Age | Commit message (Collapse) | Author |
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Some architectures provide an execve function that does not set errno, but
instead returns the result code directly. Rename these to kernel_execve to
get the right semantics there. Moreover, there is no reasone for any of these
architectures to still provide __KERNEL_SYSCALLS__ or _syscallN macros, so
remove these right away.
[akpm@osdl.org: build fix]
[bunk@stusta.de: build fix]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andi Kleen <ak@muc.de>
Acked-by: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ian Molton <spyro@f2s.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Hirokazu Takata <takata.hirokazu@renesas.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Richard Curnow <rc@rc0.org.uk>
Cc: William Lee Irwin III <wli@holomorphy.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Miles Bader <uclinux-v850@lsi.nec.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
For NUMA optimization and some other algorithms it is useful to have a fast
to get the current CPU and node numbers in user space.
x86-64 added a fast way to do this in a vsyscall. This adds a generic
syscall for other architectures to make it a generic portable facility.
I expect some of them will also implement it as a faster vsyscall.
The cache is an optimization for the x86-64 vsyscall optimization. Since
what the syscall returns is an approximation anyways and user space
often wants very fast results it can be cached for some time. The norma
methods to get this information in user space are relatively slow
The vsyscall is in a better position to manage the cache because it has direct
access to a fast time stamp (jiffies). For the generic syscall optimization
it doesn't help much, but enforce a valid argument to keep programs
portable
I only added an i386 syscall entry for now. Other architectures can follow
as needed.
AK: Also added some cleanups from Andrew Morton
Signed-off-by: Andi Kleen <ak@suse.de>
|
|
We are pleased to announce "lightweight userspace priority inheritance" (PI)
support for futexes. The following patchset and glibc patch implements it,
ontop of the robust-futexes patchset which is included in 2.6.16-mm1.
We are calling it lightweight for 3 reasons:
- in the user-space fastpath a PI-enabled futex involves no kernel work
(or any other PI complexity) at all. No registration, no extra kernel
calls - just pure fast atomic ops in userspace.
- in the slowpath (in the lock-contention case), the system call and
scheduling pattern is in fact better than that of normal futexes, due to
the 'integrated' nature of FUTEX_LOCK_PI. [more about that further down]
- the in-kernel PI implementation is streamlined around the mutex
abstraction, with strict rules that keep the implementation relatively
simple: only a single owner may own a lock (i.e. no read-write lock
support), only the owner may unlock a lock, no recursive locking, etc.
Priority Inheritance - why, oh why???
-------------------------------------
Many of you heard the horror stories about the evil PI code circling Linux for
years, which makes no real sense at all and is only used by buggy applications
and which has horrible overhead. Some of you have dreaded this very moment,
when someone actually submits working PI code ;-)
So why would we like to see PI support for futexes?
We'd like to see it done purely for technological reasons. We dont think it's
a buggy concept, we think it's useful functionality to offer to applications,
which functionality cannot be achieved in other ways. We also think it's the
right thing to do, and we think we've got the right arguments and the right
numbers to prove that. We also believe that we can address all the
counter-arguments as well. For these reasons (and the reasons outlined below)
we are submitting this patch-set for upstream kernel inclusion.
What are the benefits of PI?
The short reply:
----------------
User-space PI helps achieving/improving determinism for user-space
applications. In the best-case, it can help achieve determinism and
well-bound latencies. Even in the worst-case, PI will improve the statistical
distribution of locking related application delays.
The longer reply:
-----------------
Firstly, sharing locks between multiple tasks is a common programming
technique that often cannot be replaced with lockless algorithms. As we can
see it in the kernel [which is a quite complex program in itself], lockless
structures are rather the exception than the norm - the current ratio of
lockless vs. locky code for shared data structures is somewhere between 1:10
and 1:100. Lockless is hard, and the complexity of lockless algorithms often
endangers to ability to do robust reviews of said code. I.e. critical RT
apps often choose lock structures to protect critical data structures, instead
of lockless algorithms. Furthermore, there are cases (like shared hardware,
or other resource limits) where lockless access is mathematically impossible.
Media players (such as Jack) are an example of reasonable application design
with multiple tasks (with multiple priority levels) sharing short-held locks:
for example, a highprio audio playback thread is combined with medium-prio
construct-audio-data threads and low-prio display-colory-stuff threads. Add
video and decoding to the mix and we've got even more priority levels.
So once we accept that synchronization objects (locks) are an unavoidable fact
of life, and once we accept that multi-task userspace apps have a very fair
expectation of being able to use locks, we've got to think about how to offer
the option of a deterministic locking implementation to user-space.
Most of the technical counter-arguments against doing priority inheritance
only apply to kernel-space locks. But user-space locks are different, there
we cannot disable interrupts or make the task non-preemptible in a critical
section, so the 'use spinlocks' argument does not apply (user-space spinlocks
have the same priority inversion problems as other user-space locking
constructs). Fact is, pretty much the only technique that currently enables
good determinism for userspace locks (such as futex-based pthread mutexes) is
priority inheritance:
Currently (without PI), if a high-prio and a low-prio task shares a lock [this
is a quite common scenario for most non-trivial RT applications], even if all
critical sections are coded carefully to be deterministic (i.e. all critical
sections are short in duration and only execute a limited number of
instructions), the kernel cannot guarantee any deterministic execution of the
high-prio task: any medium-priority task could preempt the low-prio task while
it holds the shared lock and executes the critical section, and could delay it
indefinitely.
Implementation:
---------------
As mentioned before, the userspace fastpath of PI-enabled pthread mutexes
involves no kernel work at all - they behave quite similarly to normal
futex-based locks: a 0 value means unlocked, and a value==TID means locked.
(This is the same method as used by list-based robust futexes.) Userspace uses
atomic ops to lock/unlock these mutexes without entering the kernel.
To handle the slowpath, we have added two new futex ops:
FUTEX_LOCK_PI
FUTEX_UNLOCK_PI
If the lock-acquire fastpath fails, [i.e. an atomic transition from 0 to TID
fails], then FUTEX_LOCK_PI is called. The kernel does all the remaining work:
if there is no futex-queue attached to the futex address yet then the code
looks up the task that owns the futex [it has put its own TID into the futex
value], and attaches a 'PI state' structure to the futex-queue. The pi_state
includes an rt-mutex, which is a PI-aware, kernel-based synchronization
object. The 'other' task is made the owner of the rt-mutex, and the
FUTEX_WAITERS bit is atomically set in the futex value. Then this task tries
to lock the rt-mutex, on which it blocks. Once it returns, it has the mutex
acquired, and it sets the futex value to its own TID and returns. Userspace
has no other work to perform - it now owns the lock, and futex value contains
FUTEX_WAITERS|TID.
If the unlock side fastpath succeeds, [i.e. userspace manages to do a TID ->
0 atomic transition of the futex value], then no kernel work is triggered.
If the unlock fastpath fails (because the FUTEX_WAITERS bit is set), then
FUTEX_UNLOCK_PI is called, and the kernel unlocks the futex on the behalf of
userspace - and it also unlocks the attached pi_state->rt_mutex and thus wakes
up any potential waiters.
Note that under this approach, contrary to other PI-futex approaches, there is
no prior 'registration' of a PI-futex. [which is not quite possible anyway,
due to existing ABI properties of pthread mutexes.]
Also, under this scheme, 'robustness' and 'PI' are two orthogonal properties
of futexes, and all four combinations are possible: futex, robust-futex,
PI-futex, robust+PI-futex.
glibc support:
--------------
Ulrich Drepper and Jakub Jelinek have written glibc support for PI-futexes
(and robust futexes), enabling robust and PI (PTHREAD_PRIO_INHERIT) POSIX
mutexes. (PTHREAD_PRIO_PROTECT support will be added later on too, no
additional kernel changes are needed for that). [NOTE: The glibc patch is
obviously inofficial and unsupported without matching upstream kernel
functionality.]
the patch-queue and the glibc patch can also be downloaded from:
http://redhat.com/~mingo/PI-futex-patches/
Many thanks go to the people who helped us create this kernel feature: Steven
Rostedt, Esben Nielsen, Benedikt Spranger, Daniel Walker, John Cooper, Arjan
van de Ven, Oleg Nesterov and others. Credits for related prior projects goes
to Dirk Grambow, Inaky Perez-Gonzalez, Bill Huey and many others.
Clean up the futex code, before adding more features to it:
- use u32 as the futex field type - that's the ABI
- use __user and pointers to u32 instead of unsigned long
- code style / comment style cleanups
- rename hash-bucket name from 'bh' to 'hb'.
I checked the pre and post futex.o object files to make sure this
patch has no code effects.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The definition of the third parameter is a pointer to an array of virtual
addresses which give us some trouble. The existing code calculated the
wrong address in the array since I used void to avoid having to specify a
type.
I now use the correct type "compat_uptr_t __user *" in the definition of
the function in kernel/compat.c.
However, I used __u32 in syscalls.h. Would have to include compat.h there
in order to provide the same definition which would generate an ugly
include situation.
On both ia64 and x86_64 compat_uptr_t is u32. So this works although
parameter declarations differ.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
sys_move_pages() support for 32bit (i386 plus x86_64 compat layer)
Add support for move_pages() on i386 and also add the compat functions
necessary to run 32 bit binaries on x86_64.
Add compat_sys_move_pages to the x86_64 32bit binary layer. Note that it is
not up to date so I added the missing pieces. Not sure if this is done the
right way.
[akpm@osdl.org: compile fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
move_pages() is used to move individual pages of a process. The function can
be used to determine the location of pages and to move them onto the desired
node. move_pages() returns status information for each page.
long move_pages(pid, number_of_pages_to_move,
addresses_of_pages[],
nodes[] or NULL,
status[],
flags);
The addresses of pages is an array of void * pointing to the
pages to be moved.
The nodes array contains the node numbers that the pages should be moved
to. If a NULL is passed instead of an array then no pages are moved but
the status array is updated. The status request may be used to determine
the page state before issuing another move_pages() to move pages.
The status array will contain the state of all individual page migration
attempts when the function terminates. The status array is only valid if
move_pages() completed successfullly.
Possible page states in status[]:
0..MAX_NUMNODES The page is now on the indicated node.
-ENOENT Page is not present
-EACCES Page is mapped by multiple processes and can only
be moved if MPOL_MF_MOVE_ALL is specified.
-EPERM The page has been mlocked by a process/driver and
cannot be moved.
-EBUSY Page is busy and cannot be moved. Try again later.
-EFAULT Invalid address (no VMA or zero page).
-ENOMEM Unable to allocate memory on target node.
-EIO Unable to write back page. The page must be written
back in order to move it since the page is dirty and the
filesystem does not provide a migration function that
would allow the moving of dirty pages.
-EINVAL A dirty page cannot be moved. The filesystem does not provide
a migration function and has no ability to write back pages.
The flags parameter indicates what types of pages to move:
MPOL_MF_MOVE Move pages that are only mapped by the process.
MPOL_MF_MOVE_ALL Also move pages that are mapped by multiple processes.
Requires sufficient capabilities.
Possible return codes from move_pages()
-ENOENT No pages found that would require moving. All pages
are either already on the target node, not present, had an
invalid address or could not be moved because they were
mapped by multiple processes.
-EINVAL Flags other than MPOL_MF_MOVE(_ALL) specified or an attempt
to migrate pages in a kernel thread.
-EPERM MPOL_MF_MOVE_ALL specified without sufficient priviledges.
or an attempt to move a process belonging to another user.
-EACCES One of the target nodes is not allowed by the current cpuset.
-ENODEV One of the target nodes is not online.
-ESRCH Process does not exist.
-E2BIG Too many pages to move.
-ENOMEM Not enough memory to allocate control array.
-EFAULT Parameters could not be accessed.
A test program for move_pages() may be found with the patches
on ftp.kernel.org:/pub/linux/kernel/people/christoph/pmig/patches-2.6.17-rc4-mm3
From: Christoph Lameter <clameter@sgi.com>
Detailed results for sys_move_pages()
Pass a pointer to an integer to get_new_page() that may be used to
indicate where the completion status of a migration operation should be
placed. This allows sys_move_pags() to report back exactly what happened to
each page.
Wish there would be a better way to do this. Looks a bit hacky.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Jes Sorensen <jes@trained-monkey.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts:
include/asm-powerpc/unistd.h
include/asm-sparc/unistd.h
include/asm-sparc64/unistd.h
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Paul Mackerras <paulus@samba.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
sys_splice() moves data to/from pipes with a file input/output. sys_vmsplice()
moves data to a pipe, with the input being a user address range instead.
This uses an approach suggested by Linus, where we can hold partial ranges
inside the pages[] map. Hopefully this will be useful for network
receive support as well.
Signed-off-by: Jens Axboe <axboe@suse.de>
|
|
Basically an in-kernel implementation of tee, which uses splice and the
pipe buffers as an intelligent way to pass data around by reference.
Where the user space tee consumes the input and produces a stdout and
file output, this syscall merely duplicates the data inside a pipe to
another pipe. No data is copied, the output just grabs a reference to the
input pipe data.
Signed-off-by: Jens Axboe <axboe@suse.de>
|
|
* 'splice' of git://brick.kernel.dk/data/git/linux-2.6-block:
[PATCH] vfs: add splice_write and splice_read to documentation
[PATCH] Remove sys_ prefix of new syscalls from __NR_sys_*
[PATCH] splice: warning fix
[PATCH] another round of fs/pipe.c cleanups
[PATCH] splice: comment styles
[PATCH] splice: add Ingo as addition copyright holder
[PATCH] splice: unlikely() optimizations
[PATCH] splice: speedups and optimizations
[PATCH] pipe.c/fifo.c code cleanups
[PATCH] get rid of the PIPE_*() macros
[PATCH] splice: speedup __generic_file_splice_read
[PATCH] splice: add direct fd <-> fd splicing support
[PATCH] splice: add optional input and output offsets
[PATCH] introduce a "kernel-internal pipe object" abstraction
[PATCH] splice: be smarter about calling do_page_cache_readahead()
[PATCH] splice: optimize the splice buffer mapping
[PATCH] splice: cleanup __generic_file_splice_read()
[PATCH] splice: only call wake_up_interruptible() when we really have to
[PATCH] splice: potential !page dereference
[PATCH] splice: mark the io page as accessed
|
|
Ulrich suggested that the `flags' arg to sync_file_range() become unsigned.
Cc: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
add optional input and output offsets to sys_splice(), for seekable file
descriptors:
asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
int fd_out, loff_t __user *off_out,
size_t len, unsigned int flags);
semantics are straightforward: f_pos will be updated with the offset
provided by user-space, before the splice transfer is about to begin.
Providing a NULL offset pointer means the existing f_pos will be used
(and updated in situ). Providing an offset for a pipe results in
-ESPIPE. Providing an invalid offset pointer results in -EFAULT.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Jens Axboe <axboe@suse.de>
|
|
Remove the recently-added LINUX_FADV_ASYNC_WRITE and LINUX_FADV_WRITE_WAIT
fadvise() additions, do it in a new sys_sync_file_range() syscall instead.
Reasons:
- It's more flexible. Things which would require two or three syscalls with
fadvise() can be done in a single syscall.
- Using fadvise() in this manner is something not covered by POSIX.
The patch wires up the syscall for x86.
The sycall is implemented in the new fs/sync.c. The intention is that we can
move sys_fsync(), sys_fdatasync() and perhaps sys_sync() into there later.
Documentation for the syscall is in fs/sync.c.
A test app (sync_file_range.c) is in
http://www.zip.com.au/~akpm/linux/patches/stuff/ext3-tools.tar.gz.
The available-to-GPL-modules do_sync_file_range() is for knfsd: "A COMMIT can
say NFS_DATA_SYNC or NFS_FILE_SYNC. I can skip the ->fsync call for
NFS_DATA_SYNC which is hopefully the more common."
Note: the `async' writeout mode SYNC_FILE_RANGE_WRITE will turn synchronous if
the queue is congested. This is trivial to fix: add a new flag bit, set
wbc->nonblocking. But I'm not sure that we want to expose implementation
details down to that level.
Note: it's notable that we can sync an fd which wasn't opened for writing.
Same with fsync() and fdatasync()).
Note: the code takes some care to handle attempts to sync file contents
outside the 16TB offset on 32-bit machines. It makes such attempts appear to
succeed, for best 32-bit/64-bit compatibility. Perhaps it should make such
requests fail...
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Michael Kerrisk <mtk-manpages@gmx.net>
Cc: Ulrich Drepper <drepper@redhat.com>
Cc: Neil Brown <neilb@cse.unsw.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This adds support for the sys_splice system call. Using a pipe as a
transport, it can connect to files or sockets (latter as output only).
From the splice.c comments:
"splice": joining two ropes together by interweaving their strands.
This is the "extended pipe" functionality, where a pipe is used as
an arbitrary in-memory buffer. Think of a pipe as a small kernel
buffer that you can use to transfer data from one end to the other.
The traditional unix read/write is extended with a "splice()" operation
that transfers data buffers to or from a pipe buffer.
Named by Larry McVoy, original implementation from Linus, extended by
Jens to support splicing to files and fixing the initial implementation
bugs.
Signed-off-by: Jens Axboe <axboe@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
All architecture independent system calls should be declared
in syscalls.h, add the one that is missing.
Signed-off-by: Arnd Bergmann <arnd.bergmann@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
I'm currently at the POSIX meeting and one thing covered was the
incompatibility of Linux's link() with the POSIX definition. The name.
Linux does not follow symlinks, POSIX requires it does.
Even if somebody thinks this is a good default behavior we cannot change this
because it would break the ABI. But the fact remains that some application
might want this behavior.
We have one chance to help implementing this without breaking the behavior.
For this we could use the new linkat interface which would need a new
flags parameter. If the new parameter is AT_SYMLINK_FOLLOW the new
behavior could be invoked.
I do not want to introduce such a patch now. But we could add the
parameter now, just don't use it. The patch below would do this. Can we
get this late patch applied before the release more or less fixes the
syscall API?
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The *at patches introduced fstatat and, due to inusfficient research, I
used the newfstat functions generally as the guideline. The result is that
on 32-bit platforms we don't have all the information needed to implement
fstatat64.
This patch modifies the code to pass up 64-bit information if
__ARCH_WANT_STAT64 is defined. I renamed the syscall entry point to make
this clear. Other archs will continue to use the existing code. On x86-64
the compat code is implemented using a new sys32_ function. this is what
is done for the other stat syscalls as well.
This patch might break some other archs (those which define
__ARCH_WANT_STAT64 and which already wired up the syscall). Yet others
might need changes to accomodate the compatibility mode. I really don't
want to do that work because all this stat handling is a mess (more so in
glibc, but the kernel is also affected). It should be done by the arch
maintainers. I'll provide some stand-alone test shortly. Those who are
eager could compile glibc and run 'make check' (no installation needed).
The patch below has been tested on x86 and x86-64.
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Most of the 64 bit architectures will zero extend the first argument to
compat_sys_{openat,newfstatat,futimesat} which will fail if the 32 bit
syscall was passed AT_FDCWD (which is a small negative number). Declare
the first argument to be an unsigned int which will force the correct
sign extension when the internal functions are called in each case.
Also, do some small white space cleanups in fs/compat.c.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Here's the follow-up patch which introduces the prototypes for the new
syscalls. There was also a typo in one of the new symbols.
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
All standard system calls should be declared in include/linux/syscalls.h.
Add some of the new additions that were previously missed.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
sys_migrate_pages implementation using swap based page migration
This is the original API proposed by Ray Bryant in his posts during the first
half of 2005 on linux-mm@kvack.org and linux-kernel@vger.kernel.org.
The intent of sys_migrate is to migrate memory of a process. A process may
have migrated to another node. Memory was allocated optimally for the prior
context. sys_migrate_pages allows to shift the memory to the new node.
sys_migrate_pages is also useful if the processes available memory nodes have
changed through cpuset operations to manually move the processes memory. Paul
Jackson is working on an automated mechanism that will allow an automatic
migration if the cpuset of a process is changed. However, a user may decide
to manually control the migration.
This implementation is put into the policy layer since it uses concepts and
functions that are also needed for mbind and friends. The patch also provides
a do_migrate_pages function that may be useful for cpusets to automatically
move memory. sys_migrate_pages does not modify policies in contrast to Ray's
implementation.
The current code here is based on the swap based page migration capability and
thus is not able to preserve the physical layout relative to it containing
nodeset (which may be a cpuset). When direct page migration becomes available
then the implementation needs to be changed to do a isomorphic move of pages
between different nodesets. The current implementation simply evicts all
pages in source nodeset that are not in the target nodeset.
Patch supports ia64, i386 and x86_64.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This is the current version of the spu file system, used
for driving SPEs on the Cell Broadband Engine.
This release is almost identical to the version for the
2.6.14 kernel posted earlier, which is available as part
of the Cell BE Linux distribution from
http://www.bsc.es/projects/deepcomputing/linuxoncell/.
The first patch provides all the interfaces for running
spu application, but does not have any support for
debugging SPU tasks or for scheduling. Both these
functionalities are added in the subsequent patches.
See Documentation/filesystems/spufs.txt on how to use
spufs.
Signed-off-by: Arnd Bergmann <arndb@de.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
Make sure we always return, as all syscalls should. Also move the common
prototype to <linux/syscalls.h>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
- Make ioprio syscalls return long, like set/getpriority syscalls.
- Move function prototypes into syscalls.h so we can pick them up in the
32/64bit compat code.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Jens Axboe <axboe@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
o Following patch provides purely cosmetic changes and corrects CodingStyle
guide lines related certain issues like below in kexec related files
o braces for one line "if" statements, "for" loops,
o more than 80 column wide lines,
o No space after "while", "for" and "switch" key words
o Changes:
o take-2: Removed the extra tab before "case" key words.
o take-3: Put operator at the end of line and space before "*/"
Signed-off-by: Maneesh Soni <maneesh@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This patch introduces the architecture independent implementation the
sys_kexec_load, the compat_sys_kexec_load system calls.
Kexec on panic support has been integrated into the core patch and is
relatively clean.
In addition the hopefully architecture independent option
crashkernel=size@location has been docuemented. It's purpose is to reserve
space for the panic kernel to live, and where no DMA transfer will ever be
setup to access.
Signed-off-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Alexander Nyberg <alexn@telia.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Vivek Goyal <vgoyal@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|