aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems/caching/fscache.txt
AgeCommit message (Collapse)Author
2009-04-03FS-Cache: Object management state machineDavid Howells
Implement the cache object management state machine. The following documentation is added to illuminate the working of this state machine. It will also be added as: Documentation/filesystems/caching/object.txt ==================================================== IN-KERNEL CACHE OBJECT REPRESENTATION AND MANAGEMENT ==================================================== ============== REPRESENTATION ============== FS-Cache maintains an in-kernel representation of each object that a netfs is currently interested in. Such objects are represented by the fscache_cookie struct and are referred to as cookies. FS-Cache also maintains a separate in-kernel representation of the objects that a cache backend is currently actively caching. Such objects are represented by the fscache_object struct. The cache backends allocate these upon request, and are expected to embed them in their own representations. These are referred to as objects. There is a 1:N relationship between cookies and objects. A cookie may be represented by multiple objects - an index may exist in more than one cache - or even by no objects (it may not be cached). Furthermore, both cookies and objects are hierarchical. The two hierarchies correspond, but the cookies tree is a superset of the union of the object trees of multiple caches: NETFS INDEX TREE : CACHE 1 : CACHE 2 : : : +-----------+ : +----------->| IObject | : +-----------+ | : +-----------+ : | ICookie |-------+ : | : +-----------+ | : | : +-----------+ | +------------------------------>| IObject | | : | : +-----------+ | : V : | | : +-----------+ : | V +----------->| IObject | : | +-----------+ | : +-----------+ : | | ICookie |-------+ : | : V +-----------+ | : | : +-----------+ | +------------------------------>| IObject | +-----+-----+ : | : +-----------+ | | : | : | V | : V : | +-----------+ | : +-----------+ : | | ICookie |------------------------->| IObject | : | +-----------+ | : +-----------+ : | | V : | : V | +-----------+ : | : +-----------+ | | ICookie |-------------------------------->| IObject | | +-----------+ : | : +-----------+ V | : V : | +-----------+ | : +-----------+ : | | DCookie |------------------------->| DObject | : | +-----------+ | : +-----------+ : | | : : | +-------+-------+ : : | | | : : | V V : : V +-----------+ +-----------+ : : +-----------+ | DCookie | | DCookie |------------------------>| DObject | +-----------+ +-----------+ : : +-----------+ : : In the above illustration, ICookie and IObject represent indices and DCookie and DObject represent data storage objects. Indices may have representation in multiple caches, but currently, non-index objects may not. Objects of any type may also be entirely unrepresented. As far as the netfs API goes, the netfs is only actually permitted to see pointers to the cookies. The cookies themselves and any objects attached to those cookies are hidden from it. =============================== OBJECT MANAGEMENT STATE MACHINE =============================== Within FS-Cache, each active object is managed by its own individual state machine. The state for an object is kept in the fscache_object struct, in object->state. A cookie may point to a set of objects that are in different states. Each state has an action associated with it that is invoked when the machine wakes up in that state. There are four logical sets of states: (1) Preparation: states that wait for the parent objects to become ready. The representations are hierarchical, and it is expected that an object must be created or accessed with respect to its parent object. (2) Initialisation: states that perform lookups in the cache and validate what's found and that create on disk any missing metadata. (3) Normal running: states that allow netfs operations on objects to proceed and that update the state of objects. (4) Termination: states that detach objects from their netfs cookies, that delete objects from disk, that handle disk and system errors and that free up in-memory resources. In most cases, transitioning between states is in response to signalled events. When a state has finished processing, it will usually set the mask of events in which it is interested (object->event_mask) and relinquish the worker thread. Then when an event is raised (by calling fscache_raise_event()), if the event is not masked, the object will be queued for processing (by calling fscache_enqueue_object()). PROVISION OF CPU TIME --------------------- The work to be done by the various states is given CPU time by the threads of the slow work facility (see Documentation/slow-work.txt). This is used in preference to the workqueue facility because: (1) Threads may be completely occupied for very long periods of time by a particular work item. These state actions may be doing sequences of synchronous, journalled disk accesses (lookup, mkdir, create, setxattr, getxattr, truncate, unlink, rmdir, rename). (2) Threads may do little actual work, but may rather spend a lot of time sleeping on I/O. This means that single-threaded and 1-per-CPU-threaded workqueues don't necessarily have the right numbers of threads. LOCKING SIMPLIFICATION ---------------------- Because only one worker thread may be operating on any particular object's state machine at once, this simplifies the locking, particularly with respect to disconnecting the netfs's representation of a cache object (fscache_cookie) from the cache backend's representation (fscache_object) - which may be requested from either end. ================= THE SET OF STATES ================= The object state machine has a set of states that it can be in. There are preparation states in which the object sets itself up and waits for its parent object to transit to a state that allows access to its children: (1) State FSCACHE_OBJECT_INIT. Initialise the object and wait for the parent object to become active. In the cache, it is expected that it will not be possible to look an object up from the parent object, until that parent object itself has been looked up. There are initialisation states in which the object sets itself up and accesses disk for the object metadata: (2) State FSCACHE_OBJECT_LOOKING_UP. Look up the object on disk, using the parent as a starting point. FS-Cache expects the cache backend to probe the cache to see whether this object is represented there, and if it is, to see if it's valid (coherency management). The cache should call fscache_object_lookup_negative() to indicate lookup failure for whatever reason, and should call fscache_obtained_object() to indicate success. At the completion of lookup, FS-Cache will let the netfs go ahead with read operations, no matter whether the file is yet cached. If not yet cached, read operations will be immediately rejected with ENODATA until the first known page is uncached - as to that point there can be no data to be read out of the cache for that file that isn't currently also held in the pagecache. (3) State FSCACHE_OBJECT_CREATING. Create an object on disk, using the parent as a starting point. This happens if the lookup failed to find the object, or if the object's coherency data indicated what's on disk is out of date. In this state, FS-Cache expects the cache to create The cache should call fscache_obtained_object() if creation completes successfully, fscache_object_lookup_negative() otherwise. At the completion of creation, FS-Cache will start processing write operations the netfs has queued for an object. If creation failed, the write ops will be transparently discarded, and nothing recorded in the cache. There are some normal running states in which the object spends its time servicing netfs requests: (4) State FSCACHE_OBJECT_AVAILABLE. A transient state in which pending operations are started, child objects are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary lookup data is freed. (5) State FSCACHE_OBJECT_ACTIVE. The normal running state. In this state, requests the netfs makes will be passed on to the cache. (6) State FSCACHE_OBJECT_UPDATING. The state machine comes here to update the object in the cache from the netfs's records. This involves updating the auxiliary data that is used to maintain coherency. And there are terminal states in which an object cleans itself up, deallocates memory and potentially deletes stuff from disk: (7) State FSCACHE_OBJECT_LC_DYING. The object comes here if it is dying because of a lookup or creation error. This would be due to a disk error or system error of some sort. Temporary data is cleaned up, and the parent is released. (8) State FSCACHE_OBJECT_DYING. The object comes here if it is dying due to an error, because its parent cookie has been relinquished by the netfs or because the cache is being withdrawn. Any child objects waiting on this one are given CPU time so that they too can destroy themselves. This object waits for all its children to go away before advancing to the next state. (9) State FSCACHE_OBJECT_ABORT_INIT. The object comes to this state if it was waiting on its parent in FSCACHE_OBJECT_INIT, but its parent died. The object will destroy itself so that the parent may proceed from the FSCACHE_OBJECT_DYING state. (10) State FSCACHE_OBJECT_RELEASING. (11) State FSCACHE_OBJECT_RECYCLING. The object comes to one of these two states when dying once it is rid of all its children, if it is dying because the netfs relinquished its cookie. In the first state, the cached data is expected to persist, and in the second it will be deleted. (12) State FSCACHE_OBJECT_WITHDRAWING. The object transits to this state if the cache decides it wants to withdraw the object from service, perhaps to make space, but also due to error or just because the whole cache is being withdrawn. (13) State FSCACHE_OBJECT_DEAD. The object transits to this state when the in-memory object record is ready to be deleted. The object processor shouldn't ever see an object in this state. THE SET OF EVENTS ----------------- There are a number of events that can be raised to an object state machine: (*) FSCACHE_OBJECT_EV_UPDATE The netfs requested that an object be updated. The state machine will ask the cache backend to update the object, and the cache backend will ask the netfs for details of the change through its cookie definition ops. (*) FSCACHE_OBJECT_EV_CLEARED This is signalled in two circumstances: (a) when an object's last child object is dropped and (b) when the last operation outstanding on an object is completed. This is used to proceed from the dying state. (*) FSCACHE_OBJECT_EV_ERROR This is signalled when an I/O error occurs during the processing of some object. (*) FSCACHE_OBJECT_EV_RELEASE (*) FSCACHE_OBJECT_EV_RETIRE These are signalled when the netfs relinquishes a cookie it was using. The event selected depends on whether the netfs asks for the backing object to be retired (deleted) or retained. (*) FSCACHE_OBJECT_EV_WITHDRAW This is signalled when the cache backend wants to withdraw an object. This means that the object will have to be detached from the netfs's cookie. Because the withdrawing releasing/retiring events are all handled by the object state machine, it doesn't matter if there's a collision with both ends trying to sever the connection at the same time. The state machine can just pick which one it wants to honour, and that effects the other. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03FS-Cache: Add use of /proc and presentation of statisticsDavid Howells
Make FS-Cache create its /proc interface and present various statistical information through it. Also provide the functions for updating this information. These features are enabled by: CONFIG_FSCACHE_PROC CONFIG_FSCACHE_STATS CONFIG_FSCACHE_HISTOGRAM The /proc directory for FS-Cache is also exported so that caching modules can add their own statistics there too. The FS-Cache module is loadable at this point, and the statistics files can be examined by userspace: cat /proc/fs/fscache/stats cat /proc/fs/fscache/histogram Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
2009-04-03FS-Cache: Add the FS-Cache netfs API and documentationDavid Howells
Add the API for a generic facility (FS-Cache) by which filesystems (such as AFS or NFS) may call on local caching capabilities without having to know anything about how the cache works, or even if there is a cache: +---------+ | | +--------------+ | NFS |--+ | | | | | +-->| CacheFS | +---------+ | +----------+ | | /dev/hda5 | | | | | +--------------+ +---------+ +-->| | | | | | |--+ | AFS |----->| FS-Cache | | | | |--+ +---------+ +-->| | | | | | | +--------------+ +---------+ | +----------+ | | | | | | +-->| CacheFiles | | ISOFS |--+ | /var/cache | | | +--------------+ +---------+ General documentation and documentation of the netfs specific API are provided in addition to the header files. As this patch stands, it is possible to build a filesystem against the facility and attempt to use it. All that will happen is that all requests will be immediately denied as if no cache is present. Further patches will implement the core of the facility. The facility will transfer requests from networking filesystems to appropriate caches if possible, or else gracefully deny them. If this facility is disabled in the kernel configuration, then all its operations will trivially reduce to nothing during compilation. WHY NOT I_MAPPING? ================== I have added my own API to implement caching rather than using i_mapping to do this for a number of reasons. These have been discussed a lot on the LKML and CacheFS mailing lists, but to summarise the basics: (1) Most filesystems don't do hole reportage. Holes in files are treated as blocks of zeros and can't be distinguished otherwise, making it difficult to distinguish blocks that have been read from the network and cached from those that haven't. (2) The backing inode must be fully populated before being exposed to userspace through the main inode because the VM/VFS goes directly to the backing inode and does not interrogate the front inode's VM ops. Therefore: (a) The backing inode must fit entirely within the cache. (b) All backed files currently open must fit entirely within the cache at the same time. (c) A working set of files in total larger than the cache may not be cached. (d) A file may not grow larger than the available space in the cache. (e) A file that's open and cached, and remotely grows larger than the cache is potentially stuffed. (3) Writes go to the backing filesystem, and can only be transferred to the network when the file is closed. (4) There's no record of what changes have been made, so the whole file must be written back. (5) The pages belong to the backing filesystem, and all metadata associated with that page are relevant only to the backing filesystem, and not anything stacked atop it. OVERVIEW ======== FS-Cache provides (or will provide) the following facilities: (1) Caches can be added / removed at any time, even whilst in use. (2) Adds a facility by which tags can be used to refer to caches, even if they're not available yet. (3) More than one cache can be used at once. Caches can be selected explicitly by use of tags. (4) The netfs is provided with an interface that allows either party to withdraw caching facilities from a file (required for (1)). (5) A netfs may annotate cache objects that belongs to it. This permits the storage of coherency maintenance data. (6) Cache objects will be pinnable and space reservations will be possible. (7) The interface to the netfs returns as few errors as possible, preferring rather to let the netfs remain oblivious. (8) Cookies are used to represent indices, files and other objects to the netfs. The simplest cookie is just a NULL pointer - indicating nothing cached there. (9) The netfs is allowed to propose - dynamically - any index hierarchy it desires, though it must be aware that the index search function is recursive, stack space is limited, and indices can only be children of indices. (10) Indices can be used to group files together to reduce key size and to make group invalidation easier. The use of indices may make lookup quicker, but that's cache dependent. (11) Data I/O is effectively done directly to and from the netfs's pages. The netfs indicates that page A is at index B of the data-file represented by cookie C, and that it should be read or written. The cache backend may or may not start I/O on that page, but if it does, a netfs callback will be invoked to indicate completion. The I/O may be either synchronous or asynchronous. (12) Cookies can be "retired" upon release. At this point FS-Cache will mark them as obsolete and the index hierarchy rooted at that point will get recycled. (13) The netfs provides a "match" function for index searches. In addition to saying whether a match was made or not, this can also specify that an entry should be updated or deleted. FS-Cache maintains a virtual index tree in which all indices, files, objects and pages are kept. Bits of this tree may actually reside in one or more caches. FSDEF | +------------------------------------+ | | NFS AFS | | +--------------------------+ +-----------+ | | | | homedir mirror afs.org redhat.com | | | +------------+ +---------------+ +----------+ | | | | | | 00001 00002 00007 00125 vol00001 vol00002 | | | | | +---+---+ +-----+ +---+ +------+------+ +-----+----+ | | | | | | | | | | | | | PG0 PG1 PG2 PG0 XATTR PG0 PG1 DIRENT DIRENT DIRENT R/W R/O Bak | | PG0 +-------+ | | 00001 00003 | +---+---+ | | | PG0 PG1 PG2 In the example above, two netfs's can be seen to be backed: NFS and AFS. These have different index hierarchies: (*) The NFS primary index will probably contain per-server indices. Each server index is indexed by NFS file handles to get data file objects. Each data file objects can have an array of pages, but may also have further child objects, such as extended attributes and directory entries. Extended attribute objects themselves have page-array contents. (*) The AFS primary index contains per-cell indices. Each cell index contains per-logical-volume indices. Each of volume index contains up to three indices for the read-write, read-only and backup mirrors of those volumes. Each of these contains vnode data file objects, each of which contains an array of pages. The very top index is the FS-Cache master index in which individual netfs's have entries. Any index object may reside in more than one cache, provided it only has index children. Any index with non-index object children will be assumed to only reside in one cache. The FS-Cache overview can be found in: Documentation/filesystems/caching/fscache.txt The netfs API to FS-Cache can be found in: Documentation/filesystems/caching/netfs-api.txt Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Steve Dickson <steved@redhat.com> Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Daire Byrne <Daire.Byrne@framestore.com>