Age | Commit message (Collapse) | Author |
|
Convert cpu_sibling_map from a static array sized by NR_CPUS to a per_cpu
variable. This saves sizeof(cpumask_t) * NR unused cpus. Access is mostly
from startup and CPU HOTPLUG functions.
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "Luck, Tony" <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove the SMT-nice feature which idles sibling cpus on SMT cpus to
facilitiate nice working properly where cpu power is shared. The idling of
cpus in the presence of runnable tasks is considered too fragile, easy to
break with outside code, and the complexity of managing this system if an
architecture comes along with many logical cores sharing cpu power will be
unworkable.
Remove the associated per_cpu_gain variable in sched_domains used only by
this code.
Also:
The reason is that with dynticks enabled, this code breaks without yet
further tweaks so dynticks brought on the rapid demise of this code. So
either we tweak this code or kill it off entirely. It was Ingo's preference
to kill it off. Either way this needs to happen for 2.6.21 since dynticks
has gone in.
Signed-off-by: Con Kolivas <kernel@kolivas.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Large sched domains can be very expensive to scan. Add an option SD_SERIALIZE
to the sched domain flags. If that flag is set then we make sure that no
other such domain is being balanced.
[akpm@osdl.org: build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Peter Williams <pwil3058@bigpond.net.au>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com>
Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Introduce the child field in sched_domain struct and use it in
sched_balance_self().
We will also use this field in cleaning up the sched group cpu_power
setup(done in a different patch) code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
sysfs entries 'sched_mc_power_savings' and 'sched_smt_power_savings' in
/sys/devices/system/cpu/ control the MC/SMT power savings policy for the
scheduler.
Based on the values (1-enable, 0-disable) for these controls, sched groups
cpu power will be determined for different domains. When power savings
policy is enabled and under light load conditions, scheduler will minimize
the physical packages/cpu cores carrying the load and thus conserving
power(with a perf impact based on the workload characteristics... see OLS
2005 CMP kernel scheduler paper for more details..)
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Con Kolivas <kernel@kolivas.org>
Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
RECLAIM_DISTANCE is checked on bootup against the SLIT table distances.
Zone reclaim is important for system that have higher latencies but not for
systems that have multiple nodes on one motherboard and therefore low latencies.
We found that on motherboard latencies are typically 1 to 1.4 of local memory
access speed whereas multinode systems which benefit from zone reclaim have
usually more than 1.5 times the latency of a local access.
Set the reclaim distance for IA64 to 1.5 times.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
The patch implements cpu topology exportation by sysfs.
Items (attributes) are similar to /proc/cpuinfo.
1) /sys/devices/system/cpu/cpuX/topology/physical_package_id:
represent the physical package id of cpu X;
2) /sys/devices/system/cpu/cpuX/topology/core_id:
represent the cpu core id to cpu X;
3) /sys/devices/system/cpu/cpuX/topology/thread_siblings:
represent the thread siblings to cpu X in the same core;
4) /sys/devices/system/cpu/cpuX/topology/core_siblings:
represent the thread siblings to cpu X in the same physical package;
To implement it in an architecture-neutral way, a new source file,
driver/base/topology.c, is to export the 5 attributes.
If one architecture wants to support this feature, it just needs to
implement 4 defines, typically in file include/asm-XXX/topology.h.
The 4 defines are:
#define topology_physical_package_id(cpu)
#define topology_core_id(cpu)
#define topology_thread_siblings(cpu)
#define topology_core_siblings(cpu)
The type of **_id is int.
The type of siblings is cpumask_t.
To be consistent on all architectures, the 4 attributes should have
deafult values if their values are unavailable. Below is the rule.
1) physical_package_id: If cpu has no physical package id, -1 is the
default value.
2) core_id: If cpu doesn't support multi-core, its core id is 0.
3) thread_siblings: Just include itself, if the cpu doesn't support
HT/multi-thread.
4) core_siblings: Just include itself, if the cpu doesn't support
multi-core and HT/Multi-thread.
So be careful when declaring the 4 defines in include/asm-XXX/topology.h.
If an attribute isn't defined on an architecture, it won't be exported.
Thank Nathan, Greg, Andi, Paul and Venki.
The patch provides defines for i386/x86_64/ia64.
Signed-off-by: Zhang, Yanmin <yanmin.zhang@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
If a node runs out of memory, ensure that memory on nodes w/o cpus is used
before using memory on nodes with cpus.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
)
From: Ingo Molnar <mingo@elte.hu>
This is the latest version of the scheduler cache-hot-auto-tune patch.
The first problem was that detection time scaled with O(N^2), which is
unacceptable on larger SMP and NUMA systems. To solve this:
- I've added a 'domain distance' function, which is used to cache
measurement results. Each distance is only measured once. This means
that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT
distances 0 and 1, and on SMP distance 0 is measured. The code walks
the domain tree to determine the distance, so it automatically follows
whatever hierarchy an architecture sets up. This cuts down on the boot
time significantly and removes the O(N^2) limit. The only assumption
is that migration costs can be expressed as a function of domain
distance - this covers the overwhelming majority of existing systems,
and is a good guess even for more assymetric systems.
[ People hacking systems that have assymetries that break this
assumption (e.g. different CPU speeds) should experiment a bit with
the cpu_distance() function. Adding a ->migration_distance factor to
the domain structure would be one possible solution - but lets first
see the problem systems, if they exist at all. Lets not overdesign. ]
Another problem was that only a single cache-size was used for measuring
the cost of migration, and most architectures didnt set that variable
up. Furthermore, a single cache-size does not fit NUMA hierarchies with
L3 caches and does not fit HT setups, where different CPUs will often
have different 'effective cache sizes'. To solve this problem:
- Instead of relying on a single cache-size provided by the platform and
sticking to it, the code now auto-detects the 'effective migration
cost' between two measured CPUs, via iterating through a wide range of
cachesizes. The code searches for the maximum migration cost, which
occurs when the working set of the test-workload falls just below the
'effective cache size'. I.e. real-life optimized search is done for
the maximum migration cost, between two real CPUs.
This, amongst other things, has the positive effect hat if e.g. two
CPUs share a L2/L3 cache, a different (and accurate) migration cost
will be found than between two CPUs on the same system that dont share
any caches.
(The reliable measurement of migration costs is tricky - see the source
for details.)
Furthermore i've added various boot-time options to override/tune
migration behavior.
Firstly, there's a blanket override for autodetection:
migration_cost=1000,2000,3000
will override the depth 0/1/2 values with 1msec/2msec/3msec values.
Secondly, there's a global factor that can be used to increase (or
decrease) the autodetected values:
migration_factor=120
will increase the autodetected values by 20%. This option is useful to
tune things in a workload-dependent way - e.g. if a workload is
cache-insensitive then CPU utilization can be maximized by specifying
migration_factor=0.
I've tested the autodetection code quite extensively on x86, on 3
P3/Xeon/2MB, and the autodetected values look pretty good:
Dual Celeron (128K L2 cache):
---------------------
migration cost matrix (max_cache_size: 131072, cpu: 467 MHz):
---------------------
[00] [01]
[00]: - 1.7(1)
[01]: 1.7(1) -
---------------------
cacheflush times [2]: 0.0 (0) 1.7 (1784008)
---------------------
Here the slow memory subsystem dominates system performance, and even
though caches are small, the migration cost is 1.7 msecs.
Dual HT P4 (512K L2 cache):
---------------------
migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz):
---------------------
[00] [01] [02] [03]
[00]: - 0.4(1) 0.0(0) 0.4(1)
[01]: 0.4(1) - 0.4(1) 0.0(0)
[02]: 0.0(0) 0.4(1) - 0.4(1)
[03]: 0.4(1) 0.0(0) 0.4(1) -
---------------------
cacheflush times [2]: 0.0 (33900) 0.4 (448514)
---------------------
Here it can be seen that there is no migration cost between two HT
siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory
system makes inter-physical-CPU migration pretty cheap: 0.4 msecs.
8-way P3/Xeon [2MB L2 cache]:
---------------------
migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz):
---------------------
[00] [01] [02] [03] [04] [05] [06] [07]
[00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1)
[04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1)
[05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1)
[06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1)
[07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) -
---------------------
cacheflush times [2]: 0.0 (0) 19.2 (19281756)
---------------------
This one has huge caches and a relatively slow memory subsystem - so the
migration cost is 19 msecs.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Ken Chen <kenneth.w.chen@intel.com>
Cc: <wilder@us.ibm.com>
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Fixes a compiler error in node_to_first_cpu, __ffs expects unsigned long as
a parameter; instead cpumask_t was being passed. The macro
node_to_first_cpu was not yet used in x86_64 and ia64 arches, and so we never
hit this. This patch replaces __ffs with first_cpu macro, similar to other
arches.
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Ravikiran G Thirumalai <kiran@scalex86.org>
Signed-off-by: Shai Fultheim <shai@scalex86.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: John Hawkes <hawkes@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
pcibus_to_node provides a way for the Linux kernel to identify to which
node a certain pcibus connects to. Allocations of control structures
for devices can then be made on the node where the pci bus is located
to allow local access during interrupt and other device manipulation.
This patch provides a new "node" field in the the pci_controller
structure. The node field will be set based on ACPI information (thanks
to Alex Williamson <alex.williamson@hp.com for that piece).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Do some basic initial tuning.
Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|