Age | Commit message (Collapse) | Author |
|
Fully unify all of the DMA ops so that subordinate bus types to
the DMA operation providers (such as ebus, isa, of_device) can
work transparently.
Basically, we just make sure that for every system device we
create, the dev->archdata 'iommu' and 'stc' fields are filled
in.
Then we have two platform variants of the DMA ops, one for SUN4U which
actually programs the real hardware, and one for SUN4V which makes
hypervisor calls.
This also fixes the crashes in parport_pc on sparc64, reported by
Meelis Roos.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
If we are on hummingbird, bus runs at 66MHZ.
pbm->pci_bus should be setup with the result of pci_scan_one_pbm()
or else we deref NULL pointers in the error interrupt handlers.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
All the sun4u controllers do the same thing to compute the physical
I/O address to poke, and we can move the sun4v code into this common
location too.
This one needs a bit of testing, in particular the Sabre code had some
funny stuff that would break up u16 and/or u32 accesses into pieces
and I didn't think that was needed any more. If it is we need to find
out why and add back code to do it again.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Everything it contains can be hidden in pci_impl.h
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The idea is to move more and more things into the pbm,
with the eventual goal of eliminating the pci_controller_info
entirely as there really isn't any need for it.
This stage of the transformations requires some reworking of
the PCI error interrupt handling.
It might be tricky to get rid of the pci_controller_info parenting for
a few reasons:
1) When we get an uncorrectable or correctable error we want
to interrogate the IOMMU and streaming cache of both
PBMs for error status. These errors come from the UPA
front-end which is shared between the two PBM PCI bus
segments.
Historically speaking this is why I choose the datastructure
hierarchy of pci_controller_info-->pci_pbm_info
2) The probing does a portid/devhandle match to look for the
'other' pbm, but this is entirely an artifact and can be
eliminated trivially.
What we could do to solve #1 is to have a "buddy" pointer from one pbm
to another.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Namely bus-range and ino-bitmap.
This allows us also to eliminate pci_controller_info's
pci_{first,last}_busno fields as only the pbm ones are
used now.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We fake up a dummy one in all cases because that is the simplest
thing to do and it happens to be necessary for hypervisor systems.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Set but never used.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We don't do the "Simba APB is a PBM" bogosity for Sabre
controllers any longer, so this pbms_same_domain thing
is no longer necessary.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Implemented but never actually used.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
All the implementations can be identical and generic, so
no need for controller specific methods.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
It can be done for every PCI configuration using OF properties.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The SIMBA APB bridge is strange, it is a PCI bridge but it lacks
some standard OF properties, in particular it lacks a 'ranges'
property.
What you have to do is read the IO and MEM range registers in
the APB bridge to determine the ranges handled by each bridge.
So fill in the bus resources by doing that.
Since we now handle this quirk in the generic PCI and OF device
probing layers, we can flat out eliminate all of that code from
the sabre pci controller driver.
In fact we can thus eliminate completely another quirk of the sabre
driver. It tried to make the two APB bridges look like PBMs but that
makes zero sense now (and it's questionable whether it ever made sense).
So now just use pbm_A and probe the whole PCI hierarchy using that as
the root.
This simplification allows many future cleanups to occur.
Also, I've found yet another quirk that needs to be worked around
while testing this. You can't use the 'class-code' OF firmware
property, especially for IDE controllers. We have to read the value
out of PCI config space or else we'll see the value the device was
showing before it was programmed into native mode.
I'm starting to think it might be wise to just read all of the values
out of PCI config space instead of using the OF properties. :-/
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Almost entirely taken from the 64-bit PowerPC PCI code.
This allowed to eliminate a ton of cruft from the sparc64
PCI layer.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
virtual-dma property layout is [start, size] not [start, end].
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
For Hummingbird PCI controllers, we should create the root
PCI memory space resource as the full 4GB area, and then
allocate the IOMMU DMA translation window out of there.
The old code just assumed that the IOMMU DMA translation base
to the top of the 4GB area was unusable. This is not true on
many systems such as SB100 and SB150, where the IOMMU DMA
translation window sits at 0xc0000000->0xdfffffff.
So what would happen is that any device mapped by the firmware
at the top section 0xe0000000->0xffffffff would get remapped
by Linux somewhere else leading to all kinds of problems and
boot failures.
While we're here, report more cases of OBP resource assignment
conflicts. The only truly valid ones are ROM resource conflicts.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Use the new IRQF_ constants and remove the SA_INTERRUPT define
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Do IRQ determination generically by parsing the PROM properties,
and using IRQ controller drivers for final resolution.
One immediate positive effect is that all of the IRQ frobbing
in the EBUS, ISA, and PCI controller layers has been eliminated.
We just look up the of_device and use the properly computed
value.
The PCI controller irq_build() routines are gone and no longer
used. Unfortunately sbus_build_irq() has to remain as there is
a direct reference to this in the sunzilog driver. That can be
killed off once the sparc32 side of this is written and the
sunzilog driver is transformed into an "of" bus driver.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
One thing this change pointed out was that we really should
pull the "get 'local-mac-address' property" logic into a helper
function all the network drivers can call.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
It can be pushed even further down, but this is a first step.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This is the long overdue conversion of sparc64 over to
the generic IRQ layer.
The kernel image is slightly larger, but the BSS is ~60K
smaller due to the reduced size of struct ino_bucket.
A lot of IRQ implementation details, including ino_bucket,
were moved out of asm-sparc64/irq.h and are now private to
arch/sparc64/kernel/irq.c, and most of the code in irq.c
totally disappeared.
One thing that's different at the moment is IRQ distribution,
we do it at enable_irq() time. If the cpu mask is ALL then
we round-robin using a global rotating cpu counter, else
we pick the first cpu in the mask to support single cpu
targetting. This is similar to what powerpc's XICS IRQ
support code does.
This works fine on my UP SB1000, and the SMP build goes
fine and runs on that machine, but lots of testing on
different setups is needed.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Inspired by PowerPC XICS interrupt support code.
All IRQs are virtualized in order to keep NR_IRQS from needing
to be too large. Interrupts on sparc64 are arbitrary 11-bit
values, but we don't need to define NR_IRQS to 2048 if we
virtualize the IRQs.
As PCI and SBUS controller drivers build device IRQs, we divy
out virtual IRQ numbers incrementally starting at 1. Zero is
a special virtual IRQ used for the timer interrupt.
So device drivers all see virtual IRQs, and all the normal
interfaces such as request_irq(), enable_irq(), etc. translate
that into a real IRQ number in order to configure the IRQ.
At this point knowledge of the struct ino_bucket is almost
entirely contained within arch/sparc64/kernel/irq.c There are
a few small bits in the PCI controller drivers that need to
be swept away before we can remove ino_bucket's definition
out of asm-sparc64/irq.h and privately into kernel/irq.c
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
And reuse that struct member for virt_irq, which will
be used in future changesets for the implementation of
mapping between real and virtual IRQ numbers.
This nicely kills off a ton of SBUS and PCI controller
PIL assignment code which is no longer necessary.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Don't piggy back the SMP receive signal code to do the
context version change handling.
Instead allocate another fixed PIL number for this
asynchronous cross-call. We can't use smp_call_function()
because this thing is invoked with interrupts disabled
and a few spinlocks held.
Also, fix smp_call_function_mask() to count "cpus" correctly.
There is no guarentee that the local cpu is in the mask
yet that is exactly what this code was assuming.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
this patch converts arch/sparc64 to kzalloc usage.
Crosscompile tested with allyesconfig.
Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
All the PCI controller drivers were doing the same thing
setting up the IOMMU software state, put it all in one spot.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There were three changes necessary in order to allow
sparc64 to use setup-res.c:
1) Sparc64 roots the PCI I/O and MEM address space using
parent resources contained in the PCI controller structure.
I'm actually surprised no other platforms do this, especially
ones like Alpha and PPC{,64}. These resources get linked into the
iomem/ioport tree when PCI controllers are probed.
So the hierarchy looks like this:
iomem --|
PCI controller 1 MEM space --|
device 1
device 2
etc.
PCI controller 2 MEM space --|
...
ioport --|
PCI controller 1 IO space --|
...
PCI controller 2 IO space --|
...
You get the idea. The drivers/pci/setup-res.c code allocates
using plain iomem_space and ioport_space as the root, so that
wouldn't work with the above setup.
So I added a pcibios_select_root() that is used to handle this.
It uses the PCI controller struct's io_space and mem_space on
sparc64, and io{port,mem}_resource on every other platform to
keep current behavior.
2) quirk_io_region() is buggy. It takes in raw BUS view addresses
and tries to use them as a PCI resource.
pci_claim_resource() expects the resource to be fully formed when
it gets called. The sparc64 implementation would do the translation
but that's absolutely wrong, because if the same resource gets
released then re-claimed we'll adjust things twice.
So I fixed up quirk_io_region() to do the proper pcibios_bus_to_resource()
conversion before passing it on to pci_claim_resource().
3) I was mistakedly __init'ing the function methods the PCI controller
drivers provide on sparc64 to implement some parts of these
routines. This was, of course, easy to fix.
So we end up with the following, and that nasty SPARC64 makefile
ifdef in drivers/pci/Makefile is finally zapped.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
This allows a PCI controller to shim into IRQ delivery
so that DMA queues can be drained, if necessary.
If some bus specific code needs to run before an IRQ
handler is invoked, the bus driver simply needs to setup
the function pointer in bucket->irq_info->pre_handler and
the two args bucket->irq_info->pre_handler_arg[12].
The Schizo PCI driver is converted over to use a pre-handler
for the DMA write-sync processing it needs when a device
is behind a PCI->PCI bus deeper than the top-level APB
bridges.
While we're here, clean up all of the action allocation
and handling. Now, we allocate the irqaction as part of
the bucket->irq_info area. There is an array of 4 irqaction
(for PCI irq sharing) and a bitmask saying which entries
are active.
The bucket->irq_info is allocated at build_irq() time, not
at request_irq() time. This simplifies request_irq() and
free_irq() tremendously.
The SMP dynamic IRQ retargetting code got removed in this
change too. It was disabled for a few months now, and we
can resurrect it in the future if we want.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Firstly, if the direction is TODEVICE, then dirty data in the
streaming cache is impossible so we can elide the flush-flag
synchronization in that case.
Next, the context allocator is broken. It is highly likely
that contexts get used multiple times for different dma
mappings, which confuses the strbuf flushing code and makes
it run inefficiently.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|