aboutsummaryrefslogtreecommitdiff
path: root/mm/slab.c
AgeCommit message (Collapse)Author
2007-05-07Slab allocators: remove useless __GFP_NO_GROW flagChristoph Lameter
There is no user remaining and I have never seen any use of that flag. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove SLAB_CTOR_ATOMICChristoph Lameter
SLAB_CTOR atomic is never used which is no surprise since I cannot imagine that one would want to do something serious in a constructor or destructor. In particular given that the slab allocators run with interrupts disabled. Actions in constructors and destructors are by their nature very limited and usually do not go beyond initializing variables and list operations. (The i386 pgd ctor and dtors do take a spinlock in constructor and destructor..... I think that is the furthest we go at this point.) There is no flag passed to the destructor so removing SLAB_CTOR_ATOMIC also establishes a certain symmetry. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove SLAB_DEBUG_INITIAL flagChristoph Lameter
I have never seen a use of SLAB_DEBUG_INITIAL. It is only supported by SLAB. I think its purpose was to have a callback after an object has been freed to verify that the state is the constructor state again? The callback is performed before each freeing of an object. I would think that it is much easier to check the object state manually before the free. That also places the check near the code object manipulation of the object. Also the SLAB_DEBUG_INITIAL callback is only performed if the kernel was compiled with SLAB debugging on. If there would be code in a constructor handling SLAB_DEBUG_INITIAL then it would have to be conditional on SLAB_DEBUG otherwise it would just be dead code. But there is no such code in the kernel. I think SLUB_DEBUG_INITIAL is too problematic to make real use of, difficult to understand and there are easier ways to accomplish the same effect (i.e. add debug code before kfree). There is a related flag SLAB_CTOR_VERIFY that is frequently checked to be clear in fs inode caches. Remove the pointless checks (they would even be pointless without removeal of SLAB_DEBUG_INITIAL) from the fs constructors. This is the last slab flag that SLUB did not support. Remove the check for unimplemented flags from SLUB. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07fault injection: fix failslab with CONFIG_NUMAAkinobu Mita
Currently failslab injects failures into ____cache_alloc(). But with enabling CONFIG_NUMA it's not enough to let actual slab allocator functions (kmalloc, kmem_cache_alloc, ...) return NULL. This patch moves fault injection hook inside of __cache_alloc() and __cache_alloc_node(). These are lower call path than ____cache_alloc() and enable to inject faulures to slab allocators with CONFIG_NUMA. Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab allocators: Remove obsolete SLAB_MUST_HWCACHE_ALIGNChristoph Lameter
This patch was recently posted to lkml and acked by Pekka. The flag SLAB_MUST_HWCACHE_ALIGN is 1. Never checked by SLAB at all. 2. A duplicate of SLAB_HWCACHE_ALIGN for SLUB 3. Fulfills the role of SLAB_HWCACHE_ALIGN for SLOB. The only remaining use is in sparc64 and ppc64 and their use there reflects some earlier role that the slab flag once may have had. If its specified then SLAB_HWCACHE_ALIGN is also specified. The flag is confusing, inconsistent and has no purpose. Remove it. Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07include KERN_* constant in printk() calls in mm/slab.cmatze
Signed-off-by: Matthias Kaehlcke <matthias.kaehlcke@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07Add virt_to_head_page and consolidate code in slab and slubChristoph Lameter
Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07Make page->private usable in compound pagesChristoph Lameter
If we add a new flag so that we can distinguish between the first page and the tail pages then we can avoid to use page->private in the first page. page->private == page for the first page, so there is no real information in there. Freeing up page->private makes the use of compound pages more transparent. They become more usable like real pages. Right now we have to be careful f.e. if we are going beyond PAGE_SIZE allocations in the slab on i386 because we can then no longer use the private field. This is one of the issues that cause us not to support debugging for page size slabs in SLAB. Having page->private available for SLUB would allow more meta information in the page struct. I can probably avoid the 16 bit ints that I have in there right now. Also if page->private is available then a compound page may be equipped with buffer heads. This may free up the way for filesystems to support larger blocks than page size. We add PageTail as an alias of PageReclaim. Compound pages cannot currently be reclaimed. Because of the alias one needs to check PageCompound first. The RFC for the this approach was discussed at http://marc.info/?t=117574302800001&r=1&w=2 [nacc@us.ibm.com: fix hugetlbfs] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab: mark set_up_list3s() __initAndrew Morton
It is only ever used prior to free_initmem(). (It will cause a warning when we run the section checking, but that's a false-positive and it simply changes the source of an existing warning, which is also a false-positive) Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab: NUMA kmem_cache dietEric Dumazet
Some NUMA machines have a big MAX_NUMNODES (possibly 1024), but fewer possible nodes. This patch dynamically sizes the 'struct kmem_cache' to allocate only needed space. I moved nodelists[] field at the end of struct kmem_cache, and use the following computation in kmem_cache_init() cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + nr_node_ids * sizeof(struct kmem_list3 *); On my two nodes x86_64 machine, kmem_cache.obj_size is now 192 instead of 704 (This is because on x86_64, MAX_NUMNODES is 64) On bigger NUMA setups, this might reduce the gfporder of "cache_cache" Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLAB: don't allocate empty shared cachesEric Dumazet
We can avoid allocating empty shared caches and avoid unecessary check of cache->limit. We save some memory. We avoid bringing into CPU cache unecessary cache lines. All accesses to l3->shared are already checking NULL pointers so this patch is safe. Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07SLAB: use num_possible_cpus() in enable_cpucache()Eric Dumazet
The existing comment in mm/slab.c is *perfect*, so I reproduce it : /* * CPU bound tasks (e.g. network routing) can exhibit cpu bound * allocation behaviour: Most allocs on one cpu, most free operations * on another cpu. For these cases, an efficient object passing between * cpus is necessary. This is provided by a shared array. The array * replaces Bonwick's magazine layer. * On uniprocessor, it's functionally equivalent (but less efficient) * to a larger limit. Thus disabled by default. */ As most shiped linux kernels are now compiled with CONFIG_SMP, there is no way a preprocessor #if can detect if the machine is UP or SMP. Better to use num_possible_cpus(). This means on UP we allocate a 'size=0 shared array', to be more efficient. Another patch can later avoid the allocations of 'empty shared arrays', to save some memory. Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab: ensure cache_alloc_refill terminatesPekka Enberg
If slab->inuse is corrupted, cache_alloc_refill can enter an infinite loop as detailed by Michael Richardson in the following post: <http://lkml.org/lkml/2007/2/16/292>. This adds a BUG_ON to catch those cases. Cc: Michael Richardson <mcr@sandelman.ca> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07slab: introduce kreallocPekka Enberg
This introduce krealloc() that reallocates memory while keeping the contents unchanged. The allocator avoids reallocation if the new size fits the currently used cache. I also added a simple non-optimized version for mm/slob.c for compatibility. [akpm@linux-foundation.org: fix warnings] Acked-by: Josef Sipek <jsipek@fsl.cs.sunysb.edu> Acked-by: Matt Mackall <mpm@selenic.com> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-02[PATCH] x86-64: skip cache_free_alien() on non NUMASiddha, Suresh B
Set use_alien_caches to 0 on non NUMA platforms. And avoid calling the cache_free_alien() when use_alien_caches is not set. This will avoid the cache miss that happens while dereferencing slabp to get nodeid. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Signed-off-by: Andi Kleen <ak@suse.de> Cc: Andi Kleen <andi@firstfloor.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: David Rientjes <rientjes@google.com> Cc: Christoph Lameter <clameter@engr.sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2007-04-04[PATCH] SLAB: Mention slab name when listing corrupt objectsDavid Howells
Mention the slab name when listing corrupt objects. Although the function that released the memory is mentioned, that is frequently ambiguous as such functions often release several pieces of memory. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-03-01[PATCH] kernel-doc fixes for 2.6.20-git15 (non-drivers)Randy Dunlap
Fix kernel-doc warnings in 2.6.20-git15 (lib/, mm/, kernel/, include/). Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-20[PATCH] slab: reduce size of alien cache to cover only possible nodesChristoph Lameter
The alien cache is a per cpu per node array allocated for every slab on the system. Currently we size this array for all nodes that the kernel does support. For IA64 this is 1024 nodes. So we allocate an array with 1024 objects even if we only boot a system with 4 nodes. This patch uses "nr_node_ids" to determine the number of possible nodes supported by a hardware configuration and only allocates an alien cache sized for possible nodes. The initialization of nr_node_ids occurred too late relative to the bootstrap of the slab allocator and so I moved the setup_nr_node_ids() into free_area_init_nodes(). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11[PATCH] Numerous fixes to kernel-doc info in source files.Robert P. J. Day
A variety of (mostly) innocuous fixes to the embedded kernel-doc content in source files, including: * make multi-line initial descriptions single line * denote some function names, constants and structs as such * change erroneous opening '/*' to '/**' in a few places * reword some text for clarity Signed-off-by: Robert P. J. Day <rpjday@mindspring.com> Cc: "Randy.Dunlap" <rdunlap@xenotime.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11[PATCH] lockdep: also check for freed locks in kmem_cache_free()Ingo Molnar
kmem_cache_free() was missing the check for freeing held locks. Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11[PATCH] optional ZONE_DMA: optional ZONE_DMA in the VMChristoph Lameter
Make ZONE_DMA optional in core code. - ifdef all code for ZONE_DMA and related definitions following the example for ZONE_DMA32 and ZONE_HIGHMEM. - Without ZONE_DMA, ZONE_HIGHMEM and ZONE_DMA32 we get to a ZONES_SHIFT of 0. - Modify the VM statistics to work correctly without a DMA zone. - Modify slab to not create DMA slabs if there is no ZONE_DMA. [akpm@osdl.org: cleanup] [jdike@addtoit.com: build fix] [apw@shadowen.org: Simplify calculation of the number of bits we need for ZONES_SHIFT] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Andi Kleen <ak@suse.de> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Matthew Wilcox <willy@debian.org> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Paul Mundt <lethal@linux-sh.org> Signed-off-by: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11[PATCH] slab: use parameter passed to cache_reap to determine pointer to ↵Christoph Lameter
work structure Use the pointer passed to cache_reap to determine the work pointer and consolidate exit paths. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11[PATCH] slab: cache alloc cleanupsPekka Enberg
Clean up __cache_alloc and __cache_alloc_node functions a bit. We no longer need to do NUMA_BUILD tricks and the UMA allocation path is much simpler. No functional changes in this patch. Note: saves few kernel text bytes on x86 NUMA build due to using gotos in __cache_alloc_node() and moving __GFP_THISNODE check in to fallback_alloc(). Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Manfred Spraul <manfred@colorfullife.com> Acked-by: Christoph Lameter <christoph@lameter.com> Cc: Paul Jackson <pj@sgi.com> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-11[PATCH] slab: remove broken PageSlab check from kfree_debugcheckPekka Enberg
The PageSlab debug check in kfree_debugcheck() is broken for compound pages. It is also redundant as we already do BUG_ON for non-slab pages in page_get_cache() and page_get_slab() which are always called before we free any actual objects. Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-01-05[PATCH] fix BUG_ON(!PageSlab) from fallback_allocHugh Dickins
pdflush hit the BUG_ON(!PageSlab(page)) in kmem_freepages called from fallback_alloc: cache_grow already freed those pages when alloc_slabmgmt failed. But it wouldn't have freed them if __GFP_NO_GROW, so make sure fallback_alloc doesn't waste its time on that case. Signed-off-by: Hugh Dickins <hugh@veritas.com> Acked-by: Christoph Lameter <clameter@sgi.com> Acked-by: Pekka J Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-22[PATCH] fix kernel-doc warnings in 2.6.20-rc1Randy Dunlap
Fix kernel-doc warnings in 2.6.20-rc1. Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-22[PATCH] slab: fix kmem_ptr_validate definitionChristoph Lameter
The declaration of kmem_ptr_validate in slab.h does not match the one in slab.c. Remove the fastcall attribute (this is the only use in slab.c). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13[PATCH] SLAB: use a multiply instead of a divide in obj_to_index()Eric Dumazet
When some objects are allocated by one CPU but freed by another CPU we can consume lot of cycles doing divides in obj_to_index(). (Typical load on a dual processor machine where network interrupts are handled by one particular CPU (allocating skbufs), and the other CPU is running the application (consuming and freeing skbufs)) Here on one production server (dual-core AMD Opteron 285), I noticed this divide took 1.20 % of CPU_CLK_UNHALTED events in kernel. But Opteron are quite modern cpus and the divide is much more expensive on oldest architectures : On a 200 MHz sparcv9 machine, the division takes 64 cycles instead of 1 cycle for a multiply. Doing some math, we can use a reciprocal multiplication instead of a divide. If we want to compute V = (A / B) (A and B being u32 quantities) we can instead use : V = ((u64)A * RECIPROCAL(B)) >> 32 ; where RECIPROCAL(B) is precalculated to ((1LL << 32) + (B - 1)) / B Note : I wrote pure C code for clarity. gcc output for i386 is not optimal but acceptable : mull 0x14(%ebx) mov %edx,%eax // part of the >> 32 xor %edx,%edx // useless mov %eax,(%esp) // could be avoided mov %edx,0x4(%esp) // useless mov (%esp),%ebx [akpm@osdl.org: small cleanups] Signed-off-by: Eric Dumazet <dada1@cosmosbay.com> Cc: Christoph Lameter <clameter@sgi.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13[PATCH] cpuset: rework cpuset_zone_allowed apiPaul Jackson
Elaborate the API for calling cpuset_zone_allowed(), so that users have to explicitly choose between the two variants: cpuset_zone_allowed_hardwall() cpuset_zone_allowed_softwall() Until now, whether or not you got the hardwall flavor depended solely on whether or not you or'd in the __GFP_HARDWALL gfp flag to the gfp_mask argument. If you didn't specify __GFP_HARDWALL, you implicitly got the softwall version. Unfortunately, this meant that users would end up with the softwall version without thinking about it. Since only the softwall version might sleep, this led to bugs with possible sleeping in interrupt context on more than one occassion. The hardwall version requires that the current tasks mems_allowed allows the node of the specified zone (or that you're in interrupt or that __GFP_THISNODE is set or that you're on a one cpuset system.) The softwall version, depending on the gfp_mask, might allow a node if it was allowed in the nearest enclusing cpuset marked mem_exclusive (which requires taking the cpuset lock 'callback_mutex' to evaluate.) This patch removes the cpuset_zone_allowed() call, and forces the caller to explicitly choose between the hardwall and the softwall case. If the caller wants the gfp_mask to determine this choice, they should (1) be sure they can sleep or that __GFP_HARDWALL is set, and (2) invoke the cpuset_zone_allowed_softwall() routine. This adds another 100 or 200 bytes to the kernel text space, due to the few lines of nearly duplicate code at the top of both cpuset_zone_allowed_* routines. It should save a few instructions executed for the calls that turned into calls of cpuset_zone_allowed_hardwall, thanks to not having to set (before the call) then check (within the call) the __GFP_HARDWALL flag. For the most critical call, from get_page_from_freelist(), the same instructions are executed as before -- the old cpuset_zone_allowed() routine it used to call is the same code as the cpuset_zone_allowed_softwall() routine that it calls now. Not a perfect win, but seems worth it, to reduce this chance of hitting a sleeping with irq off complaint again. Signed-off-by: Paul Jackson <pj@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13[PATCH] More slab.h cleanupsChristoph Lameter
More cleanups for slab.h 1. Remove tabs from weird locations as suggested by Pekka 2. Drop the check for NUMA and SLAB_DEBUG from the fallback section as suggested by Pekka. 3. Uses static inline for the fallback defs as also suggested by Pekka. 4. Make kmem_ptr_valid take a const * argument. 5. Separate the NUMA fallback definitions from the kmalloc_track fallback definitions. Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-13[PATCH] slab: fix sleeping in atomic bugChristoph Lameter
Fallback_alloc() does not do the check for GFP_WAIT as done in cache_grow(). Thus interrupts are disabled when we call kmem_getpages() which results in the failure. Duplicate the handling of GFP_WAIT in cache_grow(). Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Jay Cliburn <jacliburn@bellsouth.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10[PATCH] user of the jiffies rounding patch: SlabArjan van de Ven
This patch introduces users of the round_jiffies() function in the slab code. The slab code has a few "run every second" timers for background work; these are obviously not timing critical as long as they happen roughly at the right frequency. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08[PATCH] fault-injection: defaults likely to please a new userDon Mullis
Assign defaults most likely to please a new user: 1) generate some logging output (verbose=2) 2) avoid injecting failures likely to lock up UI (ignore_gfp_wait=1, ignore_gfp_highmem=1) Signed-off-by: Don Mullis <dwm@meer.net> Cc: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08[PATCH] fault-injection capability for kmallocAkinobu Mita
This patch provides fault-injection capability for kmalloc. Boot option: failslab=<interval>,<probability>,<space>,<times> <interval> -- specifies the interval of failures. <probability> -- specifies how often it should fail in percent. <space> -- specifies the size of free space where memory can be allocated safely in bytes. <times> -- specifies how many times failures may happen at most. Debugfs: /debug/failslab/interval /debug/failslab/probability /debug/failslab/specifies /debug/failslab/times /debug/failslab/ignore-gfp-highmem /debug/failslab/ignore-gfp-wait Example: failslab=10,100,0,-1 slab allocation (kmalloc(), kmem_cache_alloc(),..) fails once per 10 times. Cc: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08[PATCH] mm: fallback_alloc cpuset_zone_allowed irq fixPaul Jackson
fallback_alloc() could end up calling cpuset_zone_allowed() with interrupts disabled (by code in kmem_cache_alloc_node()), but without __GFP_HARDWALL set, leading to a possible call of a sleeping function with interrupts disabled. This results in the BUG report: BUG: sleeping function called from invalid context at kernel/cpuset.c:1520 in_atomic():0, irqs_disabled():1 Thanks to Paul Menage for catching this one. Signed-off-by: Paul Jackson <pj@sgi.com> Cc: Paul Menage <menage@google.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] struct seq_operations and struct file_operations constificationHelge Deller
- move some file_operations structs into the .rodata section - move static strings from policy_types[] array into the .rodata section - fix generic seq_operations usages, so that those structs may be defined as "const" as well [akpm@osdl.org: couple of fixes] Signed-off-by: Helge Deller <deller@gmx.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: use probe_kernel_address()Andrew Morton
Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: better fallback allocation behaviorChristoph Lameter
Currently we simply attempt to allocate from all allowed nodes using GFP_THISNODE. However, GFP_THISNODE does not do reclaim (it wont do any at all if the recent GFP_THISNODE patch is accepted). If we truly run out of memory in the whole system then fallback_alloc may return NULL although memory may still be available if we would perform more thorough reclaim. This patch changes fallback_alloc() so that we first only inspect all the per node queues for available slabs. If we find any then we allocate from those. This avoids slab fragmentation by first getting rid of all partial allocated slabs on every node before allocating new memory. If we cannot satisfy the allocation from any per node queue then we extend a slab. We now call into the page allocator without specifying GFP_THISNODE. The page allocator will then implement its own fallback (in the given cpuset context), perform necessary reclaim (again considering not a single node but the whole set of allowed nodes) and then return pages for a new slab. We identify from which node the pages were allocated and then insert the pages into the corresponding per node structure. In order to do so we need to modify cache_grow() to take a parameter that specifies the new slab. kmem_getpages() can no longer set the GFP_THISNODE flag since we need to be able to use kmem_getpage to allocate from an arbitrary node. GFP_THISNODE needs to be specified when calling cache_grow(). One key advantage is that the decision from which node to allocate new memory is removed from slab fallback processing. The patch allows to go back to use of the page allocators fallback/reclaim logic. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: fix two issues in kmalloc_node / __cache_alloc_nodeChristoph Lameter
This addresses two issues: 1. Kmalloc_node() may intermittently return NULL if we are allocating from the current node and are unable to obtain memory for the current node from the page allocator. This is because we call ___cache_alloc() if nodeid == numa_node_id() and ____cache_alloc is not able to fallback to other nodes. This was introduced in the 2.6.19 development cycle. <= 2.6.18 in that case does not do a restricted allocation and blindly trusts the page allocator to have given us memory from the indicated node. It inserts the page regardless of the node it came from into the queues for the current node. 2. If kmalloc_node() is used on a node that has not been bootstrapped yet then we may try to pass an invalid node number to ____cache_alloc_node() triggering a BUG(). Change the function to call fallback_alloc() instead. Only call fallback_alloc() if we are allowed to fallback at all. The need to handle a node not bootstrapped yet also first surfaced in the 2.6.19 cycle. Update the comments since they were still describing the old kmalloc_node from 2.6.12. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_DMAChristoph Lameter
SLAB_DMA is an alias of GFP_DMA. This is the last one so we remove the leftover comment too. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_KERNELChristoph Lameter
SLAB_KERNEL is an alias of GFP_KERNEL. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_LEVEL_MASKChristoph Lameter
SLAB_LEVEL_MASK is only used internally to the slab and is and alias of GFP_LEVEL_MASK. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab: remove SLAB_NO_GROWChristoph Lameter
It is only used internally in the slab. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] leak tracking for kmalloc_nodeChristoph Hellwig
We have variants of kmalloc and kmem_cache_alloc that leave leak tracking to the caller. This is used for subsystem-specific allocators like skb_alloc. To make skb_alloc node-aware we need similar routines for the node-aware slab allocator, which this patch adds. Note that the code is rather ugly, but it mirrors the non-node-aware code 1:1: [akpm@osdl.org: add module export] Signed-off-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] mm: add noaliencache boot option to disable numa alien cachesPaul Menage
When using numa=fake on non-NUMA hardware there is no benefit to having the alien caches, and they consume much memory. Add a kernel boot option to disable them. Christoph sayeth "This is good to have even on large NUMA. The problem is that the alien caches grow by the square of the size of the system in terms of nodes." Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] mm: slab: eliminate lock_cpu_hotplug from slabRavikiran G Thirumalai
Here's an attempt towards doing away with lock_cpu_hotplug in the slab subsystem. This approach also fixes a bug which shows up when cpus are being offlined/onlined and slab caches are being tuned simultaneously. http://marc.theaimsgroup.com/?l=linux-kernel&m=116098888100481&w=2 The patch has been stress tested overnight on a 2 socket 4 core AMD box with repeated cpu online and offline, while dbench and kernbench process are running, and slab caches being tuned at the same time. There were no lockdep warnings either. (This test on 2,6.18 as 2.6.19-rc crashes at __drain_pages http://marc.theaimsgroup.com/?l=linux-kernel&m=116172164217678&w=2 ) The approach here is to hold cache_chain_mutex from CPU_UP_PREPARE until CPU_ONLINE (similar in approach as worqueue_mutex) . Slab code sensitive to cpu_online_map (kmem_cache_create, kmem_cache_destroy, slabinfo_write, __cache_shrink) is already serialized with cache_chain_mutex. (This patch lengthens cache_chain_mutex hold time at kmem_cache_destroy to cover this). This patch also takes the cache_chain_sem at kmem_cache_shrink to protect sanity of cpu_online_map at __cache_shrink, as viewed by slab. (kmem_cache_shrink->__cache_shrink->drain_cpu_caches). But, really, kmem_cache_shrink is used at just one place in the acpi subsystem! Do we really need to keep kmem_cache_shrink at all? Another note. Looks like a cpu hotplug event can send CPU_UP_CANCELED to a registered subsystem even if the subsystem did not receive CPU_UP_PREPARE. This could be due to a subsystem registered for notification earlier than the current subsystem crapping out with NOTIFY_BAD. Badness can occur with in the CPU_UP_CANCELED code path at slab if this happens (The same would apply for workqueue.c as well). To overcome this, we might have to use either a) a per subsystem flag and avoid handling of CPU_UP_CANCELED, or b) Use a special notifier events like LOCK_ACQUIRE/RELEASE as Gautham was using in his experiments, or c) Do not send CPU_UP_CANCELED to a subsystem which did not receive CPU_UP_PREPARE. I would prefer c). Signed-off-by: Ravikiran Thirumalai <kiran@scalex86.org> Signed-off-by: Shai Fultheim <shai@scalex86.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-07[PATCH] slab debug and ARCH_SLAB_MINALIGN don't get alongKevin Hilman
When CONFIG_SLAB_DEBUG is used in combination with ARCH_SLAB_MINALIGN, some debug flags should be disabled which depend on BYTES_PER_WORD alignment. The disabling of these debug flags is not properly handled when BYTES_PER_WORD < ARCH_SLAB_MEMALIGN < cache_line_size() This patch fixes that and also adds an alignment check to cache_alloc_debugcheck_after() when ARCH_SLAB_MINALIGN is used. Signed-off-by: Kevin Hilman <khilman@mvista.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@engr.sgi.com> Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-11-22WorkStruct: Pass the work_struct pointer instead of context dataDavid Howells
Pass the work_struct pointer to the work function rather than context data. The work function can use container_of() to work out the data. For the cases where the container of the work_struct may go away the moment the pending bit is cleared, it is made possible to defer the release of the structure by deferring the clearing of the pending bit. To make this work, an extra flag is introduced into the management side of the work_struct. This governs auto-release of the structure upon execution. Ordinarily, the work queue executor would release the work_struct for further scheduling or deallocation by clearing the pending bit prior to jumping to the work function. This means that, unless the driver makes some guarantee itself that the work_struct won't go away, the work function may not access anything else in the work_struct or its container lest they be deallocated.. This is a problem if the auxiliary data is taken away (as done by the last patch). However, if the pending bit is *not* cleared before jumping to the work function, then the work function *may* access the work_struct and its container with no problems. But then the work function must itself release the work_struct by calling work_release(). In most cases, automatic release is fine, so this is the default. Special initiators exist for the non-auto-release case (ending in _NAR). Signed-Off-By: David Howells <dhowells@redhat.com>
2006-11-22WorkStruct: Separate delayable and non-delayable events.David Howells
Separate delayable work items from non-delayable work items be splitting them into a separate structure (delayed_work), which incorporates a work_struct and the timer_list removed from work_struct. The work_struct struct is huge, and this limits it's usefulness. On a 64-bit architecture it's nearly 100 bytes in size. This reduces that by half for the non-delayable type of event. Signed-Off-By: David Howells <dhowells@redhat.com>
2006-11-03[PATCH] init_reap_node() initialization fixDaniel Yeisley
It looks like there is a bug in init_reap_node() in slab.c that can cause multiple oops's on certain ES7000 configurations. The variable reap_node is defined per cpu, but only initialized on a single CPU. This causes an oops in next_reap_node() when __get_cpu_var(reap_node) returns the wrong value. Fix is below. Signed-off-by: Dan Yeisley <dan.yeisley@unisys.com> Cc: Andi Kleen <ak@suse.de> Acked-by: Christoph Lameter <clameter@engr.sgi.com> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Manfred Spraul <manfred@colorfullife.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>