Age | Commit message (Collapse) | Author |
|
On some architectures the comparison may cause a compilation failure.
Original partial fix Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Pekka Paalanen <pq@iki.fi>
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|
attributes.
For x86 this affected highmem pages only, since they were always kmapped
cache-coherent, and this is fixed using kmap_atomic_prot().
For other architectures that may not modify the linear kernel map we
resort to vmap() for now, since kmap_atomic_prot() generally uses the
linear kernel map for lowmem pages. This of course comes with a
performance impact and should be optimized when possible.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|
The code was potentially dereferencig a NULL sync object pointer.
At the same time a sync object reference was potentially leaked.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|
Remove unused #include <linux/version.h>('s) in
drivers/gpu/drm/ttm/ttm_bo_util.c
drivers/gpu/drm/ttm/ttm_bo_vm.c
drivers/gpu/drm/ttm/ttm_tt.c
Signed-off-by: Huang Weiyi <weiyi.huang@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|
TTM is a GPU memory manager subsystem designed for use with GPU
devices with various memory types (On-card VRAM, AGP,
PCI apertures etc.). It's essentially a helper library that assists
the DRM driver in creating and managing persistent buffer objects.
TTM manages placement of data and CPU map setup and teardown on
data movement. It can also optionally manage synchronization of
data on a per-buffer-object level.
TTM takes care to provide an always valid virtual user-space address
to a buffer object which makes user-space sub-allocation of
big buffer objects feasible.
TTM uses a fine-grained per buffer-object locking scheme, taking
care to release all relevant locks when waiting for the GPU.
Although this implies some locking overhead, it's probably a big
win for devices with multiple command submission mechanisms, since
the lock contention will be minimal.
TTM can be used with whatever user-space interface the driver
chooses, including GEM. It's used by the upcoming Radeon KMS DRM driver
and is also the GPU memory management core of various new experimental
DRM drivers.
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
|