Age | Commit message (Collapse) | Author |
|
1) The TSB lookup was not using the correct hash mask.
2) It was not aligned on a boundary equal to it's size,
which is required by the sun4v Hypervisor.
wasn't having it's return value checked, and that bug will be fixed up
as well in a subsequent changeset.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We have to make sure to use base-pagesize TLB entries even during the
early transition period where we need TLB miss handling but don't have
the kernel page tables setup yet for the linear region.
Also, it is necessary therefore to not use the 4MB TSB for these
translations, and instead use the normal kernel TSB. This allows us
to also get rid of the 4MB tsb for debug builds which shrinks the
kernel a little bit.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
It can map all of the linear kernel mappings with zero TSB hash
conflicts for systems with 16GB or less ram. In such cases, on
SUN4V, once we load up this TSB the first time with all the
mappings, we never take a linear kernel mapping TLB miss ever
again, the hypervisor handles them all.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The SUN4V convention with non-shared TSBs is that the context
bit of the TAG is clear. So we have to choose an "invalid"
bit and initialize new TSBs appropriately. Otherwise a zero
TAG looks "valid".
Make sure, for the window fixup cases, that we use the right
global registers and that we don't potentially trample on
the live global registers in etrap/rtrap handling (%g2 and
%g6) and that we put the missing virtual address properly
in %g5.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Things are a little tricky because, unlike sun4u, we have
to:
1) do a hypervisor trap to do the TLB load.
2) do the TSB lookup calculations by hand
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This way we don't need to lock the TSB into the TLB.
The trick is that every TSB load/store is registered into
a special instruction patch section. The default uses
virtual addresses, and the patch instructions use physical
address load/stores.
We can't do this on all chips because only cheetah+ and later
have the physical variant of the atomic quad load.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The TSB_LOCK_BIT define is actually a special
value shifted down by 32-bits for the assembler
code macros.
In C code, this isn't what we want.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This also cleans up tsb_context_switch(). The assembler
routine is now __tsb_context_switch() and the former is
an inline function that picks out the bits from the mm_struct
and passes it into the assembler code as arguments.
setup_tsb_parms() computes the locked TLB entry to map the
TSB. Later when we support using the physical address quad
load instructions of Cheetah+ and later, we'll simply use
the physical address for the TSB register value and set
the map virtual and PTE both to zero.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We now use the TSB hardware assist features of the UltraSPARC
MMUs.
SMP is currently knowingly broken, we need to find another place
to store the per-cpu base pointers. We hid them away in the TSB
base register, and that obviously will not work any more :-)
Another known broken case is non-8KB base page size.
Also noticed that flush_tlb_all() is not referenced anywhere, only
the internal __flush_tlb_all() (local cpu only) is used by the
sparc64 port, so we can get rid of flush_tlb_all().
The kernel gets it's own 8KB TSB (swapper_tsb) and each address space
gets it's own private 8K TSB. Later we can add code to dynamically
increase the size of per-process TSB as the RSS grows. An 8KB TSB is
good enough for up to about a 4MB RSS, after which the TSB starts to
incur many capacity and conflict misses.
We even accumulate OBP translations into the kernel TSB.
Another area for refinement is large page size support. We could use
a secondary address space TSB to handle those.
Signed-off-by: David S. Miller <davem@davemloft.net>
|