Age | Commit message (Collapse) | Author |
|
Migrate a page with buffers without requiring writeback
This introduces a new address space operation migratepage() that may be used
by a filesystem to implement its own version of page migration.
A version is provided that migrates buffers attached to pages. Some
filesystems (ext2, ext3, xfs) are modified to utilize this feature.
The swapper address space operation are modified so that a regular
migrate_page() will occur for anonymous pages without writeback (migrate_pages
forces every anonymous page to have a swap entry).
Signed-off-by: Mike Kravetz <kravetz@us.ibm.com>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch adds tests for the return value of sb_getblk() in the ext2/3
filesystems. In fs/buffer.c it is stated that the getblk() function never
fails. However, it does can return NULL in some situations due to I/O
errors, which may lead us to NULL pointer dereferences
Signed-off-by: Glauber de Oliveira Costa <glommer@br.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Update the file systems in fs/ implementing a delete_inode() callback to
call truncate_inode_pages(). One implementation note: In developing this
patch I put the calls to truncate_inode_pages() at the very top of those
filesystems delete_inode() callbacks in order to retain the previous
behavior. I'm guessing that some of those could probably be optimized.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Acked-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
These are the ext2 related parts. Ext2 now uses the xip_* file operations
along with the get_xip_page aop when mounted with -o xip.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Whilst trying to stress test a Promise SX8 card, we stumbled across
some nasty filesystem corruption in ext2. Our tests involved
creating an ext2 partition, mounting, running several concurrent
fsx's over it, umounting, and fsck'ing, all scripted[1]. The fsck
would always return with errors.
This regression was traced back to a change between 2.6.9 and
2.6.10, which moves the functionality of ext2_put_inode into
ext2_clear_inode. The attached patch reverses this change, and
eliminated the source of corruption.
Mingming Cao <cmm@us.ibm.com> said:
I think his patch for ext2 is correct. The corruption on ext3 is not the same
issue he saw on ext2. I believe that's the race between discard reservation
and reservation in-use that we already fixed it in 2.6.12- rc1.
For the problem related to ext2, at the time when we design reservation for
ext3, we decide we only need to discard the reservation at the last file
close, so we have ext3_discard_reservation on iput_final- >ext3_clear_inode.
The ext2 handle discard preallocation differently at that time, it discard the
preallocation at each iput(), not in input_final(), so we think it's
unnecessary to thrash it so frequently, and the right thing to do, as we did
for ext3 reservation, discard preallocation on last iput(). So we moved the
ext2_discard_preallocation from ext2_put_inode(0 to ext2_clear_inode.
Since ext2 preallocation is doing pre-allocation on disk, so it is possible
that at the unmount time, someone is still hold the reference of the inode, so
the preallocation for a file is not discard yet, so we still mark those blocks
allocated on disk, while they are not actually in the inode's block map, so
fsck will catch/fix that error later.
This is not a issue for ext3, as ext3 reservation(pre-allocation) is done in
memory.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|