Age | Commit message (Collapse) | Author |
|
Every transaction in btrfs creates a new snapshot, and then schedules the
snapshot from the last transaction for deletion. Snapshot deletion
works by walking down the btree and dropping the reference counts
on each btree block during the walk.
If if a given leaf or node has a reference count greater than one,
the reference count is decremented and the subtree pointed to by that
node is ignored.
If the reference count is one, walking continues down into that node
or leaf, and the references of everything it points to are decremented.
The old code would try to work in small pieces, walking down the tree
until it found the lowest leaf or node to free and then returning. This
was very friendly to the rest of the FS because it didn't have a huge
impact on other operations.
But it wouldn't always keep up with the rate that new commits added new
snapshots for deletion, and it wasn't very optimal for the extent
allocation tree because it wasn't finding leaves that were close together
on disk and processing them at the same time.
This changes things to walk down to a level 1 node and then process it
in bulk. All the leaf pointers are sorted and the leaves are dropped
in order based on their extent number.
The extent allocation tree and commit code are now fast enough for
this kind of bulk processing to work without slowing the rest of the FS
down. Overall it does less IO and is better able to keep up with
snapshot deletions under high load.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This improves the comments at the top of many functions. It didn't
dive into the guts of functions because I was trying to
avoid merging problems with the new allocator and back reference work.
extent-tree.c and volumes.c were both skipped, and there is definitely
more work todo in cleaning and commenting the code.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Btrfs has a cache of reference counts in leaves, allowing it to
avoid reading tree leaves while deleting snapshots. To reduce
contention with multiple subvolumes, this cache is private to each
subvolume.
This patch adds shared reference cache support. The new space
balancing code plays with multiple subvols at the same time, So
the old per-subvol reference cache is not well suited.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
The memory reclaiming issue happens when snapshot exists. In that
case, some cache entries may not be used during old snapshot dropping,
so they will remain in the cache until umount.
The patch adds a field to struct btrfs_leaf_ref to record create time. Besides,
the patch makes all dead roots of a given snapshot linked together in order of
create time. After a old snapshot was completely dropped, we check the dead
root list and remove all cache entries created before the oldest dead root in
the list.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
This changes the reference cache to make a single cache per root
instead of one cache per transaction, and to key by the byte number
of the disk block instead of the keys inside.
This makes it much less likely to have cache misses if a snapshot
or something has an extra reference on a higher node or a leaf while
the first transaction that added the leaf into the cache is dropping.
Some throttling is added to functions that free blocks heavily so they
wait for old transactions to drop.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|
|
Much of the IO done while dropping snapshots is done looking up
leaves in the filesystem trees to see if they point to any extents and
to drop the references on any extents found.
This creates a cache so that IO isn't required.
Signed-off-by: Chris Mason <chris.mason@oracle.com>
|