aboutsummaryrefslogtreecommitdiff
path: root/arch/um/include/sysdep-i386
AgeCommit message (Collapse)Author
2006-01-15return statement cleanup - kill pointless parenthesesJesper Juhl
This patch removes pointless parentheses from return statements. Signed-off-by: Jesper Juhl <juhl-lkml@dif.dk> Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-01-11[PATCH] uml: fix missing KBUILD_BASENAMEJeff Dike
2.6.15-mm1 caused kernel-offsets.c to stop compiling with a syntax error in a header. The problem was with KBUILD_BASENAME, which didn't get a definition with the by-hand compilation in the main UML Makefile. This was OK before since the expansion was syntactically the same as the KBUILD_BASENAME token. With -mm1, the expansion is now a quote-delimited string, so there needs to be a definition of it. Since kernel-offsets.c is basically the same as other arches' asm-offsets.c, and those seem to build OK, this patch turns kernel-offsets.c into asm-offsets.c. kernel-offsets.c is in arch/um/sys-$(SUBARCH), i.e. sys-i386 and sys-x86_64, while kbuild expects it to be in arch/um/kernel. kernel-offsets.c is moved to arch/um/include/sysdep-$(SUBARCH)/kernel-offsets.h, which is included by arch/um/kernel/asm-offsets.c. With that, include/asm-um/asm-offsets.h is generated automatically. kernel-offsets.h continues to exist because it needs to be accessible to userspace UML code, and include/asm-um isn't. So, a symlink is made from arch/um/include/kernel-offsets.h to include/asm-um/asm-offsets.h. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-12-18[PATCH] uml skas0: stop gcc's insanityJeff Dike
With Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> UML skas0 stub has been miscompiling for many people (incidentally not the authors), depending on the used GCC versions. I think (and testing on some GCC versions shows) this patch avoids the fundamental issue which is behind this, namely gcc using the stack when we have just replaced it, behind gcc's back. The remapping and storage of the return value is hidden in a blob of asm, hopefully giving gcc no room for creativity. Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-22[PATCH] uml: properly invoke x86_64 system callsJeff Dike
This patch makes stub_segv use the stub_syscall macros. This was needed anyway, but the bug that prompted this was the discovery that gcc was storing stuff in RCX, which is trashed across a system call. This is exactly the sort of problem that the new macros fix. There is a stub_syscall0 for getpid. stub_segv was changed to be a libc file, and that caused some include changes. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07[PATCH] uml: fix syscall stubsPaolo 'Blaisorblade' Giarrusso
Jeff Dike noted that the assembly code for syscall stubs is misassembled with GCC 3.2.3: the values copied in registers weren't preserved between one asm() and the following one. So I fixed the thing by rewriting the __asm__ constraints more like unistd.h ones. Note: in syscall6 case I had to add one more instruction (i.e. moving arg6 in eax and shuffling things around) - it's needed for the function to be valid in general (we can't load the value from the stack, relative to ebp, because we change it), but could be avoided since we actually use a constant as param 6. The only fix would be to turn stub_syscall6 to a macro and use a "i" constraint for arg6 (i.e., specify it's a constant value). Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30[PATCH] unify sys_ptrace prototypeChristoph Hellwig
Make sure we always return, as all syscalls should. Also move the common prototype to <linux/syscalls.h> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-24[PATCH] uml: fix compile failure for TT modeMiklos Szeredi
Without this patch, uml compile fails with: LD .tmp_vmlinux1 arch/um/kernel/built-in.o: In function `config_gdb_cb': arch/um/kernel/tt/gdb.c:129: undefined reference to `TASK_EXTERN_PID' Tested on i386, but fix needed on x86_64 too AFAICS. Signed-off-by: Miklos Szeredi <miklos@szeredi.hu> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-30[PATCH] uml: fix page faults in SKAS3 mode.Paolo 'Blaisorblade' Giarrusso
I hadn't been running a SKAS3 host when testing the "uml: fix hang in TT mode on fault" patch (commit 546fe1cbf91d4d62e3849517c31a2327c992e5c5), and I didn't think enough to the missing trap_no in SKAS3 mode. In fact, the resulting kernel doesn't work at all in SKAS3 mode. Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-29[PATCH] uml makefiles sanitizedAl Viro
UML makefiles sanitized: - number of generated headers reduced to 2 (from user-offsets.c and kernel-offsets.c resp.). The rest is made constant and simply includes those two. - mk_... helpers are gone now that we don't need to generate these headers - arch/um/include2 removed since everything under arch/um/include/sysdep is constant now and symlink can point straight to source tree. - dependencies seriously simplified. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] uml: system call path cleanupJeff Dike
This merges two sets of files which had no business being split apart in the first place. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07[PATCH] uml: Proper clone support for skas0Bodo Stroesser
This patch implements the clone-stub mechanism, which allows skas0 to run with proc_mm==0, even if the clib in UML uses modify_ldt. Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from running properly on a SMP-box. In full skas3, I never really saw problems, but in skas0 they showed up. More commentary by jdike - What this patch does is makes sure that the host parent of each new host process matches the UML parent of the corresponding UML process. This ensures that any changed LDTs are inherited. This is done by having clone actually called by the UML process from its stub, rather than by the kernel. We have special syscall stubs that are loaded onto the stub code page because that code must be completely self-contained. These stubs are given C interfaces, and used like normal C functions, but there are subtleties. Principally, we have to be careful about stack variables in stub_clone_handler after the clone. The code is written so that there aren't any - everything boils down to a fixed address. If there were any locals, references to them after the clone would be wrong because the stack just changed. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07[PATCH] uml: skas0 - separate kernel address space on stock hostsJeff Dike
UML has had two modes of operation - an insecure, slow mode (tt mode) in which the kernel is mapped into every process address space which requires no host kernel modifications, and a secure, faster mode (skas mode) in which the UML kernel is in a separate host address space, which requires a patch to the host kernel. This patch implements something very close to skas mode for hosts which don't support skas - I'm calling this skas0. It provides the security of the skas host patch, and some of the performance gains. The two main things that are provided by the skas patch, /proc/mm and PTRACE_FAULTINFO, are implemented in a way that require no host patch. For the remote address space changing stuff (mmap, munmap, and mprotect), we set aside two pages in the process above its stack, one of which contains a little bit of code which can call mmap et al. To update the address space, the system call information (system call number and arguments) are written to the stub page above the code. The %esp is set to the beginning of the data, the %eip is set the the start of the stub, and it repeatedly pops the information into its registers and makes the system call until it sees a system call number of zero. This is to amortize the cost of the context switch across multiple address space updates. When the updates are done, it SIGSTOPs itself, and the kernel process continues what it was doing. For a PTRACE_FAULTINFO replacement, we set up a SIGSEGV handler in the child, and let it handle segfaults rather than nullifying them. The handler is in the same page as the mmap stub. The second page is used as the stack. The handler reads cr2 and err from the sigcontext, sticks them at the base of the stack in a faultinfo struct, and SIGSTOPs itself. The kernel then reads the faultinfo and handles the fault. A complication on x86_64 is that this involves resetting the registers to the segfault values when the process is inside the kill system call. This breaks on x86_64 because %rcx will contain %rip because you tell SYSRET where to return to by putting the value in %rcx. So, this corrupts $rcx on return from the segfault. To work around this, I added an arch_finish_segv, which on x86 does nothing, but which on x86_64 ptraces the child back through the sigreturn. This causes %rcx to be restored by sigreturn and avoids the corruption. Ultimately, I think I will replace this with the trick of having it send itself a blocked signal which will be unblocked by the sigreturn. This will allow it to be stopped just after the sigreturn, and PTRACE_SYSCALLed without all the back-and-forth of PTRACE_SYSCALLing it through sigreturn. This runs on a stock host, so theoretically (and hopefully), tt mode isn't needed any more. We need to make sure that this is better in every way than tt mode, though. I'm concerned about the speed of address space updates and page fault handling, since they involve extra round-trips to the child. We can amortize the round-trip cost for large address space updates by writing all of the operations to the data page and having the child execute them all at the same time. This will help fork and exec, but not page faults, since they involve only one page. I can't think of any way to help page faults, except to add something like PTRACE_FAULTINFO to the host. There is PTRACE_SIGINFO, but UML doesn't use siginfo for SIGSEGV (or anything else) because there isn't enough information in the siginfo struct to handle page faults (the faulting operation type is missing). Adding that would make PTRACE_SIGINFO a usable equivalent to PTRACE_FAULTINFO. As for the code itself: - The system call stub is in arch/um/kernel/sys-$(SUBARCH)/stub.S. It is put in its own section of the binary along with stub_segv_handler in arch/um/kernel/skas/process.c. This is manipulated with run_syscall_stub in arch/um/kernel/skas/mem_user.c. syscall_stub will execute any system call at all, but it's only used for mmap, munmap, and mprotect. - The x86_64 stub calls sigreturn by hand rather than allowing the normal sigreturn to happen, because the normal sigreturn is a SA_RESTORER in UML's address space provided by libc. Needless to say, this is not available in the child's address space. Also, it does a couple of odd pops before that which restore the stack to the state it was in at the time the signal handler was called. - There is a new field in the arch mmu_context, which is now a union. This is the pid to be manipulated rather than the /proc/mm file descriptor. Code which deals with this now checks proc_mm to see whether it should use the usual skas code or the new code. - userspace_tramp is now used to create a new host process for every UML process, rather than one per UML processor. It checks proc_mm and ptrace_faultinfo to decide whether to map in the pages above its stack. - start_userspace now makes CLONE_VM conditional on proc_mm since we need separate address spaces now. - switch_mm_skas now just sets userspace_pid[0] to the new pid rather than PTRACE_SWITCH_MM. There is an addition to userspace which updates its idea of the pid being manipulated each time around the loop. This is important on exec, when the pid will change underneath userspace(). - The stub page has a pte, but it can't be mapped in using tlb_flush because it is part of tlb_flush. This is why it's required for it to be mapped in by userspace_tramp. Other random things: - The stub section in uml.lds.S is page aligned. This page is written out to the backing vm file in setup_physmem because it is mapped from there into user processes. - There's some confusion with TASK_SIZE now that there are a couple of extra pages that the process can't use. TASK_SIZE is considered by the elf code to be the usable process memory, which is reasonable, so it is decreased by two pages. This confuses the definition of USER_PGDS_IN_LAST_PML4, making it too small because of the rounding down of the uneven division. So we round it to the nearest PGDIR_SIZE rather than the lower one. - I added a missing PT_SYSCALL_ARG6_OFFSET macro. - um_mmu.h was made into a userspace-usable file. - proc_mm and ptrace_faultinfo are globals which say whether the host supports these features. - There is a bad interaction between the mm.nr_ptes check at the end of exit_mmap, stack randomization, and skas0. exit_mmap will stop freeing pages at the PGDIR_SIZE boundary after the last vma. If the stack isn't on the last page table page, the last pte page won't be freed, as it should be since the stub ptes are there, and exit_mmap will BUG because there is an unfreed page. To get around this, TASK_SIZE is set to the next lowest PGDIR_SIZE boundary and mm->nr_ptes is decremented after the calls to init_stub_pte. This ensures that we know the process stack (and all other process mappings) will be below the top page table page, and thus we know that mm->nr_ptes will be one too many, and can be decremented. Things that need fixing: - We may need better assurrences that the stub code is PIC. - The stub pte is set up in init_new_context_skas. - alloc_pgdir is probably the right place. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-13[PATCH] uml: build cleanupsJeff Dike
Fix a build failure when CONFIG_MODE_SKAS is disabled and make a Makefile comment fit in 80 columns. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-20[PATCH] uml: small fixes left over from rc4Jeff Dike
Some changes that I sent in didn't make 2.6.12-rc4 for some reason. This adds them back. We have an x86_64 definition of TOP_ADDR a reimplementation of the x86_64 csum_partial_copy_from_user some syntax fixes in arch/um/kernel/ptrace.c removal of a CFLAGS definition in the x86_64 Makefile some include changes in the x86_64 ptrace.c and user-offsets.h a syntax fix in elf-x86_64.h Also moved an include in the i386 and x86_64 Makefiles to make the symlinks work, and some small fixes from Al Viro. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: <viro@parcelfarce.linux.theplanet.co.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] uml: s390 preparation, sighandler interface abstractionBodo Stroesser
s390 passes parameters in registers. So the only safe way to find out the address of signal context, error-address and error-type (trap_no), which are passed to signal handlers as parameters, is to declare these parameters. So I inserted an subarch-specific macro which holds the declaration of parameters for signal handlers. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] uml: s390 preparation, checksumming done in arch codeBodo Stroesser
Checksum handling largely depends on the subarch. Thus, I renamed i386 arch_csum_partial in arch/um/sys-i386/checksum.S back to csum_partial, removed csum_partial from arch/um/kernel/checksum.c and shifted EXPORT_SYMBOL(csum_partial) to arch/um/sys-i386/ksyms.c. Then, csum_partial_copy_to and csum_partial_copy_from were shifted from arch/um/kernel/checksum.c to arch/um/include/sysdep-i386/checksum.h and inserted in the calling functions csum_partial_copy_from_user() and csum_and_copy_to_user(). Now, arch/um/kernel/checksum.c is empty and removed. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] uml: S390 preparation, abstract host page fault dataBodo Stroesser
This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01[PATCH] uml: fix syscall table by including $(SUBARCH)'s one, for i386Paolo 'Blaisorblade' Giarrusso
Split the i386 entry.S files into entry.S and syscall_table.S which is included in the previous one (so actually there is no difference between them) and use the syscall_table.S in the UML build, instead of tracking by hand the syscall table changes (which is inherently error-prone). We must only insert the right #defines to inject the changes we need from the i386 syscall table (for instance some different function names); also, we don't implement some i386 syscalls, as ioperm(), nor some TLS-related ones (yet to provide). Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!