Age | Commit message (Collapse) | Author |
|
We get this on 32 builds:
fs/built-in.o: In function `extent_fiemap':
(.text+0x1019f2): undefined reference to `__ucmpdi2'
Happens because of a switch statement with a 64 bit argument.
Convert this to an if statement to fix this.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
btrfs_mark_buffer dirty would set dirty bits in the extent_io tree
for the buffers it was dirtying. This may require a kmalloc and it
was not atomic. So, anyone who called btrfs_mark_buffer_dirty had to
set any btree locks they were holding to blocking first.
This commit changes dirty tracking for extent buffers to just use a flag
in the extent buffer. Now that we have one and only one extent buffer
per page, this can be safely done without losing dirty bits along the way.
This also introduces a path->leave_spinning flag that callers of
btrfs_search_slot can use to indicate they will properly deal with a
path returned where all the locks are spinning instead of blocking.
Many of the btree search callers now expect spinning paths,
resulting in better btree concurrency overall.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
These two lines are not used, remove them.
Signed-off-by: Qinghuang Feng <qhfeng.kernel@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
On fast devices that go from congested to uncongested very quickly, pdflush
is waiting too often in congestion_wait, and the FS is backing off to
easily in write_cache_pages.
For now, fix this on the btrfs side by only checking congestion after
some bios have already gone down. Longer term a real fix is needed
for pdflush, but that is a larger project.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Most of the btrfs metadata operations can be protected by a spinlock,
but some operations still need to schedule.
So far, btrfs has been using a mutex along with a trylock loop,
most of the time it is able to avoid going for the full mutex, so
the trylock loop is a big performance gain.
This commit is step one for getting rid of the blocking locks entirely.
btrfs_tree_lock takes a spinlock, and the code explicitly switches
to a blocking lock when it starts an operation that can schedule.
We'll be able get rid of the blocking locks in smaller pieces over time.
Tracing allows us to find the most common cause of blocking, so we
can start with the hot spots first.
The basic idea is:
btrfs_tree_lock() returns with the spin lock held
btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in
the extent buffer flags, and then drops the spin lock. The buffer is
still considered locked by all of the btrfs code.
If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops
the spin lock and waits on a wait queue for the blocking bit to go away.
Much of the code that needs to set the blocking bit finishes without actually
blocking a good percentage of the time. So, an adaptive spin is still
used against the blocking bit to avoid very high context switch rates.
btrfs_clear_lock_blocking() clears the blocking bit and returns
with the spinlock held again.
btrfs_tree_unlock() can be called on either blocking or spinning locks,
it does the right thing based on the blocking bit.
ctree.c has a helper function to set/clear all the locked buffers in a
path as blocking.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
extent_io.c has debugging code to report and free leaked extent_state
and extent_buffer objects at rmmod time. This helps track down
leaks and it saves you from rebooting just to properly remove the
kmem_cache object.
But, the code runs under a fairly expensive spinlock and the checks to
see if it is currently enabled are not entirely consistent. Some use
#ifdef and some #if.
This changes everything to #if and disables the leak checking.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Now that bmap support is gone, this is the only way to get extent
mappings for userland. These are still not valid for IO, but they
can tell us if a file has holes or how much fragmentation there is.
Signed-off-by: Yehuda Sadeh <yehuda@hq.newdream.net>
|
|
Removed unused #include <version.h>'s in btrfs
Signed-off-by: Huang Weiyi <weiyi.huang@gmail.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
They should stay out until this is turned into generic code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
There were many, most are fixed now. struct-funcs.c generates some warnings
but these are bogus.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
In clear_state_cb, we should check 'tree->ops->clear_bit_hook' instead
of 'tree->ops->set_bit_hook'.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
bio_end_io for reads without checksumming on and btree writes were
happening without using async thread pools. This means the extent_io.c
code had to use spin_lock_irq and friends on the rb tree locks for
extent state.
There were some irq safe vs unsafe lock inversions between the delallock
lock and the extent state locks. This patch gets rid of them by moving
all end_io code into the thread pools.
To avoid contention and deadlocks between the data end_io processing and the
metadata end_io processing yet another thread pool is added to finish
off metadata writes.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
It is possible that generic_bin_search will be called on a tree block
that has not been locked. This happens because cache_block_block skips
locking on the tree blocks.
Since the tree block isn't locked, we aren't allowed to change
the extent_buffer->map_token field. Using map_private_extent_buffer
avoids any changes to the internal extent buffer fields.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Btrfs stores checksums for each data block. Until now, they have
been stored in the subvolume trees, indexed by the inode that is
referencing the data block. This means that when we read the inode,
we've probably read in at least some checksums as well.
But, this has a few problems:
* The checksums are indexed by logical offset in the file. When
compression is on, this means we have to do the expensive checksumming
on the uncompressed data. It would be faster if we could checksum
the compressed data instead.
* If we implement encryption, we'll be checksumming the plain text and
storing that on disk. This is significantly less secure.
* For either compression or encryption, we have to get the plain text
back before we can verify the checksum as correct. This makes the raid
layer balancing and extent moving much more expensive.
* It makes the front end caching code more complex, as we have touch
the subvolume and inodes as we cache extents.
* There is potentitally one copy of the checksum in each subvolume
referencing an extent.
The solution used here is to store the extent checksums in a dedicated
tree. This allows us to index the checksums by phyiscal extent
start and length. It means:
* The checksum is against the data stored on disk, after any compression
or encryption is done.
* The checksum is stored in a central location, and can be verified without
following back references, or reading inodes.
This makes compression significantly faster by reducing the amount of
data that needs to be checksummed. It will also allow much faster
raid management code in general.
The checksums are indexed by a key with a fixed objectid (a magic value
in ctree.h) and offset set to the starting byte of the extent. This
allows us to copy the checksum items into the fsync log tree directly (or
any other tree), without having to invent a second format for them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Shut up various sparse warnings about symbols that should be either
static or have their declarations in scope.
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The btrfs write_cache_pages call has a flush function so that it submits
the bio it has been building before it waits on any writeback pages.
This adds a check so that flush only happens on writeback pages.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* open/close_bdev_excl -> open/close_bdev_exclusive
* blkdev_issue_discard takes a GFP mask now
* Fix blkdev_issue_discard usage now that it is enabled
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
While building large bios in writepages, btrfs may end up waiting
for other page writeback to finish if WB_SYNC_ALL is used.
While it is waiting, the bio it is building has a number of pages with the
writeback bit set and they aren't getting to the disk any time soon. This
lowers the latencies of writeback in general by sending down the bio being
built before waiting for other pages.
The bio submission code tries to limit the total number of async bios in
flight by waiting when we're over a certain number of async bios. But,
the waits are happening while writepages is building bios, and this can easily
lead to stalls and other problems for people calling wait_on_page_writeback.
The current fix is to let the congestion tests take care of waiting.
sync() and others make sure to drain the current async requests to make
sure that everything that was pending when the sync was started really get
to disk. The code would drain pending requests both before and after
submitting a new request.
But, if one of the requests is waiting for page writeback to finish,
the draining waits might block that page writeback. This changes the
draining code to only wait after submitting the bio being processed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Simple casting here and there to fix things up.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The extent_io.c code has a #define to find and cleanup extent state leaks
on module unmount. This adds a very highly contended spinlock to a
hot path for most FS operations.
Turn it off by default. A later changeset will add a .config option
for it.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
With all the recent fixes to the delalloc locking, it is now safe
again to use invalidatepage inside the writepage code for
pages outside of i_size. This used to deadlock against some of the
code to write locked ranges of pages, but all of that has been fixed.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This adds a PageDirty check to the writeback path that locks pages
for delalloc. If a page wasn't dirty at this point, it is in the
process of being truncated away.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The allocator uses the last allocation as a starting point for metadata
allocations, and tries to allocate in clusters of at least 256k.
If the search for a free block fails to find the expected block, this patch
forces a new cluster to be found in the free list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
When reading compressed extents, try to put pages into the page cache
for any pages covered by the compressed extent that readpages didn't already
preload.
Add an async work queue to handle transformations at delayed allocation processing
time. Right now this is just compression. The workflow is:
1) Find offsets in the file marked for delayed allocation
2) Lock the pages
3) Lock the state bits
4) Call the async delalloc code
The async delalloc code clears the state lock bits and delalloc bits. It is
important this happens before the range goes into the work queue because
otherwise it might deadlock with other work queue items that try to lock
those extent bits.
The file pages are compressed, and if the compression doesn't work the
pages are written back directly.
An ordered work queue is used to make sure the inodes are written in the same
order that pdflush or writepages sent them down.
This changes extent_write_cache_pages to let the writepage function
update the wbc nr_written count.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Make sure we keep page->mapping NULL on the pages we're getting
via alloc_page. It gets set so a few of the callbacks can do the right
thing, but in general these pages don't have a mapping.
Don't try to truncate compressed inline items in btrfs_drop_extents.
The whole compressed item must be preserved.
Don't try to create multipage inline compressed items. When we try to
overwrite just the first page of the file, we would have to read in and recow
all the pages after it in the same compressed inline items. For now, only
create single page inline items.
Make sure we lock pages in the correct order during delalloc. The
search into the state tree for delalloc bytes can return bytes before
the page we already have locked.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch updates btrfs-progs for fallocate support.
fallocate is a little different in Btrfs because we need to tell the
COW system that a given preallocated extent doesn't need to be
cow'd as long as there are no snapshots of it. This leverages the
-o nodatacow checks.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
When dropping middle part of an extent, btrfs_drop_extents truncates
the extent at first, then inserts a bookend extent.
Since truncation and insertion can't be done atomically, there is a small
period that the bookend extent isn't in the tree. This causes problem for
functions that search the tree for file extent item. The way to fix this is
lock the range of the bookend extent before truncation.
Signed-off-by: Yan Zheng <zheng.yan@oracle.com>
|
|
This patch removes the giant fs_info->alloc_mutex and replaces it with a bunch
of little locks.
There is now a pinned_mutex, which is used when messing with the pinned_extents
extent io tree, and the extent_ins_mutex which is used with the pending_del and
extent_ins extent io trees.
The locking for the extent tree stuff was inspired by a patch that Yan Zheng
wrote to fix a race condition, I cleaned it up some and changed the locking
around a little bit, but the idea remains the same. Basically instead of
holding the extent_ins_mutex throughout the processing of an extent on the
extent_ins or pending_del trees, we just hold it while we're searching and when
we clear the bits on those trees, and lock the extent for the duration of the
operations on the extent.
Also to keep from getting hung up waiting to lock an extent, I've added a
try_lock_extent so if we cannot lock the extent, move on to the next one in the
tree and we'll come back to that one. I have tested this heavily and it does
not appear to break anything. This has to be applied on top of my
find_free_extent redo patch.
I tested this patch on top of Yan's space reblancing code and it worked fine.
The only thing that has changed since the last version is I pulled out all my
debugging stuff, apparently I forgot to run guilt refresh before I sent the
last patch out. Thank you,
Signed-off-by: Josef Bacik <jbacik@redhat.com>
|
|
This is a large change for adding compression on reading and writing,
both for inline and regular extents. It does some fairly large
surgery to the writeback paths.
Compression is off by default and enabled by mount -o compress. Even
when the -o compress mount option is not used, it is possible to read
compressed extents off the disk.
If compression for a given set of pages fails to make them smaller, the
file is flagged to avoid future compression attempts later.
* While finding delalloc extents, the pages are locked before being sent down
to the delalloc handler. This allows the delalloc handler to do complex things
such as cleaning the pages, marking them writeback and starting IO on their
behalf.
* Inline extents are inserted at delalloc time now. This allows us to compress
the data before inserting the inline extent, and it allows us to insert
an inline extent that spans multiple pages.
* All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
are changed to record both an in-memory size and an on disk size, as well
as a flag for compression.
From a disk format point of view, the extent pointers in the file are changed
to record the on disk size of a given extent and some encoding flags.
Space in the disk format is allocated for compression encoding, as well
as encryption and a generic 'other' field. Neither the encryption or the
'other' field are currently used.
In order to limit the amount of data read for a single random read in the
file, the size of a compressed extent is limited to 128k. This is a
software only limit, the disk format supports u64 sized compressed extents.
In order to limit the ram consumed while processing extents, the uncompressed
size of a compressed extent is limited to 256k. This is a software only limit
and will be subject to tuning later.
Checksumming is still done on compressed extents, and it is done on the
uncompressed version of the data. This way additional encodings can be
layered on without having to figure out which encoding to checksum.
Compression happens at delalloc time, which is basically singled threaded because
it is usually done by a single pdflush thread. This makes it tricky to
spread the compression load across all the cpus on the box. We'll have to
look at parallel pdflush walks of dirty inodes at a later time.
Decompression is hooked into readpages and it does spread across CPUs nicely.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This improves the comments at the top of many functions. It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.
extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* Add an EXTENT_BOUNDARY state bit to keep the writepage code
from merging data extents that are in the process of being
relocated. This allows us to do accounting for them properly.
* The balancing code relocates data extents indepdent of the underlying
inode. The extent_map code was modified to properly account for
things moving around (invalidating extent_map caches in the inode).
* Don't take the drop_mutex in the create_subvol ioctl. It isn't
required.
* Fix walking of the ordered extent list to avoid races with sys_unlink
* Change the lock ordering rules. Transaction start goes outside
the drop_mutex. This allows btrfs_commit_transaction to directly
drop the relocation trees.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Btrfs had compatibility code for kernels back to 2.6.18. These have
been removed, and will be maintained in a separate backport
git tree from now on.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This patch makes the back reference system to explicit record the
location of parent node for all types of extents. The location of
parent node is placed into the offset field of backref key. Every
time a tree block is balanced, the back references for the affected
lower level extents are updated.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
1) replace the per fs_info extent_io_tree that tracked free space with two
rb-trees per block group to track free space areas via offset and size. The
reason to do this is because most allocations come with a hint byte where to
start, so we can usually find a chunk of free space at that hint byte to satisfy
the allocation and get good space packing. If we cannot find free space at or
after the given offset we fall back on looking for a chunk of the given size as
close to that given offset as possible. When we fall back on the size search we
also try to find a slot as close to the size we want as possible, to avoid
breaking small chunks off of huge areas if possible.
2) remove the extent_io_tree that tracked the block group cache from fs_info and
replaced it with an rb-tree thats tracks block group cache via offset. also
added a per space_info list that tracks the block group cache for the particular
space so we can lookup related block groups easily.
3) cleaned up the allocation code to make it a little easier to read and a
little less complicated. Basically there are 3 steps, first look from our
provided hint. If we couldn't find from that given hint, start back at our
original search start and look for space from there. If that fails try to
allocate space if we can and start looking again. If not we're screwed and need
to start over again.
4) small fixes. there were some issues in volumes.c where we wouldn't allocate
the rest of the disk. fixed cow_file_range to actually pass the alloc_hint,
which has helped a good bit in making the fs_mark test I run have semi-normal
results as we run out of space. Generally with data allocations we don't track
where we last allocated from, so everytime we did a data allocation we'd search
through every block group that we have looking for free space. Now searching a
block group with no free space isn't terribly time consuming, it was causing a
slight degradation as we got more data block groups. The alloc_hint has fixed
this slight degredation and made things semi-normal.
There is still one nagging problem I'm working on where we will get ENOSPC when
there is definitely plenty of space. This only happens with metadata
allocations, and only when we are almost full. So you generally hit the 85%
mark first, but sometimes you'll hit the BUG before you hit the 85% wall. I'm
still tracking it down, but until then this seems to be pretty stable and make a
significant performance gain.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
* Pin down data blocks to prevent them from being reallocated like so:
trans 1: allocate file extent
trans 2: free file extent
trans 3: free file extent during old snapshot deletion
trans 3: allocate file extent to new file
trans 3: fsync new file
Before the tree logging code, this was legal because the fsync
would commit the transation that did the final data extent free
and the transaction that allocated the extent to the new file
at the same time.
With the tree logging code, the tree log subtransaction can commit
before the transaction that freed the extent. If we crash,
we're left with two different files using the extent.
* Don't wait in start_transaction if log replay is going on. This
avoids deadlocks from iput while we're cleaning up link counts in the
replay code.
* Don't deadlock in replay_one_name by trying to read an inode off
the disk while holding paths for the directory
* Hold the buffer lock while we mark a buffer as written. This
closes a race where someone is changing a buffer while we write it.
They are supposed to mark it dirty again after they change it, but
this violates the cow rules.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Fix a bunch of trivial sparse complaints.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
These ended up freeing objects while they were still using them. Under
guidance from Chris, just rip out the 'clever' bits and do things the
simple way.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Add backwards compatibility in compat.h
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
---
compat.h | 3 +++
extent_io.c | 3 ++-
2 files changed, 5 insertions(+), 1 deletions(-)
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Add a couple of #if's to follow API changes.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.
The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
It was incorrectly clearing the up to date flag on the buffer even
when the buffer properly verified.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Checksum items are not inserted into the tree until all of the io from a
given extent is complete. This means one dirty page from an extent may
be written, freed, and then read again before the entire extent is on disk
and the checksum item is inserted.
The checksums themselves are stored in the ordered extent so they can
be inserted in bulk when IO is complete. On read, if a checksum item isn't
found, the ordered extents were being searched for a checksum record.
This all worked most of the time, but the checksum insertion code tries
to reduce the number of tree operations by pre-inserting checksum items
based on i_size and a few other factors. This means the read code might
find a checksum item that hasn't yet really been filled in.
This commit changes things to check the ordered extents first and only
dive into the btree if nothing was found. This removes the need for
extra locking and is more reliable.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Stress testing was showing data checksum errors, most of which were caused
by a lookup bug in the extent_map tree. The tree was caching the last
pointer returned, and searches would check the last pointer first.
But, search callers also expect the search to return the very first
matching extent in the range, which wasn't always true with the last
pointer usage.
For now, the code to cache the last return value is just removed. It is
easy to fix, but I think lookups are rare enough that it isn't required anymore.
This commit also replaces do_sync_mapping_range with a local copy of the
related functions.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This replaces the use of the page cache lock bit for locking, which wasn't
suitable for block size < page size and couldn't be used recursively.
The mutexes alone don't fix either problem, but they are the first step.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Before, extent buffers were a temporary object, meant to map a number of pages
at once and collect operations on them.
But, a few extra fields have crept in, and they are also the best place to
store a per-tree block lock field as well. This commit puts the extent
buffers into an rbtree, and ensures a single extent buffer for each
tree block.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
It was possible for stale mappings from disk to be used instead of the
new pending ordered extent. This adds a flag to the extent map struct
to keep it pinned until the pending ordered extent is actually on disk.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Higher layers sometimes call set_page_dirty without asking the filesystem
to help. This causes many problems for the data=ordered and cow code.
This commit detects pages that haven't been properly setup for IO and
kicks off an async helper to deal with them.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|