aboutsummaryrefslogtreecommitdiff
path: root/arch/um/kernel/skas/process.c
AgeCommit message (Collapse)Author
2007-07-24uml: more __init annotationsJeff Dike
2.6.23-rc1 turned up another batch of references from non-__init code to __init code. In most cases, these were missing __init annotations. In one case (os_drop_memory), the annotation was present but wrong. init_maps is __init, but for some reason was being very careful about the mechanism by which it allocated memory, checking whether it was OK to use kmalloc (at this point in the boot, it definitely isn't) and using either alloc_bootmem_low_pages or kmalloc/vmalloc. So, the kmalloc/vmalloc code is removed. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-11uml: iRQ stacksJeff Dike
Add a separate IRQ stack. This differs from i386 in having the entire interrupt run on a separate stack rather than starting on the normal kernel stack and switching over once some preparation has been done. The underlying mechanism, is of course, sigaltstack. Another difference is that interrupts that happen in userspace are handled on the normal kernel stack. These cause a wait wakeup instead of a signal delivery so there is no point in trying to switch stacks for these. There's no other stuff on the stack, so there is no extra stack consumption. This quirk makes it possible to have the entire interrupt run on a separate stack - process preemption (and calls to schedule()) happens on a normal kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought. The IRQ stack for CPU 0 is declared in the same way as the initial kernel stack. IRQ stacks for other CPUs will be allocated dynamically. An extra field was added to the thread_info structure. When the active thread_info is copied to the IRQ stack, the real_thread field points back to the original stack. This makes it easy to tell where to copy the thread_info struct back to when the interrupt is finished. It also serves as a marker of a nested interrupt. It is NULL for the first interrupt on the stack, and non-NULL for any nested interrupts. Care is taken to behave correctly if a second interrupt comes in when the thread_info structure is being set up or taken down. I could just disable interrupts here, but I don't feel like giving up any of the performance gained by not flipping signals on and off. If an interrupt comes in during these critical periods, the handler can't run because it has no idea what shape the stack is in. So, it sets a bit for its signal in a global mask and returns. The outer handler will deal with this signal itself. Atomicity is had with xchg. A nested interrupt that needs to bail out will xchg its signal mask into pending_mask and repeat in case yet another interrupt hit at the same time, until the mask stabilizes. The outermost interrupt will set up the thread_info and xchg a zero into pending_mask when it is done. At this point, nested interrupts will look at ->real_thread and see that no setup needs to be done. They can just continue normally. Similar care needs to be taken when exiting the outer handler. If another interrupt comes in while it is copying the thread_info, it will drop a bit into pending_mask. The outer handler will check this and if it is non-zero, will loop, set up the stack again, and handle the interrupt. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09uml: turn build warnings into commentsMiklos Szeredi
These haven't been fixed for ages. Just make comments out of them. arch/um/kernel/skas/process.c:181:2: warning: #warning Need to look up +userspace_pid by cpu arch/um/kernel/skas/process.c:187:2: warning: #warning Need to look up +userspace_pid by cpu arch/um/kernel/skas/process.c:194:2: warning: #warning need to loop over +userspace_pids in kill_off_processes_skas Signed-off-by: Miklos Szeredi <mszeredi@suse.cz> Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: remove user_util.hJeff Dike
user_util.h isn't needed any more, so delete it and remove all includes of it. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: create as-layout.hJeff Dike
This patch moves all the the symbols defined in um_arch.c, which are mostly boundaries between different parts of the UML kernel address space, to a new header, as-layout.h. There are also a few things here which aren't really related to address space layout, but which don't really have a better place to go. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-09-27[PATCH] uml: file renamingJeff Dike
Move some foo_kern.c files to foo.c now that the old foo.c files are out of the way. Also cleaned up some whitespace and an emacs formatting comment. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-02-07[PATCH] uml: remove a dead fileJeff Dike
A previous patch removed a file from the build without removing it from the tree. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-18[PATCH] uml: move libc-dependent time codeGennady Sharapov
The serial UML OS-abstraction layer patch (um/kernel dir). This moves all systemcalls from time.c file under os-Linux dir and joins time.c and tine_kernel.c files Signed-off-by: Gennady Sharapov <Gennady.V.Sharapov@intel.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-11[PATCH] uml: fix debug output on x86_64Jeff Dike
The debug-stub patch was broken on x86_64 because it thinks the frame size there is 168 words. In reality, it is 168 bytes, and using HOST_FRAME_SIZE, which is expressed in consistent units across architectures, fixes this. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-08[PATCH] uml: move libc-dependent code from signal_user.cGennady Sharapov
The serial UML OS-abstraction layer patch (um/kernel dir). This moves all systemcalls from signal_user.c file under os-Linux dir Signed-off-by: Gennady Sharapov <Gennady.V.Sharapov@intel.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07[PATCH] uml: maintain own LDT entriesBodo Stroesser
Patch imlements full LDT handling in SKAS: * UML holds it's own LDT table, used to deliver data on modify_ldt(READ) * UML disables the default_ldt, inherited from the host (SKAS3) or resets LDT entries, set by host's clib and inherited in SKAS0 * A new global variable skas_needs_stub is inserted, that can be used to decide, whether stub-pages must be supported or not. * Uses the syscall-stub to replace missing PTRACE_LDT (therefore, write_ldt_entry needs to be modified) Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-11-07[PATCH] uml: improve stub debuggingJeff Dike
Add some more debugging information when a stub does something unexpected, usually segfaulting. Now, it dumps out the stub's registers as well as the signal. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] uml: increase granularity of host capability checkingBodo Stroesser
This change enables SKAS0/SKAS3 to work with all combinations of /proc/mm and PTRACE_FAULTINFO being available or not. Also it changes the initialization of proc_mm and ptrace_faultinfo slightly, to ease forcing SKAS0 on a patched host. Forcing UML to run without /proc/mm or PTRACE_FAULTINFO by cmdline parameter can be implemented with a setup resetting the related variable. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-08-18[PATCH] uml: fix a crash under screenJeff Dike
Running UML inside a detached screen delivers SIGWINCH when UML is not expecting it. This patch ignores them. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-28[PATCH] uml: Fix typoBodo Stroesser
Fix a typo in wait_stub_done. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07[PATCH] uml: Proper clone support for skas0Bodo Stroesser
This patch implements the clone-stub mechanism, which allows skas0 to run with proc_mm==0, even if the clib in UML uses modify_ldt. Note: There is a bug in skas3.v7 host patch, that avoids UML-skas from running properly on a SMP-box. In full skas3, I never really saw problems, but in skas0 they showed up. More commentary by jdike - What this patch does is makes sure that the host parent of each new host process matches the UML parent of the corresponding UML process. This ensures that any changed LDTs are inherited. This is done by having clone actually called by the UML process from its stub, rather than by the kernel. We have special syscall stubs that are loaded onto the stub code page because that code must be completely self-contained. These stubs are given C interfaces, and used like normal C functions, but there are subtleties. Principally, we have to be careful about stack variables in stub_clone_handler after the clone. The code is written so that there aren't any - everything boils down to a fixed address. If there were any locals, references to them after the clone would be wrong because the stack just changed. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07[PATCH] uml: skas0 - separate kernel address space on stock hostsJeff Dike
UML has had two modes of operation - an insecure, slow mode (tt mode) in which the kernel is mapped into every process address space which requires no host kernel modifications, and a secure, faster mode (skas mode) in which the UML kernel is in a separate host address space, which requires a patch to the host kernel. This patch implements something very close to skas mode for hosts which don't support skas - I'm calling this skas0. It provides the security of the skas host patch, and some of the performance gains. The two main things that are provided by the skas patch, /proc/mm and PTRACE_FAULTINFO, are implemented in a way that require no host patch. For the remote address space changing stuff (mmap, munmap, and mprotect), we set aside two pages in the process above its stack, one of which contains a little bit of code which can call mmap et al. To update the address space, the system call information (system call number and arguments) are written to the stub page above the code. The %esp is set to the beginning of the data, the %eip is set the the start of the stub, and it repeatedly pops the information into its registers and makes the system call until it sees a system call number of zero. This is to amortize the cost of the context switch across multiple address space updates. When the updates are done, it SIGSTOPs itself, and the kernel process continues what it was doing. For a PTRACE_FAULTINFO replacement, we set up a SIGSEGV handler in the child, and let it handle segfaults rather than nullifying them. The handler is in the same page as the mmap stub. The second page is used as the stack. The handler reads cr2 and err from the sigcontext, sticks them at the base of the stack in a faultinfo struct, and SIGSTOPs itself. The kernel then reads the faultinfo and handles the fault. A complication on x86_64 is that this involves resetting the registers to the segfault values when the process is inside the kill system call. This breaks on x86_64 because %rcx will contain %rip because you tell SYSRET where to return to by putting the value in %rcx. So, this corrupts $rcx on return from the segfault. To work around this, I added an arch_finish_segv, which on x86 does nothing, but which on x86_64 ptraces the child back through the sigreturn. This causes %rcx to be restored by sigreturn and avoids the corruption. Ultimately, I think I will replace this with the trick of having it send itself a blocked signal which will be unblocked by the sigreturn. This will allow it to be stopped just after the sigreturn, and PTRACE_SYSCALLed without all the back-and-forth of PTRACE_SYSCALLing it through sigreturn. This runs on a stock host, so theoretically (and hopefully), tt mode isn't needed any more. We need to make sure that this is better in every way than tt mode, though. I'm concerned about the speed of address space updates and page fault handling, since they involve extra round-trips to the child. We can amortize the round-trip cost for large address space updates by writing all of the operations to the data page and having the child execute them all at the same time. This will help fork and exec, but not page faults, since they involve only one page. I can't think of any way to help page faults, except to add something like PTRACE_FAULTINFO to the host. There is PTRACE_SIGINFO, but UML doesn't use siginfo for SIGSEGV (or anything else) because there isn't enough information in the siginfo struct to handle page faults (the faulting operation type is missing). Adding that would make PTRACE_SIGINFO a usable equivalent to PTRACE_FAULTINFO. As for the code itself: - The system call stub is in arch/um/kernel/sys-$(SUBARCH)/stub.S. It is put in its own section of the binary along with stub_segv_handler in arch/um/kernel/skas/process.c. This is manipulated with run_syscall_stub in arch/um/kernel/skas/mem_user.c. syscall_stub will execute any system call at all, but it's only used for mmap, munmap, and mprotect. - The x86_64 stub calls sigreturn by hand rather than allowing the normal sigreturn to happen, because the normal sigreturn is a SA_RESTORER in UML's address space provided by libc. Needless to say, this is not available in the child's address space. Also, it does a couple of odd pops before that which restore the stack to the state it was in at the time the signal handler was called. - There is a new field in the arch mmu_context, which is now a union. This is the pid to be manipulated rather than the /proc/mm file descriptor. Code which deals with this now checks proc_mm to see whether it should use the usual skas code or the new code. - userspace_tramp is now used to create a new host process for every UML process, rather than one per UML processor. It checks proc_mm and ptrace_faultinfo to decide whether to map in the pages above its stack. - start_userspace now makes CLONE_VM conditional on proc_mm since we need separate address spaces now. - switch_mm_skas now just sets userspace_pid[0] to the new pid rather than PTRACE_SWITCH_MM. There is an addition to userspace which updates its idea of the pid being manipulated each time around the loop. This is important on exec, when the pid will change underneath userspace(). - The stub page has a pte, but it can't be mapped in using tlb_flush because it is part of tlb_flush. This is why it's required for it to be mapped in by userspace_tramp. Other random things: - The stub section in uml.lds.S is page aligned. This page is written out to the backing vm file in setup_physmem because it is mapped from there into user processes. - There's some confusion with TASK_SIZE now that there are a couple of extra pages that the process can't use. TASK_SIZE is considered by the elf code to be the usable process memory, which is reasonable, so it is decreased by two pages. This confuses the definition of USER_PGDS_IN_LAST_PML4, making it too small because of the rounding down of the uneven division. So we round it to the nearest PGDIR_SIZE rather than the lower one. - I added a missing PT_SYSCALL_ARG6_OFFSET macro. - um_mmu.h was made into a userspace-usable file. - proc_mm and ptrace_faultinfo are globals which say whether the host supports these features. - There is a bad interaction between the mm.nr_ptes check at the end of exit_mmap, stack randomization, and skas0. exit_mmap will stop freeing pages at the PGDIR_SIZE boundary after the last vma. If the stack isn't on the last page table page, the last pte page won't be freed, as it should be since the stub ptes are there, and exit_mmap will BUG because there is an unfreed page. To get around this, TASK_SIZE is set to the next lowest PGDIR_SIZE boundary and mm->nr_ptes is decremented after the calls to init_stub_pte. This ensures that we know the process stack (and all other process mappings) will be below the top page table page, and thus we know that mm->nr_ptes will be one too many, and can be decremented. Things that need fixing: - We may need better assurrences that the stub code is PIC. - The stub pte is set up in init_new_context_skas. - alloc_pgdir is probably the right place. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-06[PATCH] uml: Turn literal numbers into symbolic constantsJeff Dike
So, there I was, looking at my own code, wondering what the magic setjmp return values did. This patch turns the constants that are used to make requests of the initial thread into meaningful symbols. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] uml: Fix SIGWINCH relayingJeff Dike
This makes SIGWINCH work again, and fixes a couple of SIGWINCH-associated crashes. First, the sigio thread disables SIGWINCH because all hell breaks loose if it ever gets one and tries to call the signal handling code. Second, there was a problem with deferencing tty structs after they were freed. The SIGWINCH support for a tty wasn't being turned off or freed after the tty went away. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] uml: S390 preparation, abstract host page fault dataBodo Stroesser
This patch removes the arch-specific fault/trap-infos from thread and skas-regs. It adds a new struct faultinfo, that is arch-specific defined in sysdep/faultinfo.h. The structure is inserted in thread.arch and thread.regs.skas and thread.regs.tt Now, segv and other trap-handlers can copy the contents from regs.X.faultinfo to thread.arch.faultinfo with one simple assignment. Also, the number of macros necessary is reduced to FAULT_ADDRESS(struct faultinfo) extracts the faulting address from faultinfo FAULT_WRITE(struct faultinfo) extracts the "is_write" flag SEGV_IS_FIXABLE(struct faultinfo) is true for the fixable segvs, i.e. (TRAP == 14) on i386 UPT_FAULTINFO(regs) result is (struct faultinfo *) to the faultinfo in regs->skas.faultinfo GET_FAULTINFO_FROM_SC(struct faultinfo, struct sigcontext *) copies the relevant parts of the sigcontext to struct faultinfo. On SIGSEGV, call user_signal() instead of handle_segv(), if the architecture provides the information needed in PTRACE_FAULTINFO, or if PTRACE_FAULTINFO is missing, because segv-stub will provide the info. The benefit of the change is, that in case of a non-fixable SIGSEGV, we can give user processes a SIGSEGV, instead of possibly looping on pagefault handling. Since handle_segv() sikked arch_fixup() implicitly by passing ip==0 to segv(), I changed segv() to call arch_fixup() only, if !is_user. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!