aboutsummaryrefslogtreecommitdiff
path: root/arch/i386/kernel/efi.c
AgeCommit message (Collapse)Author
2006-06-30Remove obsolete #include <linux/config.h>Jörn Engel
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-06-27[PATCH] 64bit resource: fix up printks for resources in arch and core codeGreg Kroah-Hartman
This is needed if we wish to change the size of the resource structures. Based on an original patch from Vivek Goyal <vgoyal@in.ibm.com> and Andrew Morton. (tweaked by Andy Isaacson <adi@hexapodia.org>) Cc: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Andy Isaacson <adi@hexapodia.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-03-26[PATCH] fix array overrun in efi.cDarren Jenkins
Coverity found an over-run @ line 364 of efi.c This is due to the loop checking the size correctly, then adding a '\0' after possibly hitting the end of the array. Ensure the loop exits with one space left in the array. Signed-off-by: Darren Jenkins <darrenrjenkins@gmail.com> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-26[PATCH] EFI: keep physical table addresses in efi structureBjorn Helgaas
Almost all users of the table addresses from the EFI system table want physical addresses. So rather than doing the pa->va->pa conversion, just keep physical addresses in struct efi. This fixes a DMI bug: the efi structure contained the physical SMBIOS address on x86 but the virtual address on ia64, so dmi_scan_machine() used ioremap() on a virtual address on ia64. This is essentially the same as an earlier patch by Matt Tolentino: http://marc.theaimsgroup.com/?l=linux-kernel&m=112130292316281&w=2 except that this changes all table addresses, not just ACPI addresses. Matt's original patch was backed out because it caused MCAs on HP sx1000 systems. That problem is resolved by the ioremap() attribute checking added for ia64. Signed-off-by: Bjorn Helgaas <bjorn.helgaas@hp.com> Cc: Matt Domsch <Matt_Domsch@dell.com> Cc: "Tolentino, Matthew E" <matthew.e.tolentino@intel.com> Cc: "Brown, Len" <len.brown@intel.com> Cc: Andi Kleen <ak@muc.de> Acked-by: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-23[PATCH] PCI: resource address mismatchLinus Torvalds
On Tue, 21 Feb 2006, Ivan Kokshaysky wrote: > There are two bogus entries in the BIOS memory map table which are > conflicting with a prefetchable memory range of the AGP bridge: > > BIOS-e820: 00000000fec00000 - 00000000fec01000 (reserved) > BIOS-e820: 00000000fee00000 - 00000000fee01000 (reserved) > > 0000:00:02.0 PCI bridge: Silicon Integrated Systems [SiS] Virtual PCI-to-PCI bridge (AGP) (prog-if 00 [Normal decode]) > Flags: bus master, fast devsel, latency 0 > Bus: primary=00, secondary=01, subordinate=01, sec-latency=0 > I/O behind bridge: 0000c000-0000cfff > Memory behind bridge: e7e00000-e7efffff > Prefetchable memory behind bridge: fec00000-ffcfffff > ^^^^^^^^^^^^^^^^^ Yes. However, it's pretty clear that the e820 entries are there for a reason. Probably they are a hack by the BIOS maintainers to keep Windows from stomping/moving that region, exactly because they want to keep the bridge where it is (or, it's actually for the BIOS itself - the BIOS tables are a horrid mess, and BIOS engineers are pretty hacky people: they'll add random entries to make their own broken algorithms do the "right thing"). > Starting from 2.6.13, kernel tries to resolve that sort of conflicts, > so that prefetch window of the bridge and the framebuffer memory behind > it get moved to 0x10000000. I think we could (and probably should) solve this another way: consider the ACPI "reserved regions" from the e820 map exactly the same way that we do other ACPI hints - they should restrict _new_ allocations, but not impact stuff we figure out on our own. Basically, right now we assign _unassigned_ resources at "fs_initcall" time. If we were to add in the e820 "reserved region" stuff before that (but after we've done PCI discovery), we'd probably do the right thing. Right now we do the e820 reserved regions very early indeed: we call "register_memory()" from setup_arch(). We could move at least part of it (the part that registers the resources) down a bit. Here's a test-patch. I'm not saying we should absolutely do this, but it might be interesting to try... Cc: "Antonino A. Daplas" <adaplas@pol.net> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: <bjk@luxsci.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2006-03-22[PATCH] efi_call_phys_epilog() warning fixAndrew Morton
arch/i386/kernel/efi.c: In function `efi_call_phys_epilog': arch/i386/kernel/efi.c:118: warning: assignment makes integer from pointer without a cast Cc: Matt Domsch <Matt_Domsch@dell.com> Cc: "Tolentino, Matthew E" <matthew.e.tolentino@intel.com> Cc: Zachary Amsden <zach@vmware.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-06[PATCH] EFI: Fix gdt loadEdgar Hucek
This patch makes the kernel bootable again on ia32 EFI systems. Signed-off-by: Edgar Hucek <hostmaster@ed-soft.at> Cc: Matt Domsch <Matt_Domsch@dell.com> Cc: Zachary Amsden <zach@vmware.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-24[PATCH] x86: fix broken SMP boot sequenceJames Bottomley
Recent GDT changes broke the SMP boot sequence if the booting CPU is numbered anything other than zero. There's also a subtle source of error in that the boot time CPU now uses cpu_gdt_table (which is actually the GDT for booting CPUs in head.S). This patch fixes both problems by making GDT descriptors themselves allocated from a per_cpu area and switching to them in cpu_init(), which now means that cpu_gdt_table is exclusively used for booting CPUs again. Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com> Cc: Zachary Amsden <zach@vmware.com> Cc: Matt Tolentino <metolent@snoqualmie.dp.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] i386: inline assembler: cleanup and encapsulate descriptor and task ↵Zachary Amsden
register management i386 inline assembler cleanup. This change encapsulates descriptor and task register management. Also, it is possible to improve assembler generation in two cases; savesegment may store the value in a register instead of a memory location, which allows GCC to optimize stack variables into registers, and MOV MEM, SEG is always a 16-bit write to memory, making the casting in math-emu unnecessary. Signed-off-by: Zachary Amsden <zach@vmware.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] i386: inline asm cleanupZachary Amsden
i386 Inline asm cleanup. Use cr/dr accessor functions. Also, a potential bugfix. Also, some CR accessors really should be volatile. Reads from CR0 (numeric state may change in an exception handler), writes to CR4 (flipping CR4.TSD) and reads from CR2 (page fault) prevent instruction re-ordering. I did not add memory clobber to CR3 / CR4 / CR0 updates, as it was not there to begin with, and in no case should kernel memory be clobbered, except when doing a TLB flush, which already has memory clobber. I noticed that page invalidation does not have a memory clobber. I can't find a bug as a result, but there is definitely a potential for a bug here: #define __flush_tlb_single(addr) \ __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr)) Signed-off-by: Zachary Amsden <zach@vmware.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] x86: fix EFI memory map parsingMatt Tolentino
The memory descriptors that comprise the EFI memory map are not fixed in stone such that the size could change in the future. This uses the memory descriptor size obtained from EFI to iterate over the memory map entries during boot. This enables the removal of an x86 specific pad (and ifdef) in the EFI header. I also couldn't stomach the broken up nature of the function to put EFI runtime calls into virtual mode any longer so I fixed that up a bit as well. For reference, this patch only impacts x86. Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] crashdump: x86 crashkernel optionEric W. Biederman
This is the x86 implementation of the crashkernel option. It reserves a window of memory very early in the bootup process, so we never use it for anything but the kernel to switch to when the running kernel panics. In addition to reserving this memory a resource structure is registered so looking at /proc/iomem it is clear what happened to that memory. ISSUES: Is it possible to implement this in a architecture generic way? What should be done with architectures that always use an iommu and thus don't report their RAM memory resources in /proc/iomem? Signed-off-by: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16[PATCH] efi: eliminate bad section referencesmaximilian attems
Randy please double check especially this one. there may be a better solution. Fix efi section references: remove __initdata for struct efi efi_phys and struct efi_memory_map memmap Error: ./arch/i386/kernel/efi.o .text refers to 000000d3 R_386_32 .init.data Error: ./arch/i386/kernel/efi.o .text refers to 000000ff R_386_32 .init.data efi_memmap_walk (which is not __init nor static) accesses both efi_phys and memmap. Signed-off-by: maximilian attems <janitor@sternwelten.at> Acked-by: Randy Dunlap <rddunlap@osdl.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!