aboutsummaryrefslogtreecommitdiff
path: root/drivers/md/raid5.c
AgeCommit message (Collapse)Author
2007-07-24[BLOCK] Get rid of request_queue_t typedefJens Axboe
Some of the code has been gradually transitioned to using the proper struct request_queue, but there's lots left. So do a full sweet of the kernel and get rid of this typedef and replace its uses with the proper type. Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2007-07-20async_tx: fix kmap_atomic usage in async_memcpyDan Williams
Andrew Morton: [async_memcpy] is very wrong if both ASYNC_TX_KMAP_DST and ASYNC_TX_KMAP_SRC can ever be set. We'll end up using the same kmap slot for both src add dest and we get either corrupted data or a BUG. Evgeniy Polyakov: Btw, shouldn't it always be kmap_atomic() even if flag is not set. That pages are usual one returned by alloc_page(). So fix the usage of kmap_atomic and kill the ASYNC_TX_KMAP_DST and ASYNC_TX_KMAP_SRC flags. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-20mm: Remove slab destructors from kmem_cache_create().Paul Mundt
Slab destructors were no longer supported after Christoph's c59def9f222d44bb7e2f0a559f2906191a0862d7 change. They've been BUGs for both slab and slub, and slob never supported them either. This rips out support for the dtor pointer from kmem_cache_create() completely and fixes up every single callsite in the kernel (there were about 224, not including the slab allocator definitions themselves, or the documentation references). Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2007-07-13md: remove raid5 compute_block and compute_parity5Dan Williams
replaced by raid5_run_ops Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: handle_stripe5 - request io processing in raid5_run_opsDan Williams
I/O submission requests were already handled outside of the stripe lock in handle_stripe. Now that handle_stripe is only tasked with finding work, this logic belongs in raid5_run_ops. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: handle_stripe5 - add request/completion logic for async expand opsDan Williams
When a stripe is being expanded bulk copying takes place to move the data from the old stripe to the new. Since raid5_run_ops only operates on one stripe at a time these bulk copies are handled in-line under the stripe lock. In the dma offload case we poll for the completion of the operation. After the data has been copied into the new stripe the parity needs to be recalculated across the new disks. We reuse the existing postxor functionality to carry out this calculation. By setting STRIPE_OP_POSTXOR without setting STRIPE_OP_BIODRAIN the completion path in handle stripe can differentiate expand operations from normal write operations. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: handle_stripe5 - add request/completion logic for async read opsDan Williams
When a read bio is attached to the stripe and the corresponding block is marked R5_UPTODATE, then a read (biofill) operation is scheduled to copy the data from the stripe cache to the bio buffer. handle_stripe flags the blocks to be operated on with the R5_Wantfill flag. If new read requests arrive while raid5_run_ops is running they will not be handled until handle_stripe is scheduled to run again. Changelog: * cleanup to_read and to_fill accounting * do not fail reads that have reached the cache Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: handle_stripe5 - add request/completion logic for async check opsDan Williams
Check operations are scheduled when the array is being resynced or an explicit 'check/repair' command was sent to the array. Previously check operations would destroy the parity block in the cache such that even if parity turned out to be correct the parity block would be marked !R5_UPTODATE at the completion of the check. When the operation can be carried out by a dma engine the assumption is that it can check parity as a read-only operation. If raid5_run_ops notices that the check was handled by hardware it will preserve the R5_UPTODATE status of the parity disk. When a check operation determines that the parity needs to be repaired we reuse the existing compute block infrastructure to carry out the operation. Repair operations imply an immediate write back of the data, so to differentiate a repair from a normal compute operation the STRIPE_OP_MOD_REPAIR_PD flag is added. Changelog: * remove test_and_set/test_and_clear BUG_ONs, Neil Brown Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: handle_stripe5 - add request/completion logic for async compute opsDan Williams
handle_stripe will compute a block when a backing disk has failed, or when it determines it can save a disk read by computing the block from all the other up-to-date blocks. Previously a block would be computed under the lock and subsequent logic in handle_stripe could use the newly up-to-date block. With the raid5_run_ops implementation the compute operation is carried out a later time outside the lock. To preserve the old functionality we take advantage of the dependency chain feature of async_tx to flag the block as R5_Wantcompute and then let other parts of handle_stripe operate on the block as if it were up-to-date. raid5_run_ops guarantees that the block will be ready before it is used in another operation. However, this only works in cases where the compute and the dependent operation are scheduled at the same time. If a previous call to handle_stripe sets the R5_Wantcompute flag there is no facility to pass the async_tx dependency chain across successive calls to raid5_run_ops. The req_compute variable protects against this case. Changelog: * remove the req_compute BUG_ON Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: handle_stripe5 - add request/completion logic for async write opsDan Williams
After handle_stripe5 decides whether it wants to perform a read-modify-write, or a reconstruct write it calls handle_write_operations5. A read-modify-write operation will perform an xor subtraction of the blocks marked with the R5_Wantprexor flag, copy the new data into the stripe (biodrain) and perform a postxor operation across all up-to-date blocks to generate the new parity. A reconstruct write is run when all blocks are already up-to-date in the cache so all that is needed is a biodrain and postxor. On the completion path STRIPE_OP_PREXOR will be set if the operation was a read-modify-write. The STRIPE_OP_BIODRAIN flag is used in the completion path to differentiate write-initiated postxor operations versus expansion-initiated postxor operations. Completion of a write triggers i/o to the drives. Changelog: * make the 'rcw' parameter to handle_write_operations5 a simple flag, Neil Brown * remove test_and_set/test_and_clear BUG_ONs, Neil Brown Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: common infrastructure for running operations with raid5_run_opsDan Williams
All the handle_stripe operations that are to be transitioned to use raid5_run_ops need a method to coherently gather work under the stripe-lock and hand that work off to raid5_run_ops. The 'get_stripe_work' routine runs under the lock to read all the bits in sh->ops.pending that do not have the corresponding bit set in sh->ops.ack. This modified 'pending' bitmap is then passed to raid5_run_ops for processing. The transition from 'ack' to 'completion' does not need similar protection as the existing release_stripe infrastructure will guarantee that handle_stripe will run again after a completion bit is set, and handle_stripe can tolerate a sh->ops.completed bit being set while the lock is held. A call to async_tx_issue_pending_all() is added to raid5d to kick the offload engines once all pending stripe operations work has been submitted. This enables batching of the submission and completion of operations. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13md: raid5_run_ops - run stripe operations outside sh->lockDan Williams
When the raid acceleration work was proposed, Neil laid out the following attack plan: 1/ move the xor and copy operations outside spin_lock(&sh->lock) 2/ find/implement an asynchronous offload api The raid5_run_ops routine uses the asynchronous offload api (async_tx) and the stripe_operations member of a stripe_head to carry out xor+copy operations asynchronously, outside the lock. To perform operations outside the lock a new set of state flags is needed to track new requests, in-flight requests, and completed requests. In this new model handle_stripe is tasked with scanning the stripe_head for work, updating the stripe_operations structure, and finally dropping the lock and calling raid5_run_ops for processing. The following flags outline the requests that handle_stripe can make of raid5_run_ops: STRIPE_OP_BIOFILL - copy data into request buffers to satisfy a read request STRIPE_OP_COMPUTE_BLK - generate a missing block in the cache from the other blocks STRIPE_OP_PREXOR - subtract existing data as part of the read-modify-write process STRIPE_OP_BIODRAIN - copy data out of request buffers to satisfy a write request STRIPE_OP_POSTXOR - recalculate parity for new data that has entered the cache STRIPE_OP_CHECK - verify that the parity is correct STRIPE_OP_IO - submit i/o to the member disks (note this was already performed outside the stripe lock, but it made sense to add it as an operation type The flow is: 1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending 2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the operation to the async_tx api 3/ async_tx triggers the completion callback routine to set sh->ops.complete and release the stripe 4/ handle_stripe runs again to finish the operation and optionally submit new operations that were previously blocked Note this patch just defines raid5_run_ops, subsequent commits (one per major operation type) modify handle_stripe to take advantage of this routine. Changelog: * removed ops_complete_biodrain in favor of ops_complete_postxor and ops_complete_write. * removed the raid5_run_ops workqueue * call bi_end_io for reads in ops_complete_biofill, saves a call to handle_stripe * explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown * fix race between async engines and bi_end_io call for reads, Neil Brown * remove unnecessary spin_lock from ops_complete_biofill * remove test_and_set/test_and_clear BUG_ONs, Neil Brown * remove explicit interrupt handling for channel switching, this feature was absorbed (i.e. it is now implicit) by the async_tx api * use return_io in ops_complete_biofill Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13raid5: replace custom debug PRINTKs with standard pr_debugDan Williams
Replaces PRINTK with pr_debug, and kills the RAID5_DEBUG definition in favor of the global DEBUG definition. To get local debug messages just add '#define DEBUG' to the top of the file. Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13raid5: refactor handle_stripe5 and handle_stripe6 (v3)Dan Williams
handle_stripe5 and handle_stripe6 have very deep logic paths handling the various states of a stripe_head. By introducing the 'stripe_head_state' and 'r6_state' objects, large portions of the logic can be moved to sub-routines. 'struct stripe_head_state' consumes all of the automatic variables that previously stood alone in handle_stripe5,6. 'struct r6_state' contains the handle_stripe6 specific variables like p_failed and q_failed. One of the nice side effects of the 'stripe_head_state' change is that it allows for further reductions in code duplication between raid5 and raid6. The following new routines are shared between raid5 and raid6: handle_completed_write_requests handle_requests_to_failed_array handle_stripe_expansion Changes: * v2: fixed 'conf->raid_disk-1' for the raid6 'handle_stripe_expansion' path * v3: removed the unused 'dirty' field from struct stripe_head_state * v3: coalesced open coded bi_end_io routines into return_io() Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13async_tx: add the async_tx apiDan Williams
The async_tx api provides methods for describing a chain of asynchronous bulk memory transfers/transforms with support for inter-transactional dependencies. It is implemented as a dmaengine client that smooths over the details of different hardware offload engine implementations. Code that is written to the api can optimize for asynchronous operation and the api will fit the chain of operations to the available offload resources. I imagine that any piece of ADMA hardware would register with the 'async_*' subsystem, and a call to async_X would be routed as appropriate, or be run in-line. - Neil Brown async_tx exploits the capabilities of struct dma_async_tx_descriptor to provide an api of the following general format: struct dma_async_tx_descriptor * async_<operation>(..., struct dma_async_tx_descriptor *depend_tx, dma_async_tx_callback cb_fn, void *cb_param) { struct dma_chan *chan = async_tx_find_channel(depend_tx, <operation>); struct dma_device *device = chan ? chan->device : NULL; int int_en = cb_fn ? 1 : 0; struct dma_async_tx_descriptor *tx = device ? device->device_prep_dma_<operation>(chan, len, int_en) : NULL; if (tx) { /* run <operation> asynchronously */ ... tx->tx_set_dest(addr, tx, index); ... tx->tx_set_src(addr, tx, index); ... async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param); } else { /* run <operation> synchronously */ ... <operation> ... async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param); } return tx; } async_tx_find_channel() returns a capable channel from its pool. The channel pool is organized as a per-cpu array of channel pointers. The async_tx_rebalance() routine is tasked with managing these arrays. In the uniprocessor case async_tx_rebalance() tries to spread responsibility evenly over channels of similar capabilities. For example if there are two copy+xor channels, one will handle copy operations and the other will handle xor. In the SMP case async_tx_rebalance() attempts to spread the operations evenly over the cpus, e.g. cpu0 gets copy channel0 and xor channel0 while cpu1 gets copy channel 1 and xor channel 1. When a dependency is specified async_tx_find_channel defaults to keeping the operation on the same channel. A xor->copy->xor chain will stay on one channel if it supports both operation types, otherwise the transaction will transition between a copy and a xor resource. Currently the raid5 implementation in the MD raid456 driver has been converted to the async_tx api. A driver for the offload engines on the Intel Xscale series of I/O processors, iop-adma, is provided in a later commit. With the iop-adma driver and async_tx, raid456 is able to offload copy, xor, and xor-zero-sum operations to hardware engines. On iop342 tiobench showed higher throughput for sequential writes (20 - 30% improvement) and sequential reads to a degraded array (40 - 55% improvement). For the other cases performance was roughly equal, +/- a few percentage points. On a x86-smp platform the performance of the async_tx implementation (in synchronous mode) was also +/- a few percentage points of the original implementation. According to 'top' on iop342 CPU utilization drops from ~50% to ~15% during a 'resync' while the speed according to /proc/mdstat doubles from ~25 MB/s to ~50 MB/s. The tiobench command line used for testing was: tiobench --size 2048 --block 4096 --block 131072 --dir /mnt/raid --numruns 5 * iop342 had 1GB of memory available Details: * if CONFIG_DMA_ENGINE=n the asynchronous path is compiled away by making async_tx_find_channel a static inline routine that always returns NULL * when a callback is specified for a given transaction an interrupt will fire at operation completion time and the callback will occur in a tasklet. if the the channel does not support interrupts then a live polling wait will be performed * the api is written as a dmaengine client that requests all available channels * In support of dependencies the api implicitly schedules channel-switch interrupts. The interrupt triggers the cleanup tasklet which causes pending operations to be scheduled on the next channel * Xor engines treat an xor destination address differently than a software xor routine. To the software routine the destination address is an implied source, whereas engines treat it as a write-only destination. This patch modifies the xor_blocks routine to take a an explicit destination address to mirror the hardware. Changelog: * fixed a leftover debug print * don't allow callbacks in async_interrupt_cond * fixed xor_block changes * fixed usage of ASYNC_TX_XOR_DROP_DEST * drop dma mapping methods, suggested by Chris Leech * printk warning fixups from Andrew Morton * don't use inline in C files, Adrian Bunk * select the API when MD is enabled * BUG_ON xor source counts <= 1 * implicitly handle hardware concerns like channel switching and interrupts, Neil Brown * remove the per operation type list, and distribute operation capabilities evenly amongst the available channels * simplify async_tx_find_channel to optimize the fast path * introduce the channel_table_initialized flag to prevent early calls to the api * reorganize the code to mimic crypto * include mm.h as not all archs include it in dma-mapping.h * make the Kconfig options non-user visible, Adrian Bunk * move async_tx under crypto since it is meant as 'core' functionality, and the two may share algorithms in the future * move large inline functions into c files * checkpatch.pl fixes * gpl v2 only correction Cc: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-By: NeilBrown <neilb@suse.de>
2007-07-13xor: make 'xor_blocks' a library routine for use with async_txDan Williams
The async_tx api tries to use a dma engine for an operation, but will fall back to an optimized software routine otherwise. Xor support is implemented using the raid5 xor routines. For organizational purposes this routine is moved to a common area. The following fixes are also made: * rename xor_block => xor_blocks, suggested by Adrian Bunk * ensure that xor.o initializes before md.o in the built-in case * checkpatch.pl fixes * mark calibrate_xor_blocks __init, Adrian Bunk Cc: Adrian Bunk <bunk@stusta.de> Cc: NeilBrown <neilb@suse.de> Cc: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2007-05-09Revert "md: improve partition detection in md array"Linus Torvalds
This reverts commit 5b479c91da90eef605f851508744bfe8269591a0. Quoth Neil Brown: "It causes an oops when auto-detecting raid arrays, and it doesn't seem easy to fix. The array may not be 'open' when do_md_run is called, so bdev->bd_disk might be NULL, so bd_set_size can oops. This whole approach of opening an md device before it has been assembled just seems to get more and more painful. I think I'm going to have to come up with something clever to provide both backward comparability with usage expectation, and sane integration into the rest of the kernel." Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09md: improve partition detection in md arrayNeilBrown
md currently uses ->media_changed to make sure rescan_partitions is call on md array after they are assembled. However that doesn't happen until the array is opened, which is later than some people would like. So use blkdev_ioctl to do the rescan immediately that the array has been assembled. This means we can remove all the ->change infrastructure as it was only used to trigger a partition rescan. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09md: remove the slash from the name of a kmem_cache used by raid5NeilBrown
SLUB doesn't like slashes as it wants to use the cache name as the name of a directory (or symlink) in sysfs. Signed-off-by: Neil Brown <neilb@suse.de> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-27[PATCH] md: convert compile time warnings into runtime warningsNeilBrown
... still not sure why we need this .... Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-27[PATCH] md: clear the congested_fn when stopping a raid5NeilBrown
If this mddev and queue got reused for another array that doesn't register a congested_fn, this function would get called incorretly. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-27[PATCH] md: allow raid4 arrays to be reshapedNeilBrown
All that is missing the the function pointers in raid4_pers. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-05[PATCH] md: fix for raid6 reshapeNeilBrown
Recent patch for raid6 reshape had a change missing that showed up in subsequent review. Many places in the raid5 code used "conf->raid_disks-1" to mean "number of data disks". With raid6 that had to be changed to "conf->raid_disk - conf->max_degraded" or similar. One place was missed. This bug means that if a raid6 reshape were aborted in the middle the recorded position would be wrong. On restart it would either fail (as the position wasn't on an appropriate boundary) or would leave a section of the array unreshaped, causing data corruption. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-01[PATCH] md: add support for reshape of a raid6NeilBrown
i.e. one or more drives can be added and the array will re-stripe while on-line. Most of the interesting work was already done for raid5. This just extends it to raid6. mdadm newer than 2.6 is needed for complete safety, however any version of mdadm which support raid5 reshape will do a good enough job in almost all cases (an 'echo repair > /sys/block/mdX/md/sync_action' is recommended after a reshape that was aborted and had to be restarted with an such a version of mdadm). Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-01[PATCH] md: restart a (raid5) reshape that has been aborted due to a ↵NeilBrown
read/write error An error always aborts any resync/recovery/reshape on the understanding that it will immediately be restarted if that still makes sense. However a reshape currently doesn't get restarted. With this patch it does. To avoid restarting when it is not possible to do work, we call into the personality to check that a reshape is ok, and strengthen raid5_check_reshape to fail if there are too many failed devices. We also break some code out into a separate function: remove_and_add_spares as the indent level for that code was getting crazy. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-09[PATCH] md: fix various bugs with aligned reads in RAID5Neil Brown
It is possible for raid5 to be sent a bio that is too big for an underlying device. So if it is a READ that we pass stright down to a device, it will fail and confuse RAID5. So in 'chunk_aligned_read' we check that the bio fits within the parameters for the target device and if it doesn't fit, fall back on reading through the stripe cache and making lots of one-page requests. Note that this is the earliest time we can check against the device because earlier we don't have a lock on the device, so it could change underneath us. Also, the code for handling a retry through the cache when a read fails has not been tested and was badly broken. This patch fixes that code. Signed-off-by: Neil Brown <neilb@suse.de> Cc: "Kai" <epimetreus@fastmail.fm> Cc: <stable@suse.de> Cc: <org@suse.de> Cc: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-01-26[PATCH] md: remove unnecessary printk when raid5 gets an unaligned read.NeilBrown
raid5_mergeable_bvec tries to ensure that raid5 never sees a read request that does not fit within just one chunk. However as we must always accept a single-page read, that is not always possible. So when "in_chunk_boundary" fails, it might be unusual, but it is not a problem and printing a message every time is a bad idea. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-01-26[PATCH] md: fix potential memalloc deadlock in mdNeilBrown
If a GFP_KERNEL allocation is attempted in md while the mddev_lock is held, it is possible for a deadlock to eventuate. This happens if the array was marked 'clean', and the memalloc triggers a write-out to the md device. For the writeout to succeed, the array must be marked 'dirty', and that requires getting the mddev_lock. So, before attempting a GFP_KERNEL allocation while holding the lock, make sure the array is marked 'dirty' (unless it is currently read-only). Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-12-13[PATCH] md: Don't assume that READ==0 and WRITE==1 - use the names explicitlyNeilBrown
Thanks Jens for alerting me to this. Cc: Jens Axboe <jens.axboe@oracle.com> Cc: <raziebe@gmail.com> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] md: return a non-zero error to bi_end_io as appropriate in raid5NeilBrown
Currently raid5 depends on clearing the BIO_UPTODATE flag to signal an error to higher levels. While this should be sufficient, it is safer to explicitly set the error code as well - less room for confusion. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] md: remove some old ifdefed-out code from raid5.cNeilBrown
There are some vestiges of old code that was used for bypassing the stripe cache on reads in raid5.c. This was never updated after the change from buffer_heads to bios, but was left as a reminder. That functionality has nowe been implemented in a completely different way, so the old code can go. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] md: fix innocuous bug in raid6 stripe_to_pdidxNeilBrown
stripe_to_pdidx finds the index of the parity disk for a given stripe. It assumes raid5 in that it uses "disks-1" to determine the number of data disks. This is incorrect for raid6 but fortunately the two usages cancel each other out. The only way that 'data_disks' affects the calculation of pd_idx in raid5_compute_sector is when it is divided into the sector number. But as that sector number is calculated by multiplying in the wrong value of 'data_disks' the division produces the right value. So it is innocuous but needs to be fixed. Also change the calculation of raid_disks in compute_blocknr to make it more obviously correct (it seems at first to always use disks-1 too). Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] md: enable bypassing cache for readsRaz Ben-Jehuda(caro)
Call the chunk_aligned_read where appropriate. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] md: allow reads that have bypassed the cache to be retried on failureRaz Ben-Jehuda(caro)
If a bypass-the-cache read fails, we simply try again through the cache. If it fails again it will trigger normal recovery precedures. update 1: From: NeilBrown <neilb@suse.de> 1/ chunk_aligned_read and retry_aligned_read assume that data_disks == raid_disks - 1 which is not true for raid6. So when an aligned read request bypasses the cache, we can get the wrong data. 2/ The cloned bio is being used-after-free in raid5_align_endio (to test BIO_UPTODATE). 3/ We forgot to add rdev->data_offset when submitting a bio for aligned-read 4/ clone_bio calls blk_recount_segments and then we change bi_bdev, so we need to invalidate the segment counts. 5/ We don't de-reference the rdev when the read completes. This means we need to record the rdev to so it is still available in the end_io routine. Fortunately bi_next in the original bio is unused at this point so we can stuff it in there. 6/ We leak a cloned bio if the target rdev is not usable. From: NeilBrown <neilb@suse.de> update 2: 1/ When aligned requests fail (read error) they need to be retried via the normal method (stripe cache). As we cannot be sure that we can process a single read in one go (we may not be able to allocate all the stripes needed) we store a bio-being-retried and a list of bioes-that-still-need-to-be-retried. When find a bio that needs to be retried, we should add it to the list, not to single-bio... 2/ We were never incrementing 'scnt' when resubmitting failed aligned requests. [akpm@osdl.org: build fix] Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] md: handle bypassing the read cache (assuming nothing fails)Raz Ben-Jehuda(caro)
Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] md: define raid5_mergeable_bvecRaz Ben-Jehuda(caro)
This will encourage read request to be on only one device, so we will often be able to bypass the cache for read requests. Signed-off-by: Neil Brown <neilb@suse.de> Cc: Jens Axboe <jens.axboe@oracle.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove kmem_cache_tChristoph Lameter
Replace all uses of kmem_cache_t with struct kmem_cache. The patch was generated using the following script: #!/bin/sh # # Replace one string by another in all the kernel sources. # set -e for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do quilt add $file sed -e "1,\$s/$1/$2/g" $file >/tmp/$$ mv /tmp/$$ $file quilt refresh done The script was run like this sh replace kmem_cache_t "struct kmem_cache" Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-08[PATCH] md: fix sizing problem with raid5-reshape and CONFIG_LBD=nNeilBrown
I forgot to has the size-in-blocks to (loff_t) before shifting up to a size-in-bytes. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03BUG_ON cleanup for drivers/md/Eric Sesterhenn
This changes two if() BUG(); usages to BUG_ON(); so people can disable it safely. Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de> Signed-off-by: Adrian Bunk <bunk@stusta.de>
2006-10-03[PATCH] md: add a ->congested_fn function for raid5/6NeilBrown
This is very different from other raid levels and all requests go through a 'stripe cache', and it has congestion management already. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03[PATCH] md: Improve locking around error handlingNeilBrown
The error handling routines don't use proper locking, and so two concurrent errors could trigger a problem. So: - use test-and-set and test-and-clear to synchonise the In_sync bits with the ->degraded count - use the spinlock to protect updates to the degraded count (could use an atomic_t but that would be a bigger change in code, and isn't really justified) - remove un-necessary locking in raid5 Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03[PATCH] md: remove unnecessary variable x in stripe_to_pdidx()Coywolf Qi Hunt
Signed-off-by: Coywolf Qi Hunt <qiyong@freeforge.net> Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03[PATCH] md: remove the working_disks and failed_disks from raid5 state data.NeilBrown
They are not needed. conf->failed_disks is the same as mddev->degraded and conf->working_disks is conf->raid_disks - mddev->degraded. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03[PATCH] md: replace magic numbers in sb_dirty with well defined bit flagsNeilBrown
Instead of magic numbers (0,1,2,3) in sb_dirty, we have some flags instead: MD_CHANGE_DEVS Some device state has changed requiring superblock update on all devices. MD_CHANGE_CLEAN The array has transitions from 'clean' to 'dirty' or back, requiring a superblock update on active devices, but possibly not on spares MD_CHANGE_PENDING A superblock update is underway. We wait for an update to complete by waiting for all flags to be clear. A flag can be set at any time, even during an update, without risk that the change will be lost. Stop exporting md_update_sb - isn't needed. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10[PATCH] md: include sector number in messages about corrected read errorsNeilBrown
This is generally useful, but particularly helps see if it is the same sector that always needs correcting, or different ones. [akpm@osdl.org: fix printk warnings] Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10[PATCH] md: fix some small races in bitmap plugging in raid5NeilBrown
The comment gives more details, but I didn't quite have the sequencing write, so there was room for races to leave bits unset in the on-disk bitmap for short periods of time. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10[PATCH] md: fix a plug/unplug race in raid5NeilBrown
When a device is unplugged, requests are moved from one or two (depending on whether a bitmap is in use) queues to the main request queue. So whenever requests are put on either of those queues, we should make sure the raid5 array is 'plugged'. However we don't. We currently plug the raid5 queue just before putting requests on queues, so there is room for a race. If something unplugs the queue at just the wrong time, requests will be left on the queue and nothing will want to unplug them. Normally something else will plug and unplug the queue fairly soon, but there is a risk that nothing will. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10[PATCH] md: fix resync speed calculation for restarted resyncsNeilBrown
We introduced 'io_sectors' recently so we could count the sectors that causes io during resync separate from sectors which didn't cause IO - there can be a difference if a bitmap is being used to accelerate resync. However when a speed is reported, we find the number of sectors processed recently by subtracting an oldish io_sectors count from a current 'curr_resync' count. This is wrong because curr_resync counts all sectors, not just io sectors. So, add a field to mddev to store the curren io_sectors separately from curr_resync, and use that in the calculations. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10[PATCH] md: delay starting md threads until array is completely setupNeilBrown
When an array is started we start one or two threads (two if there is a reshape or recovery that needs to be completed). We currently start these *before* the array is completely set up and in particular before queue->queuedata is set. If the thread actually starts very quickly on another CPU, we can end up dereferencing queue->queuedata and oops. This patch also makes sure we don't try to start a recovery if a reshape is being restarted. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-07-10[PATCH] md: possible fix for unplug problemNeilBrown
I have reports of a problem with raid5 which turns out to be because the raid5 device gets stuck in a 'plugged' state. This shouldn't be able to happen as 3msec after it gets plugged it should get unplugged. However it happens none-the-less. This patch fixes the problem and is a reasonable thing to do, though it might hurt performance slightly in some cases. Until I can find the real problem, we should probably have this workaround in place. Signed-off-by: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>