aboutsummaryrefslogtreecommitdiff
path: root/arch/alpha/kernel/process.c
blob: 9924fd07743abfd5bb4cda9e78ac3e58ca72a9d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/*
 *  linux/arch/alpha/kernel/process.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 */

/*
 * This file handles the architecture-dependent parts of process handling.
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/utsname.h>
#include <linux/time.h>
#include <linux/major.h>
#include <linux/stat.h>
#include <linux/mman.h>
#include <linux/elfcore.h>
#include <linux/reboot.h>
#include <linux/tty.h>
#include <linux/console.h>

#include <asm/reg.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/hwrpb.h>
#include <asm/fpu.h>

#include "proto.h"
#include "pci_impl.h"

/*
 * Power off function, if any
 */
void (*pm_power_off)(void) = machine_power_off;

void
cpu_idle(void)
{
	set_thread_flag(TIF_POLLING_NRFLAG);

	while (1) {
		/* FIXME -- EV6 and LCA45 know how to power down
		   the CPU.  */

		while (!need_resched())
			cpu_relax();
		schedule();
	}
}


struct halt_info {
	int mode;
	char *restart_cmd;
};

static void
common_shutdown_1(void *generic_ptr)
{
	struct halt_info *how = (struct halt_info *)generic_ptr;
	struct percpu_struct *cpup;
	unsigned long *pflags, flags;
	int cpuid = smp_processor_id();

	/* No point in taking interrupts anymore. */
	local_irq_disable();

	cpup = (struct percpu_struct *)
			((unsigned long)hwrpb + hwrpb->processor_offset
			 + hwrpb->processor_size * cpuid);
	pflags = &cpup->flags;
	flags = *pflags;

	/* Clear reason to "default"; clear "bootstrap in progress". */
	flags &= ~0x00ff0001UL;

#ifdef CONFIG_SMP
	/* Secondaries halt here. */
	if (cpuid != boot_cpuid) {
		flags |= 0x00040000UL; /* "remain halted" */
		*pflags = flags;
		clear_bit(cpuid, &cpu_present_mask);
		halt();
	}
#endif

	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
		if (!how->restart_cmd) {
			flags |= 0x00020000UL; /* "cold bootstrap" */
		} else {
			/* For SRM, we could probably set environment
			   variables to get this to work.  We'd have to
			   delay this until after srm_paging_stop unless
			   we ever got srm_fixup working.

			   At the moment, SRM will use the last boot device,
			   but the file and flags will be the defaults, when
			   doing a "warm" bootstrap.  */
			flags |= 0x00030000UL; /* "warm bootstrap" */
		}
	} else {
		flags |= 0x00040000UL; /* "remain halted" */
	}
	*pflags = flags;

#ifdef CONFIG_SMP
	/* Wait for the secondaries to halt. */
	cpu_clear(boot_cpuid, cpu_possible_map);
	while (cpus_weight(cpu_possible_map))
		barrier();
#endif

	/* If booted from SRM, reset some of the original environment. */
	if (alpha_using_srm) {
#ifdef CONFIG_DUMMY_CONSOLE
		/* If we've gotten here after SysRq-b, leave interrupt
		   context before taking over the console. */
		if (in_interrupt())
			irq_exit();
		/* This has the effect of resetting the VGA video origin.  */
		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
#endif
		pci_restore_srm_config();
		set_hae(srm_hae);
	}

	if (alpha_mv.kill_arch)
		alpha_mv.kill_arch(how->mode);

	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
		/* Unfortunately, since MILO doesn't currently understand
		   the hwrpb bits above, we can't reliably halt the 
		   processor and keep it halted.  So just loop.  */
		return;
	}

	if (alpha_using_srm)
		srm_paging_stop();

	halt();
}

static void
common_shutdown(int mode, char *restart_cmd)
{
	struct halt_info args;
	args.mode = mode;
	args.restart_cmd = restart_cmd;
	on_each_cpu(common_shutdown_1, &args, 1, 0);
}

void
machine_restart(char *restart_cmd)
{
	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
}


void
machine_halt(void)
{
	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
}


void
machine_power_off(void)
{
	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
}


/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
   saved in the context it's used.  */

void
show_regs(struct pt_regs *regs)
{
	dik_show_regs(regs, NULL);
}

/*
 * Re-start a thread when doing execve()
 */
void
start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
{
	set_fs(USER_DS);
	regs->pc = pc;
	regs->ps = 8;
	wrusp(sp);
}

/*
 * Free current thread data structures etc..
 */
void
exit_thread(void)
{
}

void
flush_thread(void)
{
	/* Arrange for each exec'ed process to start off with a clean slate
	   with respect to the FPU.  This is all exceptions disabled.  */
	current_thread_info()->ieee_state = 0;
	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));

	/* Clean slate for TLS.  */
	current_thread_info()->pcb.unique = 0;
}

void
release_thread(struct task_struct *dead_task)
{
}

/*
 * "alpha_clone()".. By the time we get here, the
 * non-volatile registers have also been saved on the
 * stack. We do some ugly pointer stuff here.. (see
 * also copy_thread)
 *
 * Notice that "fork()" is implemented in terms of clone,
 * with parameters (SIGCHLD, 0).
 */
int
alpha_clone(unsigned long clone_flags, unsigned long usp,
	    int __user *parent_tid, int __user *child_tid,
	    unsigned long tls_value, struct pt_regs *regs)
{
	if (!usp)
		usp = rdusp();

	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
}

int
alpha_vfork(struct pt_regs *regs)
{
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
		       regs, 0, NULL, NULL);
}

/*
 * Copy an alpha thread..
 *
 * Note the "stack_offset" stuff: when returning to kernel mode, we need
 * to have some extra stack-space for the kernel stack that still exists
 * after the "ret_from_fork".  When returning to user mode, we only want
 * the space needed by the syscall stack frame (ie "struct pt_regs").
 * Use the passed "regs" pointer to determine how much space we need
 * for a kernel fork().
 */

int
copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
	    unsigned long unused,
	    struct task_struct * p, struct pt_regs * regs)
{
	extern void ret_from_fork(void);

	struct thread_info *childti = task_thread_info(p);
	struct pt_regs * childregs;
	struct switch_stack * childstack, *stack;
	unsigned long stack_offset, settls;

	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
	if (!(regs->ps & 8))
		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
	childregs = (struct pt_regs *)
	  (stack_offset + PAGE_SIZE + task_stack_page(p));
		
	*childregs = *regs;
	settls = regs->r20;
	childregs->r0 = 0;
	childregs->r19 = 0;
	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
	regs->r20 = 0;
	stack = ((struct switch_stack *) regs) - 1;
	childstack = ((struct switch_stack *) childregs) - 1;
	*childstack = *stack;
	childstack->r26 = (unsigned long) ret_from_fork;
	childti->pcb.usp = usp;
	childti->pcb.ksp = (unsigned long) childstack;
	childti->pcb.flags = 1;	/* set FEN, clear everything else */

	/* Set a new TLS for the child thread?  Peek back into the
	   syscall arguments that we saved on syscall entry.  Oops,
	   except we'd have clobbered it with the parent/child set
	   of r20.  Read the saved copy.  */
	/* Note: if CLONE_SETTLS is not set, then we must inherit the
	   value from the parent, which will have been set by the block
	   copy in dup_task_struct.  This is non-intuitive, but is
	   required for proper operation in the case of a threaded
	   application calling fork.  */
	if (clone_flags & CLONE_SETTLS)
		childti->pcb.unique = settls;

	return 0;
}

/*
 * Fill in the user structure for an ECOFF core dump.
 */
void
dump_thread(struct pt_regs * pt, struct user * dump)
{
	/* switch stack follows right below pt_regs: */
	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;

	dump->magic = CMAGIC;
	dump->start_code  = current->mm->start_code;
	dump->start_data  = current->mm->start_data;
	dump->start_stack = rdusp() & ~(PAGE_SIZE - 1);
	dump->u_tsize = ((current->mm->end_code - dump->start_code)
			 >> PAGE_SHIFT);
	dump->u_dsize = ((current->mm->brk + PAGE_SIZE-1 - dump->start_data)
			 >> PAGE_SHIFT);
	dump->u_ssize = (current->mm->start_stack - dump->start_stack
			 + PAGE_SIZE-1) >> PAGE_SHIFT;

	/*
	 * We store the registers in an order/format that is
	 * compatible with DEC Unix/OSF/1 as this makes life easier
	 * for gdb.
	 */
	dump->regs[EF_V0]  = pt->r0;
	dump->regs[EF_T0]  = pt->r1;
	dump->regs[EF_T1]  = pt->r2;
	dump->regs[EF_T2]  = pt->r3;
	dump->regs[EF_T3]  = pt->r4;
	dump->regs[EF_T4]  = pt->r5;
	dump->regs[EF_T5]  = pt->r6;
	dump->regs[EF_T6]  = pt->r7;
	dump->regs[EF_T7]  = pt->r8;
	dump->regs[EF_S0]  = sw->r9;
	dump->regs[EF_S1]  = sw->r10;
	dump->regs[EF_S2]  = sw->r11;
	dump->regs[EF_S3]  = sw->r12;
	dump->regs[EF_S4]  = sw->r13;
	dump->regs[EF_S5]  = sw->r14;
	dump->regs[EF_S6]  = sw->r15;
	dump->regs[EF_A3]  = pt->r19;
	dump->regs[EF_A4]  = pt->r20;
	dump->regs[EF_A5]  = pt->r21;
	dump->regs[EF_T8]  = pt->r22;
	dump->regs[EF_T9]  = pt->r23;
	dump->regs[EF_T10] = pt->r24;
	dump->regs[EF_T11] = pt->r25;
	dump->regs[EF_RA]  = pt->r26;
	dump->regs[EF_T12] = pt->r27;
	dump->regs[EF_AT]  = pt->r28;
	dump->regs[EF_SP]  = rdusp();
	dump->regs[EF_PS]  = pt->ps;
	dump->regs[EF_PC]  = pt->pc;
	dump->regs[EF_GP]  = pt->gp;
	dump->regs[EF_A0]  = pt->r16;
	dump->regs[EF_A1]  = pt->r17;
	dump->regs[EF_A2]  = pt->r18;
	memcpy((char *)dump->regs + EF_SIZE, sw->fp, 32 * 8);
}

/*
 * Fill in the user structure for a ELF core dump.
 */
void
dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
{
	/* switch stack follows right below pt_regs: */
	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;

	dest[ 0] = pt->r0;
	dest[ 1] = pt->r1;
	dest[ 2] = pt->r2;
	dest[ 3] = pt->r3;
	dest[ 4] = pt->r4;
	dest[ 5] = pt->r5;
	dest[ 6] = pt->r6;
	dest[ 7] = pt->r7;
	dest[ 8] = pt->r8;
	dest[ 9] = sw->r9;
	dest[10] = sw->r10;
	dest[11] = sw->r11;
	dest[12] = sw->r12;
	dest[13] = sw->r13;
	dest[14] = sw->r14;
	dest[15] = sw->r15;
	dest[16] = pt->r16;
	dest[17] = pt->r17;
	dest[18] = pt->r18;
	dest[19] = pt->r19;
	dest[20] = pt->r20;
	dest[21] = pt->r21;
	dest[22] = pt->r22;
	dest[23] = pt->r23;
	dest[24] = pt->r24;
	dest[25] = pt->r25;
	dest[26] = pt->r26;
	dest[27] = pt->r27;
	dest[28] = pt->r28;
	dest[29] = pt->gp;
	dest[30] = rdusp();
	dest[31] = pt->pc;

	/* Once upon a time this was the PS value.  Which is stupid
	   since that is always 8 for usermode.  Usurped for the more
	   useful value of the thread's UNIQUE field.  */
	dest[32] = ti->pcb.unique;
}

int
dump_elf_task(elf_greg_t *dest, struct task_struct *task)
{
	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
	return 1;
}

int
dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
{
	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
	memcpy(dest, sw->fp, 32 * 8);
	return 1;
}

/*
 * sys_execve() executes a new program.
 */
asmlinkage int
do_sys_execve(char __user *ufilename, char __user * __user *argv,
	      char __user * __user *envp, struct pt_regs *regs)
{
	int error;
	char *filename;

	filename = getname(ufilename);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	error = do_execve(filename, argv, envp, regs);
	putname(filename);
out:
	return error;
}

/*
 * Return saved PC of a blocked thread.  This assumes the frame
 * pointer is the 6th saved long on the kernel stack and that the
 * saved return address is the first long in the frame.  This all
 * holds provided the thread blocked through a call to schedule() ($15
 * is the frame pointer in schedule() and $15 is saved at offset 48 by
 * entry.S:do_switch_stack).
 *
 * Under heavy swap load I've seen this lose in an ugly way.  So do
 * some extra sanity checking on the ranges we expect these pointers
 * to be in so that we can fail gracefully.  This is just for ps after
 * all.  -- r~
 */

unsigned long
thread_saved_pc(task_t *t)
{
	unsigned long base = (unsigned long)task_stack_page(t);
	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;

	if (sp > base && sp+6*8 < base + 16*1024) {
		fp = ((unsigned long*)sp)[6];
		if (fp > sp && fp < base + 16*1024)
			return *(unsigned long *)fp;
	}

	return 0;
}

unsigned long
get_wchan(struct task_struct *p)
{
	unsigned long schedule_frame;
	unsigned long pc;
	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;
	/*
	 * This one depends on the frame size of schedule().  Do a
	 * "disass schedule" in gdb to find the frame size.  Also, the
	 * code assumes that sleep_on() follows immediately after
	 * interruptible_sleep_on() and that add_timer() follows
	 * immediately after interruptible_sleep().  Ugly, isn't it?
	 * Maybe adding a wchan field to task_struct would be better,
	 * after all...
	 */

	pc = thread_saved_pc(p);
	if (in_sched_functions(pc)) {
		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
		return ((unsigned long *)schedule_frame)[12];
	}
	return pc;
}