Age | Commit message (Collapse) | Author |
|
Remove fs.h from mm.h. For this,
1) Uninline vma_wants_writenotify(). It's pretty huge anyway.
2) Add back fs.h or less bloated headers (err.h) to files that need it.
As result, on x86_64 allyesconfig, fs.h dependencies cut down from 3929 files
rebuilt down to 3444 (-12.3%).
Cross-compile tested without regressions on my two usual configs and (sigh):
alpha arm-mx1ads mips-bigsur powerpc-ebony
alpha-allnoconfig arm-neponset mips-capcella powerpc-g5
alpha-defconfig arm-netwinder mips-cobalt powerpc-holly
alpha-up arm-netx mips-db1000 powerpc-iseries
arm arm-ns9xxx mips-db1100 powerpc-linkstation
arm-assabet arm-omap_h2_1610 mips-db1200 powerpc-lite5200
arm-at91rm9200dk arm-onearm mips-db1500 powerpc-maple
arm-at91rm9200ek arm-picotux200 mips-db1550 powerpc-mpc7448_hpc2
arm-at91sam9260ek arm-pleb mips-ddb5477 powerpc-mpc8272_ads
arm-at91sam9261ek arm-pnx4008 mips-decstation powerpc-mpc8313_rdb
arm-at91sam9263ek arm-pxa255-idp mips-e55 powerpc-mpc832x_mds
arm-at91sam9rlek arm-realview mips-emma2rh powerpc-mpc832x_rdb
arm-ateb9200 arm-realview-smp mips-excite powerpc-mpc834x_itx
arm-badge4 arm-rpc mips-fulong powerpc-mpc834x_itxgp
arm-carmeva arm-s3c2410 mips-ip22 powerpc-mpc834x_mds
arm-cerfcube arm-shannon mips-ip27 powerpc-mpc836x_mds
arm-clps7500 arm-shark mips-ip32 powerpc-mpc8540_ads
arm-collie arm-simpad mips-jazz powerpc-mpc8544_ds
arm-corgi arm-spitz mips-jmr3927 powerpc-mpc8560_ads
arm-csb337 arm-trizeps4 mips-malta powerpc-mpc8568mds
arm-csb637 arm-versatile mips-mipssim powerpc-mpc85xx_cds
arm-ebsa110 i386 mips-mpc30x powerpc-mpc8641_hpcn
arm-edb7211 i386-allnoconfig mips-msp71xx powerpc-mpc866_ads
arm-em_x270 i386-defconfig mips-ocelot powerpc-mpc885_ads
arm-ep93xx i386-up mips-pb1100 powerpc-pasemi
arm-footbridge ia64 mips-pb1500 powerpc-pmac32
arm-fortunet ia64-allnoconfig mips-pb1550 powerpc-ppc64
arm-h3600 ia64-bigsur mips-pnx8550-jbs powerpc-prpmc2800
arm-h7201 ia64-defconfig mips-pnx8550-stb810 powerpc-ps3
arm-h7202 ia64-gensparse mips-qemu powerpc-pseries
arm-hackkit ia64-sim mips-rbhma4200 powerpc-up
arm-integrator ia64-sn2 mips-rbhma4500 s390
arm-iop13xx ia64-tiger mips-rm200 s390-allnoconfig
arm-iop32x ia64-up mips-sb1250-swarm s390-defconfig
arm-iop33x ia64-zx1 mips-sead s390-up
arm-ixp2000 m68k mips-tb0219 sparc
arm-ixp23xx m68k-amiga mips-tb0226 sparc-allnoconfig
arm-ixp4xx m68k-apollo mips-tb0287 sparc-defconfig
arm-jornada720 m68k-atari mips-workpad sparc-up
arm-kafa m68k-bvme6000 mips-wrppmc sparc64
arm-kb9202 m68k-hp300 mips-yosemite sparc64-allnoconfig
arm-ks8695 m68k-mac parisc sparc64-defconfig
arm-lart m68k-mvme147 parisc-allnoconfig sparc64-up
arm-lpd270 m68k-mvme16x parisc-defconfig um-x86_64
arm-lpd7a400 m68k-q40 parisc-up x86_64
arm-lpd7a404 m68k-sun3 powerpc x86_64-allnoconfig
arm-lubbock m68k-sun3x powerpc-cell x86_64-defconfig
arm-lusl7200 mips powerpc-celleb x86_64-up
arm-mainstone mips-atlas powerpc-chrp32
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The current scheme works on static interpretation of text names, which
is wrong.
The output-device setting, for example, must be resolved via an alias
or similar to a full path name to the console device.
Paths also contain an optional set of 'options', which starts with a
colon at the end of the path. The option area is used to specify
which of two serial ports ('a' or 'b') the path refers to when a
device node drives multiple ports. 'a' is assumed if the option
specification is missing.
This was caught by the UltraSPARC-T1 simulator. The 'output-device'
property was set to 'ttya' and we didn't pick upon the fact that this
is an OBP alias set to '/virtual-devices/console'. Instead we saw it
as the first serial console device, instead of the hypervisor console.
The infrastructure is now there to take advantage of this to resolve
the console correctly even in multi-head situations in fbcon too.
Thanks to Greg Onufer for the bug report.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Spelling fixes in arch/sparc64/.
Signed-off-by: Simon Arlott <simon@fire.lp0.eu>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Remove includes of <linux/smp_lock.h> where it is not used/needed.
Suggested by Al Viro.
Builds cleanly on x86_64, i386, alpha, ia64, powerpc, sparc,
sparc64, and arm (all 59 defconfigs).
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Fix atomicity of TIF update in flush_thread() for sparc64
Fixes correctly the race by using *_ti_thread_flag.
Race :
parent process executing :
sys_ptrace()
(lock_kernel())
(ptrace_get_task_struct(pid))
arch_ptrace()
ptrace_detach()
ptrace_disable(child);
clear_singlestep(child);
clear_tsk_thread_flag(child, TIF_SINGLESTEP);
(which clears the TIF_SINGLESTEP flag atomically from a different
process)
(put_task_struct(child))
(unlock_kernel())
And at the same time, in the child process :
sys_execve()
do_execve()
search_binary_handler()
load_elf_binary()
flush_old_exec()
flush_thread()
doing a non-atomic thread flag update
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
|
|
We have to turn off the "polling nrflag" bit when we sleep
the cpu like this, so that we'll get a cross-cpu interrupt
to wake the processor up from the yield.
We also have to disable PSTATE_IE in %pstate around the yield
call and recheck need_resched() in order to avoid any races.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Set, but never used.
We used to use this for dynamic IRQ retargetting, but that
code died a long time ago.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
For 32 cpus and a slow console, it just wedges the
machine especially with DETECT_SOFTLOCKUP enabled.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When saving and restoing trap state, do the window spill/fill
handling inline so that we never trap deeper than 2 trap levels.
This is important for chips like Niagara.
The window fixup code is massively simplified, and many more
improvements are now possible.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This also cleans up tsb_context_switch(). The assembler
routine is now __tsb_context_switch() and the former is
an inline function that picks out the bits from the mm_struct
and passes it into the assembler code as arguments.
setup_tsb_parms() computes the locked TLB entry to map the
TSB. Later when we support using the physical address quad
load instructions of Cheetah+ and later, we'll simply use
the physical address for the TSB register value and set
the map virtual and PTE both to zero.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We now use the TSB hardware assist features of the UltraSPARC
MMUs.
SMP is currently knowingly broken, we need to find another place
to store the per-cpu base pointers. We hid them away in the TSB
base register, and that obviously will not work any more :-)
Another known broken case is non-8KB base page size.
Also noticed that flush_tlb_all() is not referenced anywhere, only
the internal __flush_tlb_all() (local cpu only) is used by the
sparc64 port, so we can get rid of flush_tlb_all().
The kernel gets it's own 8KB TSB (swapper_tsb) and each address space
gets it's own private 8K TSB. Later we can add code to dynamically
increase the size of per-process TSB as the RSS grows. An 8KB TSB is
good enough for up to about a 4MB RSS, after which the TSB starts to
incur many capacity and conflict misses.
We even accumulate OBP translations into the kernel TSB.
Another area for refinement is large page size support. We could use
a secondary address space TSB to handle those.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Based upon a report and preliminary patch from Jim Gifford.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Make some changes to the NEED_RESCHED and POLLING_NRFLAG to reduce
confusion, and make their semantics rigid. Improves efficiency of
resched_task and some cpu_idle routines.
* In resched_task:
- TIF_NEED_RESCHED is only cleared with the task's runqueue lock held,
and as we hold it during resched_task, then there is no need for an
atomic test and set there. The only other time this should be set is
when the task's quantum expires, in the timer interrupt - this is
protected against because the rq lock is irq-safe.
- If TIF_NEED_RESCHED is set, then we don't need to do anything. It
won't get unset until the task get's schedule()d off.
- If we are running on the same CPU as the task we resched, then set
TIF_NEED_RESCHED and no further action is required.
- If we are running on another CPU, and TIF_POLLING_NRFLAG is *not* set
after TIF_NEED_RESCHED has been set, then we need to send an IPI.
Using these rules, we are able to remove the test and set operation in
resched_task, and make clear the previously vague semantics of
POLLING_NRFLAG.
* In idle routines:
- Enter cpu_idle with preempt disabled. When the need_resched() condition
becomes true, explicitly call schedule(). This makes things a bit clearer
(IMO), but haven't updated all architectures yet.
- Many do a test and clear of TIF_NEED_RESCHED for some reason. According
to the resched_task rules, this isn't needed (and actually breaks the
assumption that TIF_NEED_RESCHED is only cleared with the runqueue lock
held). So remove that. Generally one less locked memory op when switching
to the idle thread.
- Many idle routines clear TIF_POLLING_NRFLAG, and only set it in the inner
most polling idle loops. The above resched_task semantics allow it to be
set until before the last time need_resched() is checked before going into
a halt requiring interrupt wakeup.
Many idle routines simply never enter such a halt, and so POLLING_NRFLAG
can be always left set, completely eliminating resched IPIs when rescheduling
the idle task.
POLLING_NRFLAG width can be increased, to reduce the chance of resched IPIs.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Con Kolivas <kernel@kolivas.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Run idle threads with preempt disabled.
Also corrected a bugs in arm26's cpu_idle (make it actually call schedule()).
How did it ever work before?
Might fix the CPU hotplugging hang which Nigel Cunningham noted.
We think the bug hits if the idle thread is preempted after checking
need_resched() and before going to sleep, then the CPU offlined.
After calling stop_machine_run, the CPU eventually returns from preemption and
into the idle thread and goes to sleep. The CPU will continue executing
previous idle and have no chance to call play_dead.
By disabling preemption until we are ready to explicitly schedule, this bug is
fixed and the idle threads generally become more robust.
From: alexs <ashepard@u.washington.edu>
PPC build fix
From: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
MIPS build fix
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Yoichi Yuasa <yuasa@hh.iij4u.or.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code. It does the following
things:
- consolidates and enhances the spinlock/rwlock debugging code
- simplifies the asm/spinlock.h files
- encapsulates the raw spinlock type and moves generic spinlock
features (such as ->break_lock) into the generic code.
- cleans up the spinlock code hierarchy to get rid of the spaghetti.
Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c. (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)
Also, i've enhanced the rwlock debugging facility, it will now track
write-owners. There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.
The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:
include/asm-i386/spinlock_types.h | 16
include/asm-x86_64/spinlock_types.h | 16
I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:
SMP | UP
----------------------------|-----------------------------------
asm/spinlock_types_smp.h | linux/spinlock_types_up.h
linux/spinlock_types.h | linux/spinlock_types.h
asm/spinlock_smp.h | linux/spinlock_up.h
linux/spinlock_api_smp.h | linux/spinlock_api_up.h
linux/spinlock.h | linux/spinlock.h
/*
* here's the role of the various spinlock/rwlock related include files:
*
* on SMP builds:
*
* asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
* initializers
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* asm/spinlock.h: contains the __raw_spin_*()/etc. lowlevel
* implementations, mostly inline assembly code
*
* (also included on UP-debug builds:)
*
* linux/spinlock_api_smp.h:
* contains the prototypes for the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*
* on UP builds:
*
* linux/spinlock_type_up.h:
* contains the generic, simplified UP spinlock type.
* (which is an empty structure on non-debug builds)
*
* linux/spinlock_types.h:
* defines the generic type and initializers
*
* linux/spinlock_up.h:
* contains the __raw_spin_*()/etc. version of UP
* builds. (which are NOPs on non-debug, non-preempt
* builds)
*
* (included on UP-non-debug builds:)
*
* linux/spinlock_api_up.h:
* builds the _spin_*() APIs.
*
* linux/spinlock.h: builds the final spin_*() APIs.
*/
All SMP and UP architectures are converted by this patch.
arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers. m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.
From: Grant Grundler <grundler@parisc-linux.org>
Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
Builds 32-bit SMP kernel (not booted or tested). I did not try to build
non-SMP kernels. That should be trivial to fix up later if necessary.
I converted bit ops atomic_hash lock to raw_spinlock_t. Doing so avoids
some ugly nesting of linux/*.h and asm/*.h files. Those particular locks
are well tested and contained entirely inside arch specific code. I do NOT
expect any new issues to arise with them.
If someone does ever need to use debug/metrics with them, then they will
need to unravel this hairball between spinlocks, atomic ops, and bit ops
that exist only because parisc has exactly one atomic instruction: LDCW
(load and clear word).
From: "Luck, Tony" <tony.luck@intel.com>
ia64 fix
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
It appears that a memory barrier soon after a mispredicted
branch, not just in the delay slot, can cause the hang
condition of this cpu errata.
So move them out-of-line, and explicitly put them into
a "branch always, predict taken" delay slot which should
fully kill this problem.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
machine_restart, machine_halt and machine_power_off are machine
specific hooks deep into the reboot logic, that modules
have no business messing with. Usually code should be calling
kernel_restart, kernel_halt, kernel_power_off, or
emergency_restart. So don't export machine_restart,
machine_halt, and machine_power_off so we can catch buggy users.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
These two bits were accesses non-atomically from assembler
code. So, in order to eliminate any potential races resulting
from that, move these pieces of state into two bytes elsewhere
in struct thread_info.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Currently sparc and sparc64's UP cpu_idle() checks current pid. This
is old time legacy. Now it's paranoia.
Signed-off-by: Coywolf Qi Hunt <coywolf@lovecn.org>
Acked-by: William Irwin <wli@holomorphy.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|