags;
+ struct page *page;
+
+ if (!atomic_read(&n->nr_slabs))
+ continue;
+
+ spin_lock_irqsave(&n->list_lock, flags);
+ list_for_each_entry(page, &n->partial, lru)
+ process_slab(&t, s, page, alloc);
+ list_for_each_entry(page, &n->full, lru)
+ process_slab(&t, s, page, alloc);
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ }
+
+ for (i = 0; i < t.count; i++) {
+ struct location *l = &t.loc[i];
+
+ if (n > PAGE_SIZE - 100)
+ break;
+ n += sprintf(buf + n, "%7ld ", l->count);
+
+ if (l->addr)
+ n += sprint_symbol(buf + n, (unsigned long)l->addr);
+ else
+ n += sprintf(buf + n, "<not-available>");
+
+ if (l->sum_time != l->min_time) {
+ unsigned long remainder;
+
+ n += sprintf(buf + n, " age=%ld/%ld/%ld",
+ l->min_time,
+ div_long_long_rem(l->sum_time, l->count, &remainder),
+ l->max_time);
+ } else
+ n += sprintf(buf + n, " age=%ld",
+ l->min_time);
+
+ if (l->min_pid != l->max_pid)
+ n += sprintf(buf + n, " pid=%ld-%ld",
+ l->min_pid, l->max_pid);
+ else
+ n += sprintf(buf + n, " pid=%ld",
+ l->min_pid);
+
+ if (num_online_cpus() > 1 && !cpus_empty(l->cpus)) {
+ n += sprintf(buf + n, " cpus=");
+ n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
+ l->cpus);
+ }
+
+ if (num_online_nodes() > 1 && !nodes_empty(l->nodes)) {
+ n += sprintf(buf + n, " nodes=");
+ n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
+ l->nodes);
+ }
+
+ n += sprintf(buf + n, "\n");
+ }
+
+ free_loc_track(&t);
+ if (!t.count)
+ n += sprintf(buf, "No data\n");
+ return n;
+}
+
+static unsigned long count_partial(struct kmem_cache_node *n)
+{
+ unsigned long flags;
+ unsigned long x = 0;
+ struct page *page;
+
+ spin_lock_irqsave(&n->list_lock, flags);
+ list_for_each_entry(page, &n->partial, lru)
+ x += page->inuse;
+ spin_unlock_irqrestore(&n->list_lock, flags);
+ return x;
+}
+
+enum slab_stat_type {
+ SL_FULL,
+ SL_PARTIAL,
+ SL_CPU,
+ SL_OBJECTS
+};
+
+#define SO_FULL (1 << SL_FULL)
+#define SO_PARTIAL (1 << SL_PARTIAL)
+#define SO_CPU (1 << SL_CPU)
+#define SO_OBJECTS (1 << SL_OBJECTS)
+
+static unsigned long slab_objects(struct kmem_cache *s,
+ char *buf, unsigned long flags)
+{
+ unsigned long total = 0;
+ int cpu;
+ int node;
+ int x;
+ unsigned long *nodes;
+ unsigned long *per_cpu;
+
+ nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+ per_cpu = nodes + nr_node_ids;
+
+ for_each_possible_cpu(cpu) {
+ struct page *page = s->cpu_slab[cpu];
+ int node;
+
+ if (page) {
+ node = page_to_nid(page);
+ if (flags & SO_CPU) {
+ int x = 0;
+
+ if (flags & SO_OBJECTS)
+ x = page->inuse;
+ else
+ x = 1;
+ total += x;
+ nodes[node] += x;
+ }
+ per_cpu[node]++;
+ }
+ }
+
+ for_each_online_node(node) {
+ struct kmem_cache_node *n = get_node(s, node);
+
+ if (flags & SO_PARTIAL) {
+ if (flags & SO_OBJECTS)
+ x = count_partial(n);
+ else
+ x = n->nr_partial;
+ total += x;
+ nodes[node] += x;
+ }
+
+ if (flags & SO_FULL) {
+ int full_slabs = atomic_read(&n->nr_slabs)
+ - per_cpu[node]
+ - n->nr_partial;
+
+ if (flags & SO_OBJECTS)
+ x = full_slabs * s->objects;
+ else
+ x = full_slabs;
+ total += x;
+ nodes[node] += x;
+ }
+ }
+
+ x = sprintf(buf, "%lu", total);
+#ifdef CONFIG_NUMA
+ for_each_online_node(node)
+ if (nodes[node])
+ x += sprintf(buf + x, " N%d=%lu",
+ node, nodes[node]);
+#endif
+ kfree(nodes);
+ return x + sprintf(buf + x, "\n");
+}
+
+static int any_slab_objects(struct kmem_cache *s)
+{
+ int node;
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ if (s->cpu_slab[cpu])
+ return 1;
+
+ for_each_node(node) {
+ struct kmem_cache_node *n = get_node(s, node);
+
+ if (n->nr_partial || atomic_read(&n->nr_slabs))
+ return 1;
+ }
+ return 0;
+}
+
+#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
+#define to_slab(n) container_of(n, struct kmem_cache, kobj);
+
+struct slab_attribute {
+ struct attribute attr;
+ ssize_t (*show)(struct kmem_cache *s, char *buf);
+ ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
+};
+
+#define SLAB_ATTR_RO(_name) \
+ static struct slab_attribute _name##_attr = __ATTR_RO(_name)
+
+#define SLAB_ATTR(_name) \
+ static struct slab_attribute _name##_attr = \
+ __ATTR(_name, 0644, _name##_show, _name##_store)
+
+static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->size);
+}
+SLAB_ATTR_RO(slab_size);
+
+static ssize_t align_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->align);
+}
+SLAB_ATTR_RO(align);
+
+static ssize_t object_size_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->objsize);
+}
+SLAB_ATTR_RO(object_size);
+
+static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->objects);
+}
+SLAB_ATTR_RO(objs_per_slab);
+
+static ssize_t order_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->order);
+}
+SLAB_ATTR_RO(order);
+
+static ssize_t ctor_show(struct kmem_cache *s, char *buf)
+{
+ if (s->ctor) {
+ int n = sprint_symbol(buf, (unsigned long)s->ctor);
+
+ return n + sprintf(buf + n, "\n");
+ }
+ return 0;
+}
+SLAB_ATTR_RO(ctor);
+
+static ssize_t dtor_show(struct kmem_cache *s, char *buf)
+{
+ if (s->dtor) {
+ int n = sprint_symbol(buf, (unsigned long)s->dtor);
+
+ return n + sprintf(buf + n, "\n");
+ }
+ return 0;
+}
+SLAB_ATTR_RO(dtor);
+
+static ssize_t aliases_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->refcount - 1);
+}
+SLAB_ATTR_RO(aliases);
+
+static ssize_t slabs_show(struct kmem_cache *s, char *buf)
+{
+ return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
+}
+SLAB_ATTR_RO(slabs);
+
+static ssize_t partial_show(struct kmem_cache *s, char *buf)
+{
+ return slab_objects(s, buf, SO_PARTIAL);
+}
+SLAB_ATTR_RO(partial);
+
+static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
+{
+ return slab_objects(s, buf, SO_CPU);
+}
+SLAB_ATTR_RO(cpu_slabs);
+
+static ssize_t objects_show(struct kmem_cache *s, char *buf)
+{
+ return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
+}
+SLAB_ATTR_RO(objects);
+
+static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
+}
+
+static ssize_t sanity_checks_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ s->flags &= ~SLAB_DEBUG_FREE;
+ if (buf[0] == '1')
+ s->flags |= SLAB_DEBUG_FREE;
+ return length;
+}
+SLAB_ATTR(sanity_checks);
+
+static ssize_t trace_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
+}
+
+static ssize_t trace_store(struct kmem_cache *s, const char *buf,
+ size_t length)
+{
+ s->flags &= ~SLAB_TRACE;
+ if (buf[0] == '1')
+ s->flags |= SLAB_TRACE;
+ return length;
+}
+SLAB_ATTR(trace);
+
+static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
+}
+
+static ssize_t reclaim_account_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ s->flags &= ~SLAB_RECLAIM_ACCOUNT;
+ if (buf[0] == '1')
+ s->flags |= SLAB_RECLAIM_ACCOUNT;
+ return length;
+}
+SLAB_ATTR(reclaim_account);
+
+static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
+}
+SLAB_ATTR_RO(hwcache_align);
+
+#ifdef CONFIG_ZONE_DMA
+static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
+}
+SLAB_ATTR_RO(cache_dma);
+#endif
+
+static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
+}
+SLAB_ATTR_RO(destroy_by_rcu);
+
+static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
+}
+
+static ssize_t red_zone_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ if (any_slab_objects(s))
+ return -EBUSY;
+
+ s->flags &= ~SLAB_RED_ZONE;
+ if (buf[0] == '1')
+ s->flags |= SLAB_RED_ZONE;
+ calculate_sizes(s);
+ return length;
+}
+SLAB_ATTR(red_zone);
+
+static ssize_t poison_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
+}
+
+static ssize_t poison_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ if (any_slab_objects(s))
+ return -EBUSY;
+
+ s->flags &= ~SLAB_POISON;
+ if (buf[0] == '1')
+ s->flags |= SLAB_POISON;
+ calculate_sizes(s);
+ return length;
+}
+SLAB_ATTR(poison);
+
+static ssize_t store_user_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
+}
+
+static ssize_t store_user_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ if (any_slab_objects(s))
+ return -EBUSY;
+
+ s->flags &= ~SLAB_STORE_USER;
+ if (buf[0] == '1')
+ s->flags |= SLAB_STORE_USER;
+ calculate_sizes(s);
+ return length;
+}
+SLAB_ATTR(store_user);
+
+static ssize_t validate_show(struct kmem_cache *s, char *buf)
+{
+ return 0;
+}
+
+static ssize_t validate_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ if (buf[0] == '1')
+ validate_slab_cache(s);
+ else
+ return -EINVAL;
+ return length;
+}
+SLAB_ATTR(validate);
+
+static ssize_t shrink_show(struct kmem_cache *s, char *buf)
+{
+ return 0;
+}
+
+static ssize_t shrink_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ if (buf[0] == '1') {
+ int rc = kmem_cache_shrink(s);
+
+ if (rc)
+ return rc;
+ } else
+ return -EINVAL;
+ return length;
+}
+SLAB_ATTR(shrink);
+
+static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
+{
+ if (!(s->flags & SLAB_STORE_USER))
+ return -ENOSYS;
+ return list_locations(s, buf, TRACK_ALLOC);
+}
+SLAB_ATTR_RO(alloc_calls);
+
+static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
+{
+ if (!(s->flags & SLAB_STORE_USER))
+ return -ENOSYS;
+ return list_locations(s, buf, TRACK_FREE);
+}
+SLAB_ATTR_RO(free_calls);
+
+#ifdef CONFIG_NUMA
+static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
+{
+ return sprintf(buf, "%d\n", s->defrag_ratio / 10);
+}
+
+static ssize_t defrag_ratio_store(struct kmem_cache *s,
+ const char *buf, size_t length)
+{
+ int n = simple_strtoul(buf, NULL, 10);
+
+ if (n < 100)
+ s->defrag_ratio = n * 10;
+ return length;
+}
+SLAB_ATTR(defrag_ratio);
+#endif
+
+static struct attribute * slab_attrs[] = {
+ &slab_size_attr.attr,
+ &object_size_attr.attr,
+ &objs_per_slab_attr.attr,
+ &order_attr.attr,
+ &objects_attr.attr,
+ &slabs_attr.attr,
+ &partial_attr.attr,
+ &cpu_slabs_attr.attr,
+ &ctor_attr.attr,
+ &dtor_attr.attr,
+ &aliases_attr.attr,
+ &align_attr.attr,
+ &sanity_checks_attr.attr,
+ &trace_attr.attr,
+ &hwcache_align_attr.attr,
+ &reclaim_account_attr.attr,
+ &destroy_by_rcu_attr.attr,
+ &red_zone_attr.attr,
+ &poison_attr.attr,
+ &store_user_attr.attr,
+ &validate_attr.attr,
+ &shrink_attr.attr,
+ &alloc_calls_attr.attr,
+ &free_calls_attr.attr,
+#ifdef CONFIG_ZONE_DMA
+ &cache_dma_attr.attr,
+#endif
+#ifdef CONFIG_NUMA
+ &defrag_ratio_attr.attr,
+#endif
+ NULL
+};
+
+static struct attribute_group slab_attr_group = {
+ .attrs = slab_attrs,
+};
+
+static ssize_t slab_attr_show(struct kobject *kobj,
+ struct attribute *attr,
+ char *buf)
+{
+ struct slab_attribute *attribute;
+ struct kmem_cache *s;
+ int err;
+
+ attribute = to_slab_attr(attr);
+ s = to_slab(kobj);
+
+ if (!attribute->show)
+ return -EIO;
+
+ err = attribute->show(s, buf);
+
+ return err;
+}
+
+static ssize_t slab_attr_store(struct kobject *kobj,
+ struct attribute *attr,
+ const char *buf, size_t len)
+{
+ struct slab_attribute *attribute;
+ struct kmem_cache *s;
+ int err;
+
+ attribute = to_slab_attr(attr);
+ s = to_slab(kobj);
+
+ if (!attribute->store)
+ return -EIO;
+
+ err = attribute->store(s, buf, len);
+
+ return err;
+}
+
+static struct sysfs_ops slab_sysfs_ops = {
+ .show = slab_attr_show,
+ .store = slab_attr_store,
+};
+
+static struct kobj_type slab_ktype = {
+ .sysfs_ops = &slab_sysfs_ops,
+};
+
+static int uevent_filter(struct kset *kset, struct kobject *kobj)
+{
+ struct kobj_type *ktype = get_ktype(kobj);
+
+ if (ktype == &slab_ktype)
+ return 1;
+ return 0;
+}
+
+static struct kset_uevent_ops slab_uevent_ops = {
+ .filter = uevent_filter,
+};
+
+decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
+
+#define ID_STR_LENGTH 64
+
+/* Create a unique string id for a slab cache:
+ * format
+ * :[flags-]size:[memory address of kmemcache]
+ */
+static char *create_unique_id(struct kmem_cache *s)
+{
+ char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
+ char *p = name;
+
+ BUG_ON(!name);
+
+ *p++ = ':';
+ /*
+ * First flags affecting slabcache operations. We will only
+ * get here for aliasable slabs so we do not need to support
+ * too many flags. The flags here must cover all flags that
+ * are matched during merging to guarantee that the id is
+ * unique.
+ */
+ if (s->flags & SLAB_CACHE_DMA)
+ *p++ = 'd';
+ if (s->flags & SLAB_RECLAIM_ACCOUNT)
+ *p++ = 'a';
+ if (s->flags & SLAB_DEBUG_FREE)
+ *p++ = 'F';
+ if (p != name + 1)
+ *p++ = '-';
+ p += sprintf(p, "%07d", s->size);
+ BUG_ON(p > name + ID_STR_LENGTH - 1);
+ return name;
+}
+
+static int sysfs_slab_add(struct kmem_cache *s)
+{
+ int err;
+ const char *name;
+ int unmergeable;
+
+ if (slab_state < SYSFS)
+ /* Defer until later */
+ return 0;
+
+ unmergeable = slab_unmergeable(s);
+ if (unmergeable) {
+ /*
+ * Slabcache can never be merged so we can use the name proper.
+ * This is typically the case for debug situations. In that
+ * case we can catch duplicate names easily.
+ */
+ sysfs_remove_link(&slab_subsys.kobj, s->name);
+ name = s->name;
+ } else {
+ /*
+ * Create a unique name for the slab as a target
+ * for the symlinks.
+ */
+ name = create_unique_id(s);
+ }
+
+ kobj_set_kset_s(s, slab_subsys);
+ kobject_set_name(&s->kobj, name);
+ kobject_init(&s->kobj);
+ err = kobject_add(&s->kobj);
+ if (err)
+ return err;
+
+ err = sysfs_create_group(&s->kobj, &slab_attr_group);
+ if (err)
+ return err;
+ kobject_uevent(&s->kobj, KOBJ_ADD);
+ if (!unmergeable) {
+ /* Setup first alias */
+ sysfs_slab_alias(s, s->name);
+ kfree(name);
+ }
+ return 0;
+}
+
+static void sysfs_slab_remove(struct kmem_cache *s)
+{
+ kobject_uevent(&s->kobj, KOBJ_REMOVE);
+ kobject_del(&s->kobj);
+}
+
+/*
+ * Need to buffer aliases during bootup until sysfs becomes
+ * available lest we loose that information.
+ */
+struct saved_alias {
+ struct kmem_cache *s;
+ const char *name;
+ struct saved_alias *next;
+};
+
+struct saved_alias *alias_list;
+
+static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
+{
+ struct saved_alias *al;
+
+ if (slab_state == SYSFS) {
+ /*
+ * If we have a leftover link then remove it.
+ */
+ sysfs_remove_link(&slab_subsys.kobj, name);
+ return sysfs_create_link(&slab_subsys.kobj,
+ &s->kobj, name);
+ }
+
+ al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
+ if (!al)
+ return -ENOMEM;
+
+ al->s = s;
+ al->name = name;
+ al->next = alias_list;
+ alias_list = al;
+ return 0;
+}
+
+static int __init slab_sysfs_init(void)
+{
+ struct list_head *h;
+ int err;
+
+ err = subsystem_register(&slab_subsys);
+ if (err) {
+ printk(KERN_ERR "Cannot register slab subsystem.\n");
+ return -ENOSYS;
+ }
+
+ slab_state = SYSFS;
+
+ list_for_each(h, &slab_caches) {
+ struct kmem_cache *s =
+ container_of(h, struct kmem_cache, list);
+
+ err = sysfs_slab_add(s);
+ BUG_ON(err);
+ }
+
+ while (alias_list) {
+ struct saved_alias *al = alias_list;
+
+ alias_list = alias_list->next;
+ err = sysfs_slab_alias(al->s, al->name);
+ BUG_ON(err);
+ kfree(al);
+ }
+
+ resiliency_test();
+ return 0;
+}
+
+__initcall(slab_sysfs_init);
+#endif
diff --git a/mm/sparse.c b/mm/sparse.c
index ac26eb0d73c..6f3fff907bc 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -44,7 +44,7 @@ EXPORT_SYMBOL(page_to_nid);
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
-static struct mem_section *sparse_index_alloc(int nid)
+static struct mem_section noinline *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
@@ -61,7 +61,7 @@ static struct mem_section *sparse_index_alloc(int nid)
return section;
}
-static int sparse_index_init(unsigned long section_nr, int nid)
+static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
static DEFINE_SPINLOCK(index_init_lock);
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
@@ -138,7 +138,7 @@ static inline int sparse_early_nid(struct mem_section *section)
}
/* Record a memory area against a node. */
-void memory_present(int nid, unsigned long start, unsigned long end)
+void __init memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
@@ -197,7 +197,7 @@ struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pn
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
-static int sparse_init_one_section(struct mem_section *ms,
+static int __meminit sparse_init_one_section(struct mem_section *ms,
unsigned long pnum, struct page *mem_map)
{
if (!valid_section(ms))
@@ -209,7 +209,7 @@ static int sparse_init_one_section(struct mem_section *ms,
return 1;
}
-static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
+static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
struct page *map;
struct mem_section *ms = __nr_to_section(pnum);
@@ -272,7 +272,7 @@ static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
*/
-void sparse_init(void)
+void __init sparse_init(void)
{
unsigned long pnum;
struct page *map;
@@ -288,6 +288,7 @@ void sparse_init(void)
}
}
+#ifdef CONFIG_MEMORY_HOTPLUG
/*
* returns the number of sections whose mem_maps were properly
* set. If this is <=0, then that means that the passed-in
@@ -327,3 +328,4 @@ out:
__kfree_section_memmap(memmap, nr_pages);
return ret;
}
+#endif
diff --git a/mm/swap.c b/mm/swap.c
index 2ed7be39795..d3cb966fe99 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -55,7 +55,7 @@ static void fastcall __page_cache_release(struct page *page)
static void put_compound_page(struct page *page)
{
- page = (struct page *)page_private(page);
+ page = compound_head(page);
if (put_page_testzero(page)) {
compound_page_dtor *dtor;
@@ -488,7 +488,7 @@ static int cpu_swap_callback(struct notifier_block *nfb,
long *committed;
committed = &per_cpu(committed_space, (long)hcpu);
- if (action == CPU_DEAD) {
+ if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
atomic_add(*committed, &vm_committed_space);
*committed = 0;
__lru_add_drain((long)hcpu);
diff --git a/mm/swapfile.c b/mm/swapfile.c
index a2d9bb4e80d..acc172cbe3a 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -1531,9 +1531,6 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
error = PTR_ERR(page);
goto bad_swap;
}
- wait_on_page_locked(page);
- if (!PageUptodate(page))
- goto bad_swap;
kmap(page);
swap_header = page_address(page);
diff --git a/mm/truncate.c b/mm/truncate.c
index 0f4b6d18ab0..4fbe1a2da5f 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -12,6 +12,7 @@
#include <linux/swap.h>
#include <linux/module.h>
#include <linux/pagemap.h>
+#include <linux/highmem.h>
#include <linux/pagevec.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/buffer_head.h> /* grr. try_to_release_page,
@@ -46,7 +47,7 @@ void do_invalidatepage(struct page *page, unsigned long offset)
static inline void truncate_partial_page(struct page *page, unsigned partial)
{
- memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);
+ zero_user_page(page, partial, PAGE_CACHE_SIZE - partial, KM_USER0);
if (PagePrivate(page))
do_invalidatepage(page, partial);
}
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 9eef486da90..faa2a521dea 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -431,7 +431,7 @@ void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
area->flags |= VM_VPAGES;
} else {
pages = kmalloc_node(array_size,
- (gfp_mask & ~(__GFP_HIGHMEM | __GFP_ZERO)),
+ (gfp_mask & GFP_LEVEL_MASK),
node);
}
area->pages = pages;
@@ -577,6 +577,14 @@ void *vmalloc_exec(unsigned long size)
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
}
+#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
+#define GFP_VMALLOC32 GFP_DMA32
+#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
+#define GFP_VMALLOC32 GFP_DMA
+#else
+#define GFP_VMALLOC32 GFP_KERNEL
+#endif
+
/**
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
* @size: allocation size
@@ -586,7 +594,7 @@ void *vmalloc_exec(unsigned long size)
*/
void *vmalloc_32(unsigned long size)
{
- return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
+ return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
}
EXPORT_SYMBOL(vmalloc_32);
@@ -602,7 +610,7 @@ void *vmalloc_32_user(unsigned long size)
struct vm_struct *area;
void *ret;
- ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
+ ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
if (ret) {
write_lock(&vmlist_lock);
area = __find_vm_area(ret);
@@ -747,3 +755,10 @@ out_einval_locked:
}
EXPORT_SYMBOL(remap_vmalloc_range);
+/*
+ * Implement a stub for vmalloc_sync_all() if the architecture chose not to
+ * have one.
+ */
+void __attribute__((weak)) vmalloc_sync_all(void)
+{
+}
diff --git a/mm/vmscan.c b/mm/vmscan.c
index db023e2ff38..1be5a6376ef 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -284,12 +284,8 @@ static void handle_write_error(struct address_space *mapping,
struct page *page, int error)
{
lock_page(page);
- if (page_mapping(page) == mapping) {
- if (error == -ENOSPC)
- set_bit(AS_ENOSPC, &mapping->flags);
- else
- set_bit(AS_EIO, &mapping->flags);
- }
+ if (page_mapping(page) == mapping)
+ mapping_set_error(mapping, error);
unlock_page(page);
}
@@ -1323,8 +1319,6 @@ static int kswapd(void *p)
for ( ; ; ) {
unsigned long new_order;
- try_to_freeze();
-
prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
new_order = pgdat->kswapd_max_order;
pgdat->kswapd_max_order = 0;
@@ -1335,12 +1329,19 @@ static int kswapd(void *p)
*/
order = new_order;
} else {
- schedule();
+ if (!freezing(current))
+ schedule();
+
order = pgdat->kswapd_max_order;
}
finish_wait(&pgdat->kswapd_wait, &wait);
- balance_pgdat(pgdat, order);
+ if (!try_to_freeze()) {
+ /* We can speed up thawing tasks if we don't call
+ * balance_pgdat after returning from the refrigerator
+ */
+ balance_pgdat(pgdat, order);
+ }
}
return 0;
}
@@ -1527,7 +1528,7 @@ static int __devinit cpu_callback(struct notifier_block *nfb,
pg_data_t *pgdat;
cpumask_t mask;
- if (action == CPU_ONLINE) {
+ if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
for_each_online_pgdat(pgdat) {
mask = node_to_cpumask(pgdat->node_id);
if (any_online_cpu(mask) != NR_CPUS)
diff --git a/mm/vmstat.c b/mm/vmstat.c
index 6c488d6ac42..9832d9a41d8 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -281,6 +281,17 @@ EXPORT_SYMBOL(dec_zone_page_state);
/*
* Update the zone counters for one cpu.
+ *
+ * Note that refresh_cpu_vm_stats strives to only access
+ * node local memory. The per cpu pagesets on remote zones are placed
+ * in the memory local to the processor using that pageset. So the
+ * loop over all zones will access a series of cachelines local to
+ * the processor.
+ *
+ * The call to zone_page_state_add updates the cachelines with the
+ * statistics in the remote zone struct as well as the global cachelines
+ * with the global counters. These could cause remote node cache line
+ * bouncing and will have to be only done when necessary.
*/
void refresh_cpu_vm_stats(int cpu)
{
@@ -289,21 +300,54 @@ void refresh_cpu_vm_stats(int cpu)
unsigned long flags;
for_each_zone(zone) {
- struct per_cpu_pageset *pcp;
+ struct per_cpu_pageset *p;
if (!populated_zone(zone))
continue;
- pcp = zone_pcp(zone, cpu);
+ p = zone_pcp(zone, cpu);
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
- if (pcp->vm_stat_diff[i]) {
+ if (p->vm_stat_diff[i]) {
local_irq_save(flags);
- zone_page_state_add(pcp->vm_stat_diff[i],
+ zone_page_state_add(p->vm_stat_diff[i],
zone, i);
- pcp->vm_stat_diff[i] = 0;
+ p->vm_stat_diff[i] = 0;
+#ifdef CONFIG_NUMA
+ /* 3 seconds idle till flush */
+ p->expire = 3;
+#endif
local_irq_restore(flags);
}
+#ifdef CONFIG_NUMA
+ /*
+ * Deal with draining the remote pageset of this
+ * processor
+ *
+ * Check if there are pages remaining in this pageset
+ * if not then there is nothing to expire.
+ */
+ if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
+ continue;
+
+ /*
+ * We never drain zones local to this processor.
+ */
+ if (zone_to_nid(zone) == numa_node_id()) {
+ p->expire = 0;
+ continue;
+ }
+
+ p->expire--;
+ if (p->expire)
+ continue;
+
+ if (p->pcp[0].count)
+ drain_zone_pages(zone, p->pcp + 0);
+
+ if (p->pcp[1].count)
+ drain_zone_pages(zone, p->pcp + 1);
+#endif
}
}
@@ -640,6 +684,24 @@ const struct seq_operations vmstat_op = {
#endif /* CONFIG_PROC_FS */
#ifdef CONFIG_SMP
+static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
+int sysctl_stat_interval __read_mostly = HZ;
+
+static void vmstat_update(struct work_struct *w)
+{
+ refresh_cpu_vm_stats(smp_processor_id());
+ schedule_delayed_work(&__get_cpu_var(vmstat_work),
+ sysctl_stat_interval);
+}
+
+static void __devinit start_cpu_timer(int cpu)
+{
+ struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
+
+ INIT_DELAYED_WORK(vmstat_work, vmstat_update);
+ schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
+}
+
/*
* Use the cpu notifier to insure that the thresholds are recalculated
* when necessary.
@@ -648,10 +710,24 @@ static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
unsigned long action,
void *hcpu)
{
+ long cpu = (long)hcpu;
+
switch (action) {
- case CPU_UP_PREPARE:
- case CPU_UP_CANCELED:
+ case CPU_ONLINE:
+ case CPU_ONLINE_FROZEN:
+ start_cpu_timer(cpu);
+ break;
+ case CPU_DOWN_PREPARE:
+ case CPU_DOWN_PREPARE_FROZEN:
+ cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
+ per_cpu(vmstat_work, cpu).work.func = NULL;
+ break;
+ case CPU_DOWN_FAILED:
+ case CPU_DOWN_FAILED_FROZEN:
+ start_cpu_timer(cpu);
+ break;
case CPU_DEAD:
+ case CPU_DEAD_FROZEN:
refresh_zone_stat_thresholds();
break;
default:
@@ -665,8 +741,13 @@ static struct notifier_block __cpuinitdata vmstat_notifier =
int __init setup_vmstat(void)
{
+ int cpu;
+
refresh_zone_stat_thresholds();
register_cpu_notifier(&vmstat_notifier);
+
+ for_each_online_cpu(cpu)
+ start_cpu_timer(cpu);
return 0;
}
module_init(setup_vmstat)