aboutsummaryrefslogtreecommitdiff
path: root/include/asm-ia64/topology.h
AgeCommit message (Collapse)Author
2008-04-19sched, cpuset: customize sched domains, coreHidetoshi Seto
[rebased for sched-devel/latest] - Add a new cpuset file, having levels: sched_relax_domain_level - Modify partition_sched_domains() and build_sched_domains() to take attributes parameter passed from cpuset. - Fill newidle_idx for node domains which currently unused but might be required if sched_relax_domain_level become higher. - We can change the default level by boot option 'relax_domain_level='. Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-04-19asm-generic: add node_to_cpumask_ptr macroMike Travis
Create a simple macro to always return a pointer to the node_to_cpumask(node) value. This relies on compiler optimization to remove the extra indirection: #define node_to_cpumask_ptr(v, node) \ cpumask_t _##v = node_to_cpumask(node), *v = &_##v For those systems with a large cpumask size, then a true pointer to the array element can be used: #define node_to_cpumask_ptr(v, node) \ cpumask_t *v = &(node_to_cpumask_map[node]) A node_to_cpumask_ptr_next() macro is provided to access another node_to_cpumask value. The other change is to always include asm-generic/topology.h moving the ifdef CONFIG_NUMA to this same file. Note: there are no references to either of these new macros in this patch, only the definition. Based on 2.6.25-rc5-mm1 # alpha Cc: Richard Henderson <rth@twiddle.net> # fujitsu Cc: David Howells <dhowells@redhat.com> # ia64 Cc: Tony Luck <tony.luck@intel.com> # powerpc Cc: Paul Mackerras <paulus@samba.org> Cc: Anton Blanchard <anton@samba.org> # sparc Cc: David S. Miller <davem@davemloft.net> Cc: William L. Irwin <wli@holomorphy.com> # x86 Cc: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Mike Travis <travis@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-16Convert cpu_sibling_map to be a per cpu variableMike Travis
Convert cpu_sibling_map from a static array sized by NR_CPUS to a per_cpu variable. This saves sizeof(cpumask_t) * NR unused cpus. Access is mostly from startup and CPU HOTPLUG functions. Signed-off-by: Mike Travis <travis@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: Christoph Lameter <clameter@sgi.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-05[PATCH] sched: remove SMT niceCon Kolivas
Remove the SMT-nice feature which idles sibling cpus on SMT cpus to facilitiate nice working properly where cpu power is shared. The idling of cpus in the presence of runnable tasks is considered too fragile, easy to break with outside code, and the complexity of managing this system if an architecture comes along with many logical cores sharing cpu power will be unworkable. Remove the associated per_cpu_gain variable in sched_domains used only by this code. Also: The reason is that with dynticks enabled, this code breaks without yet further tweaks so dynticks brought on the rapid demise of this code. So either we tweak this code or kill it off entirely. It was Ingo's preference to kill it off. Either way this needs to happen for 2.6.21 since dynticks has gone in. Signed-off-by: Con Kolivas <kernel@kolivas.org> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-12-10[PATCH] sched: add option to serialize load balancingChristoph Lameter
Large sched domains can be very expensive to scan. Add an option SD_SERIALIZE to the sched domain flags. If that flag is set then we make sure that no other such domain is being balanced. [akpm@osdl.org: build fix] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Peter Williams <pwil3058@bigpond.net.au> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Christoph Lameter <clameter@sgi.com> Cc: "Siddha, Suresh B" <suresh.b.siddha@intel.com> Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-03[PATCH] sched: introduce child field in sched_domainSiddha, Suresh B
Introduce the child field in sched_domain struct and use it in sched_balance_self(). We will also use this field in cleaning up the sched group cpu_power setup(done in a different patch) code. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-27[PATCH] sched: mc/smt power savings sched policySiddha, Suresh B
sysfs entries 'sched_mc_power_savings' and 'sched_smt_power_savings' in /sys/devices/system/cpu/ control the MC/SMT power savings policy for the scheduler. Based on the values (1-enable, 0-disable) for these controls, sched groups cpu power will be determined for different domains. When power savings policy is enabled and under light load conditions, scheduler will minimize the physical packages/cpu cores carrying the load and thus conserving power(with a perf impact based on the workload characteristics... see OLS 2005 CMP kernel scheduler paper for more details..) Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Con Kolivas <kernel@kolivas.org> Cc: "Chen, Kenneth W" <kenneth.w.chen@intel.com> Cc: "David S. Miller" <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-04-21[IA64] Setup an IA64 specific reclaim distanceChristoph Lameter
RECLAIM_DISTANCE is checked on bootup against the SLIT table distances. Zone reclaim is important for system that have higher latencies but not for systems that have multiple nodes on one motherboard and therefore low latencies. We found that on motherboard latencies are typically 1 to 1.4 of local memory access speed whereas multinode systems which benefit from zone reclaim have usually more than 1.5 times the latency of a local access. Set the reclaim distance for IA64 to 1.5 times. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-02-03[PATCH] Export cpu topology in sysfsZhang, Yanmin
The patch implements cpu topology exportation by sysfs. Items (attributes) are similar to /proc/cpuinfo. 1) /sys/devices/system/cpu/cpuX/topology/physical_package_id: represent the physical package id of cpu X; 2) /sys/devices/system/cpu/cpuX/topology/core_id: represent the cpu core id to cpu X; 3) /sys/devices/system/cpu/cpuX/topology/thread_siblings: represent the thread siblings to cpu X in the same core; 4) /sys/devices/system/cpu/cpuX/topology/core_siblings: represent the thread siblings to cpu X in the same physical package; To implement it in an architecture-neutral way, a new source file, driver/base/topology.c, is to export the 5 attributes. If one architecture wants to support this feature, it just needs to implement 4 defines, typically in file include/asm-XXX/topology.h. The 4 defines are: #define topology_physical_package_id(cpu) #define topology_core_id(cpu) #define topology_thread_siblings(cpu) #define topology_core_siblings(cpu) The type of **_id is int. The type of siblings is cpumask_t. To be consistent on all architectures, the 4 attributes should have deafult values if their values are unavailable. Below is the rule. 1) physical_package_id: If cpu has no physical package id, -1 is the default value. 2) core_id: If cpu doesn't support multi-core, its core id is 0. 3) thread_siblings: Just include itself, if the cpu doesn't support HT/multi-thread. 4) core_siblings: Just include itself, if the cpu doesn't support multi-core and HT/Multi-thread. So be careful when declaring the 4 defines in include/asm-XXX/topology.h. If an attribute isn't defined on an architecture, it won't be exported. Thank Nathan, Greg, Andi, Paul and Venki. The patch provides defines for i386/x86_64/ia64. Signed-off-by: Zhang, Yanmin <yanmin.zhang@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-01-17[IA64] Zonelists for nodes without cpusJack Steiner
If a node runs out of memory, ensure that memory on nodes w/o cpus is used before using memory on nodes with cpus. Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2006-01-12[PATCH] scheduler cache-hot-autodetectakpm@osdl.org
) From: Ingo Molnar <mingo@elte.hu> This is the latest version of the scheduler cache-hot-auto-tune patch. The first problem was that detection time scaled with O(N^2), which is unacceptable on larger SMP and NUMA systems. To solve this: - I've added a 'domain distance' function, which is used to cache measurement results. Each distance is only measured once. This means that e.g. on NUMA distances of 0, 1 and 2 might be measured, on HT distances 0 and 1, and on SMP distance 0 is measured. The code walks the domain tree to determine the distance, so it automatically follows whatever hierarchy an architecture sets up. This cuts down on the boot time significantly and removes the O(N^2) limit. The only assumption is that migration costs can be expressed as a function of domain distance - this covers the overwhelming majority of existing systems, and is a good guess even for more assymetric systems. [ People hacking systems that have assymetries that break this assumption (e.g. different CPU speeds) should experiment a bit with the cpu_distance() function. Adding a ->migration_distance factor to the domain structure would be one possible solution - but lets first see the problem systems, if they exist at all. Lets not overdesign. ] Another problem was that only a single cache-size was used for measuring the cost of migration, and most architectures didnt set that variable up. Furthermore, a single cache-size does not fit NUMA hierarchies with L3 caches and does not fit HT setups, where different CPUs will often have different 'effective cache sizes'. To solve this problem: - Instead of relying on a single cache-size provided by the platform and sticking to it, the code now auto-detects the 'effective migration cost' between two measured CPUs, via iterating through a wide range of cachesizes. The code searches for the maximum migration cost, which occurs when the working set of the test-workload falls just below the 'effective cache size'. I.e. real-life optimized search is done for the maximum migration cost, between two real CPUs. This, amongst other things, has the positive effect hat if e.g. two CPUs share a L2/L3 cache, a different (and accurate) migration cost will be found than between two CPUs on the same system that dont share any caches. (The reliable measurement of migration costs is tricky - see the source for details.) Furthermore i've added various boot-time options to override/tune migration behavior. Firstly, there's a blanket override for autodetection: migration_cost=1000,2000,3000 will override the depth 0/1/2 values with 1msec/2msec/3msec values. Secondly, there's a global factor that can be used to increase (or decrease) the autodetected values: migration_factor=120 will increase the autodetected values by 20%. This option is useful to tune things in a workload-dependent way - e.g. if a workload is cache-insensitive then CPU utilization can be maximized by specifying migration_factor=0. I've tested the autodetection code quite extensively on x86, on 3 P3/Xeon/2MB, and the autodetected values look pretty good: Dual Celeron (128K L2 cache): --------------------- migration cost matrix (max_cache_size: 131072, cpu: 467 MHz): --------------------- [00] [01] [00]: - 1.7(1) [01]: 1.7(1) - --------------------- cacheflush times [2]: 0.0 (0) 1.7 (1784008) --------------------- Here the slow memory subsystem dominates system performance, and even though caches are small, the migration cost is 1.7 msecs. Dual HT P4 (512K L2 cache): --------------------- migration cost matrix (max_cache_size: 524288, cpu: 2379 MHz): --------------------- [00] [01] [02] [03] [00]: - 0.4(1) 0.0(0) 0.4(1) [01]: 0.4(1) - 0.4(1) 0.0(0) [02]: 0.0(0) 0.4(1) - 0.4(1) [03]: 0.4(1) 0.0(0) 0.4(1) - --------------------- cacheflush times [2]: 0.0 (33900) 0.4 (448514) --------------------- Here it can be seen that there is no migration cost between two HT siblings (CPU#0/2 and CPU#1/3 are separate physical CPUs). A fast memory system makes inter-physical-CPU migration pretty cheap: 0.4 msecs. 8-way P3/Xeon [2MB L2 cache]: --------------------- migration cost matrix (max_cache_size: 2097152, cpu: 700 MHz): --------------------- [00] [01] [02] [03] [04] [05] [06] [07] [00]: - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [01]: 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [02]: 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) [03]: 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) 19.2(1) [04]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) 19.2(1) [05]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) 19.2(1) [06]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - 19.2(1) [07]: 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) 19.2(1) - --------------------- cacheflush times [2]: 0.0 (0) 19.2 (19281756) --------------------- This one has huge caches and a relatively slow memory subsystem - so the migration cost is 19 msecs. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Cc: <wilder@us.ibm.com> Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-12-24[PATCH] x86_64/ia64 : Fix compilation error for node_to_first_cpuRavikiran G Thirumalai
Fixes a compiler error in node_to_first_cpu, __ffs expects unsigned long as a parameter; instead cpumask_t was being passed. The macro node_to_first_cpu was not yet used in x86_64 and ia64 arches, and so we never hit this. This patch replaces __ffs with first_cpu macro, similar to other arches. Signed-off-by: Alok N Kataria <alokk@calsoftinc.com> Signed-off-by: Ravikiran G Thirumalai <kiran@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-07[PATCH] cpusets: Move the ia64 domain setup code to the generic codeJohn Hawkes
Signed-off-by: John Hawkes <hawkes@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-12[IA64] pcibus_to_node implementation for IA64Christoph Lameter
pcibus_to_node provides a way for the Linux kernel to identify to which node a certain pcibus connects to. Allocations of control structures for devices can then be made on the node where the pci bus is located to allow local access during interrupt and other device manipulation. This patch provides a new "node" field in the the pci_controller structure. The node field will be set based on ACPI information (thanks to Alex Williamson <alex.williamson@hp.com for that piece). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Tony Luck <tony.luck@intel.com>
2005-06-25[PATCH] sched: sched tuningNick Piggin
Do some basic initial tuning. Signed-off-by: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!