1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
/*
* linux/arch/arm/mach-mmp/mmp2.c
*
* code name MMP2
*
* Copyright (C) 2009 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <mach/addr-map.h>
#include <mach/regs-apbc.h>
#include <mach/regs-apmu.h>
#include <mach/cputype.h>
#include <mach/irqs.h>
#include <mach/mfp.h>
#include <mach/gpio.h>
#include <mach/devices.h>
#include "common.h"
#include "clock.h"
#define MFPR_VIRT_BASE (APB_VIRT_BASE + 0x1e000)
#define APMASK(i) (GPIO_REGS_VIRT + BANK_OFF(i) + 0x9c)
static struct mfp_addr_map mmp2_addr_map[] __initdata = {
MFP_ADDR(PMIC_INT, 0x2c4),
MFP_ADDR_END,
};
void mmp2_clear_pmic_int(void)
{
unsigned long mfpr_pmic, data;
mfpr_pmic = APB_VIRT_BASE + 0x1e000 + 0x2c4;
data = __raw_readl(mfpr_pmic);
__raw_writel(data | (1 << 6), mfpr_pmic);
__raw_writel(data, mfpr_pmic);
}
static void __init mmp2_init_gpio(void)
{
int i;
/* enable GPIO clock */
__raw_writel(APBC_APBCLK | APBC_FNCLK, APBC_MMP2_GPIO);
/* unmask GPIO edge detection for all 6 banks -- APMASKx */
for (i = 0; i < 6; i++)
__raw_writel(0xffffffff, APMASK(i));
pxa_init_gpio(IRQ_MMP2_GPIO, 0, 167, NULL);
}
void __init mmp2_init_irq(void)
{
mmp2_init_icu();
mmp2_init_gpio();
}
/* APB peripheral clocks */
static APBC_CLK(uart1, MMP2_UART1, 1, 26000000);
static APBC_CLK(uart2, MMP2_UART2, 1, 26000000);
static APBC_CLK(uart3, MMP2_UART3, 1, 26000000);
static APBC_CLK(uart4, MMP2_UART4, 1, 26000000);
static APBC_CLK(twsi1, MMP2_TWSI1, 0, 26000000);
static APBC_CLK(twsi2, MMP2_TWSI2, 0, 26000000);
static APBC_CLK(twsi3, MMP2_TWSI3, 0, 26000000);
static APBC_CLK(twsi4, MMP2_TWSI4, 0, 26000000);
static APBC_CLK(twsi5, MMP2_TWSI5, 0, 26000000);
static APBC_CLK(twsi6, MMP2_TWSI6, 0, 26000000);
static APBC_CLK(rtc, MMP2_RTC, 0, 32768);
static APMU_CLK(nand, NAND, 0xbf, 100000000);
static struct clk_lookup mmp2_clkregs[] = {
INIT_CLKREG(&clk_uart1, "pxa2xx-uart.0", NULL),
INIT_CLKREG(&clk_uart2, "pxa2xx-uart.1", NULL),
INIT_CLKREG(&clk_uart3, "pxa2xx-uart.2", NULL),
INIT_CLKREG(&clk_uart4, "pxa2xx-uart.3", NULL),
INIT_CLKREG(&clk_twsi1, "pxa2xx-i2c.0", NULL),
INIT_CLKREG(&clk_twsi2, "pxa2xx-i2c.1", NULL),
INIT_CLKREG(&clk_twsi3, "pxa2xx-i2c.2", NULL),
INIT_CLKREG(&clk_twsi4, "pxa2xx-i2c.3", NULL),
INIT_CLKREG(&clk_twsi5, "pxa2xx-i2c.4", NULL),
INIT_CLKREG(&clk_twsi6, "pxa2xx-i2c.5", NULL),
INIT_CLKREG(&clk_nand, "pxa3xx-nand", NULL),
};
static int __init mmp2_init(void)
{
if (cpu_is_mmp2()) {
mfp_init_base(MFPR_VIRT_BASE);
mfp_init_addr(mmp2_addr_map);
clks_register(ARRAY_AND_SIZE(mmp2_clkregs));
}
return 0;
}
postcore_initcall(mmp2_init);
/* on-chip devices */
MMP2_DEVICE(uart1, "pxa2xx-uart", 0, UART1, 0xd4030000, 0x30, 4, 5);
MMP2_DEVICE(uart2, "pxa2xx-uart", 1, UART2, 0xd4017000, 0x30, 20, 21);
MMP2_DEVICE(uart3, "pxa2xx-uart", 2, UART3, 0xd4018000, 0x30, 22, 23);
MMP2_DEVICE(uart4, "pxa2xx-uart", 3, UART4, 0xd4016000, 0x30, 18, 19);
MMP2_DEVICE(twsi1, "pxa2xx-i2c", 0, TWSI1, 0xd4011000, 0x70);
MMP2_DEVICE(twsi2, "pxa2xx-i2c", 1, TWSI2, 0xd4031000, 0x70);
MMP2_DEVICE(twsi3, "pxa2xx-i2c", 2, TWSI3, 0xd4032000, 0x70);
MMP2_DEVICE(twsi4, "pxa2xx-i2c", 3, TWSI4, 0xd4033000, 0x70);
MMP2_DEVICE(twsi5, "pxa2xx-i2c", 4, TWSI5, 0xd4033800, 0x70);
MMP2_DEVICE(twsi6, "pxa2xx-i2c", 5, TWSI6, 0xd4034000, 0x70);
MMP2_DEVICE(nand, "pxa3xx-nand", -1, NAND, 0xd4283000, 0x100, 28, 29);
|