aboutsummaryrefslogtreecommitdiff
path: root/arch/blackfin/kernel/kgdb.c
blob: ab4022131a2a9edb4fbecf46413e591682dae4a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
/*
 * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
 *
 * Copyright 2005-2008 Analog Devices Inc.
 *
 * Licensed under the GPL-2 or later.
 */

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ptrace.h>		/* for linux pt_regs struct */
#include <linux/kgdb.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include <asm/system.h>
#include <asm/traps.h>
#include <asm/blackfin.h>
#include <asm/dma.h>

/* Put the error code here just in case the user cares.  */
int gdb_bfin_errcode;
/* Likewise, the vector number here (since GDB only gets the signal
   number through the usual means, and that's not very specific).  */
int gdb_bfin_vector = -1;

#if KGDB_MAX_NO_CPUS != 8
#error change the definition of slavecpulocks
#endif

#ifdef CONFIG_BFIN_WDT
# error "Please unselect blackfin watchdog driver before build KGDB."
#endif

void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
	gdb_regs[BFIN_R0] = regs->r0;
	gdb_regs[BFIN_R1] = regs->r1;
	gdb_regs[BFIN_R2] = regs->r2;
	gdb_regs[BFIN_R3] = regs->r3;
	gdb_regs[BFIN_R4] = regs->r4;
	gdb_regs[BFIN_R5] = regs->r5;
	gdb_regs[BFIN_R6] = regs->r6;
	gdb_regs[BFIN_R7] = regs->r7;
	gdb_regs[BFIN_P0] = regs->p0;
	gdb_regs[BFIN_P1] = regs->p1;
	gdb_regs[BFIN_P2] = regs->p2;
	gdb_regs[BFIN_P3] = regs->p3;
	gdb_regs[BFIN_P4] = regs->p4;
	gdb_regs[BFIN_P5] = regs->p5;
	gdb_regs[BFIN_SP] = regs->reserved;
	gdb_regs[BFIN_FP] = regs->fp;
	gdb_regs[BFIN_I0] = regs->i0;
	gdb_regs[BFIN_I1] = regs->i1;
	gdb_regs[BFIN_I2] = regs->i2;
	gdb_regs[BFIN_I3] = regs->i3;
	gdb_regs[BFIN_M0] = regs->m0;
	gdb_regs[BFIN_M1] = regs->m1;
	gdb_regs[BFIN_M2] = regs->m2;
	gdb_regs[BFIN_M3] = regs->m3;
	gdb_regs[BFIN_B0] = regs->b0;
	gdb_regs[BFIN_B1] = regs->b1;
	gdb_regs[BFIN_B2] = regs->b2;
	gdb_regs[BFIN_B3] = regs->b3;
	gdb_regs[BFIN_L0] = regs->l0;
	gdb_regs[BFIN_L1] = regs->l1;
	gdb_regs[BFIN_L2] = regs->l2;
	gdb_regs[BFIN_L3] = regs->l3;
	gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
	gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
	gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
	gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
	gdb_regs[BFIN_ASTAT] = regs->astat;
	gdb_regs[BFIN_RETS] = regs->rets;
	gdb_regs[BFIN_LC0] = regs->lc0;
	gdb_regs[BFIN_LT0] = regs->lt0;
	gdb_regs[BFIN_LB0] = regs->lb0;
	gdb_regs[BFIN_LC1] = regs->lc1;
	gdb_regs[BFIN_LT1] = regs->lt1;
	gdb_regs[BFIN_LB1] = regs->lb1;
	gdb_regs[BFIN_CYCLES] = 0;
	gdb_regs[BFIN_CYCLES2] = 0;
	gdb_regs[BFIN_USP] = regs->usp;
	gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
	gdb_regs[BFIN_SYSCFG] = regs->syscfg;
	gdb_regs[BFIN_RETI] = regs->pc;
	gdb_regs[BFIN_RETX] = regs->retx;
	gdb_regs[BFIN_RETN] = regs->retn;
	gdb_regs[BFIN_RETE] = regs->rete;
	gdb_regs[BFIN_PC] = regs->pc;
	gdb_regs[BFIN_CC] = 0;
	gdb_regs[BFIN_EXTRA1] = 0;
	gdb_regs[BFIN_EXTRA2] = 0;
	gdb_regs[BFIN_EXTRA3] = 0;
	gdb_regs[BFIN_IPEND] = regs->ipend;
}

/*
 * Extracts ebp, esp and eip values understandable by gdb from the values
 * saved by switch_to.
 * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
 * prior to entering switch_to is 8 greater then the value that is saved.
 * If switch_to changes, change following code appropriately.
 */
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
	gdb_regs[BFIN_SP] = p->thread.ksp;
	gdb_regs[BFIN_PC] = p->thread.pc;
	gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
}

void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
{
	regs->r0 = gdb_regs[BFIN_R0];
	regs->r1 = gdb_regs[BFIN_R1];
	regs->r2 = gdb_regs[BFIN_R2];
	regs->r3 = gdb_regs[BFIN_R3];
	regs->r4 = gdb_regs[BFIN_R4];
	regs->r5 = gdb_regs[BFIN_R5];
	regs->r6 = gdb_regs[BFIN_R6];
	regs->r7 = gdb_regs[BFIN_R7];
	regs->p0 = gdb_regs[BFIN_P0];
	regs->p1 = gdb_regs[BFIN_P1];
	regs->p2 = gdb_regs[BFIN_P2];
	regs->p3 = gdb_regs[BFIN_P3];
	regs->p4 = gdb_regs[BFIN_P4];
	regs->p5 = gdb_regs[BFIN_P5];
	regs->fp = gdb_regs[BFIN_FP];
	regs->i0 = gdb_regs[BFIN_I0];
	regs->i1 = gdb_regs[BFIN_I1];
	regs->i2 = gdb_regs[BFIN_I2];
	regs->i3 = gdb_regs[BFIN_I3];
	regs->m0 = gdb_regs[BFIN_M0];
	regs->m1 = gdb_regs[BFIN_M1];
	regs->m2 = gdb_regs[BFIN_M2];
	regs->m3 = gdb_regs[BFIN_M3];
	regs->b0 = gdb_regs[BFIN_B0];
	regs->b1 = gdb_regs[BFIN_B1];
	regs->b2 = gdb_regs[BFIN_B2];
	regs->b3 = gdb_regs[BFIN_B3];
	regs->l0 = gdb_regs[BFIN_L0];
	regs->l1 = gdb_regs[BFIN_L1];
	regs->l2 = gdb_regs[BFIN_L2];
	regs->l3 = gdb_regs[BFIN_L3];
	regs->a0x = gdb_regs[BFIN_A0_DOT_X];
	regs->a0w = gdb_regs[BFIN_A0_DOT_W];
	regs->a1x = gdb_regs[BFIN_A1_DOT_X];
	regs->a1w = gdb_regs[BFIN_A1_DOT_W];
	regs->rets = gdb_regs[BFIN_RETS];
	regs->lc0 = gdb_regs[BFIN_LC0];
	regs->lt0 = gdb_regs[BFIN_LT0];
	regs->lb0 = gdb_regs[BFIN_LB0];
	regs->lc1 = gdb_regs[BFIN_LC1];
	regs->lt1 = gdb_regs[BFIN_LT1];
	regs->lb1 = gdb_regs[BFIN_LB1];
	regs->usp = gdb_regs[BFIN_USP];
	regs->syscfg = gdb_regs[BFIN_SYSCFG];
	regs->retx = gdb_regs[BFIN_PC];
	regs->retn = gdb_regs[BFIN_RETN];
	regs->rete = gdb_regs[BFIN_RETE];
	regs->pc = gdb_regs[BFIN_PC];

#if 0				/* can't change these */
	regs->astat = gdb_regs[BFIN_ASTAT];
	regs->seqstat = gdb_regs[BFIN_SEQSTAT];
	regs->ipend = gdb_regs[BFIN_IPEND];
#endif
}

struct hw_breakpoint {
	unsigned int occupied:1;
	unsigned int skip:1;
	unsigned int enabled:1;
	unsigned int type:1;
	unsigned int dataacc:2;
	unsigned short count;
	unsigned int addr;
} breakinfo[HW_WATCHPOINT_NUM];

int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
{
	int breakno;
	int bfin_type;
	int dataacc = 0;

	switch (type) {
	case BP_HARDWARE_BREAKPOINT:
		bfin_type = TYPE_INST_WATCHPOINT;
		break;
	case BP_WRITE_WATCHPOINT:
		dataacc = 1;
		bfin_type = TYPE_DATA_WATCHPOINT;
		break;
	case BP_READ_WATCHPOINT:
		dataacc = 2;
		bfin_type = TYPE_DATA_WATCHPOINT;
		break;
	case BP_ACCESS_WATCHPOINT:
		dataacc = 3;
		bfin_type = TYPE_DATA_WATCHPOINT;
		break;
	default:
		return -ENOSPC;
	}

	/* Becasue hardware data watchpoint impelemented in current
	 * Blackfin can not trigger an exception event as the hardware
	 * instrction watchpoint does, we ignaore all data watch point here.
	 * They can be turned on easily after future blackfin design
	 * supports this feature.
	 */
	for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
		if (bfin_type == breakinfo[breakno].type
			&& !breakinfo[breakno].occupied) {
			breakinfo[breakno].occupied = 1;
			breakinfo[breakno].enabled = 1;
			breakinfo[breakno].addr = addr;
			breakinfo[breakno].dataacc = dataacc;
			breakinfo[breakno].count = 0;
			return 0;
		}

	return -ENOSPC;
}

int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
{
	int breakno;
	int bfin_type;

	switch (type) {
	case BP_HARDWARE_BREAKPOINT:
		bfin_type = TYPE_INST_WATCHPOINT;
		break;
	case BP_WRITE_WATCHPOINT:
	case BP_READ_WATCHPOINT:
	case BP_ACCESS_WATCHPOINT:
		bfin_type = TYPE_DATA_WATCHPOINT;
		break;
	default:
		return 0;
	}
	for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
		if (bfin_type == breakinfo[breakno].type
			&& breakinfo[breakno].occupied
			&& breakinfo[breakno].addr == addr) {
			breakinfo[breakno].occupied = 0;
			breakinfo[breakno].enabled = 0;
		}

	return 0;
}

void bfin_remove_all_hw_break(void)
{
	int breakno;

	memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);

	for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
		breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
	for (; breakno < HW_WATCHPOINT_NUM; breakno++)
		breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
}

void bfin_correct_hw_break(void)
{
	int breakno;
	unsigned int wpiactl = 0;
	unsigned int wpdactl = 0;
	int enable_wp = 0;

	for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
		if (breakinfo[breakno].enabled) {
			enable_wp = 1;

			switch (breakno) {
			case 0:
				wpiactl |= WPIAEN0|WPICNTEN0;
				bfin_write_WPIA0(breakinfo[breakno].addr);
				bfin_write_WPIACNT0(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			case 1:
				wpiactl |= WPIAEN1|WPICNTEN1;
				bfin_write_WPIA1(breakinfo[breakno].addr);
				bfin_write_WPIACNT1(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			case 2:
				wpiactl |= WPIAEN2|WPICNTEN2;
				bfin_write_WPIA2(breakinfo[breakno].addr);
				bfin_write_WPIACNT2(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			case 3:
				wpiactl |= WPIAEN3|WPICNTEN3;
				bfin_write_WPIA3(breakinfo[breakno].addr);
				bfin_write_WPIACNT3(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			case 4:
				wpiactl |= WPIAEN4|WPICNTEN4;
				bfin_write_WPIA4(breakinfo[breakno].addr);
				bfin_write_WPIACNT4(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			case 5:
				wpiactl |= WPIAEN5|WPICNTEN5;
				bfin_write_WPIA5(breakinfo[breakno].addr);
				bfin_write_WPIACNT5(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			case 6:
				wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
				wpdactl |= breakinfo[breakno].dataacc
					<< WPDACC0_OFFSET;
				bfin_write_WPDA0(breakinfo[breakno].addr);
				bfin_write_WPDACNT0(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			case 7:
				wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
				wpdactl |= breakinfo[breakno].dataacc
					<< WPDACC1_OFFSET;
				bfin_write_WPDA1(breakinfo[breakno].addr);
				bfin_write_WPDACNT1(breakinfo[breakno].count
					+ breakinfo->skip);
				break;
			}
		}

	/* Should enable WPPWR bit first before set any other
	 * WPIACTL and WPDACTL bits */
	if (enable_wp) {
		bfin_write_WPIACTL(WPPWR);
		CSYNC();
		bfin_write_WPIACTL(wpiactl|WPPWR);
		bfin_write_WPDACTL(wpdactl);
		CSYNC();
	}
}

void kgdb_disable_hw_debug(struct pt_regs *regs)
{
	/* Disable hardware debugging while we are in kgdb */
	bfin_write_WPIACTL(0);
	bfin_write_WPDACTL(0);
	CSYNC();
}

#ifdef CONFIG_SMP
void kgdb_passive_cpu_callback(void *info)
{
	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
}

void kgdb_roundup_cpus(unsigned long flags)
{
	smp_call_function(kgdb_passive_cpu_callback, NULL, 0);
}

void kgdb_roundup_cpu(int cpu, unsigned long flags)
{
	smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0);
}
#endif

void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code)
{
	/* Master processor is completely in the debugger */
	gdb_bfin_vector = eVector;
	gdb_bfin_errcode = err_code;
}

int kgdb_arch_handle_exception(int vector, int signo,
			       int err_code, char *remcom_in_buffer,
			       char *remcom_out_buffer,
			       struct pt_regs *regs)
{
	long addr;
	long breakno;
	char *ptr;
	int newPC;
	int wp_status;
	int i;

	switch (remcom_in_buffer[0]) {
	case 'c':
	case 's':
		if (kgdb_contthread && kgdb_contthread != current) {
			strcpy(remcom_out_buffer, "E00");
			break;
		}

		kgdb_contthread = NULL;

		/* try to read optional parameter, pc unchanged if no parm */
		ptr = &remcom_in_buffer[1];
		if (kgdb_hex2long(&ptr, &addr)) {
			regs->retx = addr;
		}
		newPC = regs->retx;

		/* clear the trace bit */
		regs->syscfg &= 0xfffffffe;

		/* set the trace bit if we're stepping */
		if (remcom_in_buffer[0] == 's') {
			regs->syscfg |= 0x1;
			kgdb_single_step = regs->ipend;
			kgdb_single_step >>= 6;
			for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
				if (kgdb_single_step & 1)
					break;
			/* i indicate event priority of current stopped instruction
			 * user space instruction is 0, IVG15 is 1, IVTMR is 10.
			 * kgdb_single_step > 0 means in single step mode
			 */
			kgdb_single_step = i + 1;
		}

		if (vector == VEC_WATCH) {
			wp_status = bfin_read_WPSTAT();
			for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) {
				if (wp_status & (1 << breakno)) {
					breakinfo->skip = 1;
					break;
				}
			}
			bfin_write_WPSTAT(0);
		}

		bfin_correct_hw_break();

		return 0;
	}			/* switch */
	return -1;		/* this means that we do not want to exit from the handler */
}

struct kgdb_arch arch_kgdb_ops = {
	.gdb_bpt_instr = {0xa1},
#ifdef CONFIG_SMP
	.flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP,
#else
	.flags = KGDB_HW_BREAKPOINT,
#endif
	.set_hw_breakpoint = bfin_set_hw_break,
	.remove_hw_breakpoint = bfin_remove_hw_break,
	.remove_all_hw_break = bfin_remove_all_hw_break,
	.correct_hw_break = bfin_correct_hw_break,
};

static int hex(char ch)
{
	if ((ch >= 'a') && (ch <= 'f'))
		return ch - 'a' + 10;
	if ((ch >= '0') && (ch <= '9'))
		return ch - '0';
	if ((ch >= 'A') && (ch <= 'F'))
		return ch - 'A' + 10;
	return -1;
}

static int validate_memory_access_address(unsigned long addr, int size)
{
	int cpu = raw_smp_processor_id();

	if (size < 0)
		return EFAULT;
	if (addr >= 0x1000 && (addr + size) <= physical_mem_end)
		return 0;
	if (addr >= SYSMMR_BASE)
		return 0;
	if (addr >= ASYNC_BANK0_BASE
	   && addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
		return 0;
	if (cpu == 0) {
		if (addr >= L1_SCRATCH_START
		   && (addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH))
			return 0;
#if L1_CODE_LENGTH != 0
		if (addr >= L1_CODE_START
		   && (addr + size <= L1_CODE_START + L1_CODE_LENGTH))
			return 0;
#endif
#if L1_DATA_A_LENGTH != 0
		if (addr >= L1_DATA_A_START
		   && (addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH))
			return 0;
#endif
#if L1_DATA_B_LENGTH != 0
		if (addr >= L1_DATA_B_START
		   && (addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH))
			return 0;
#endif
#ifdef CONFIG_SMP
	} else if (cpu == 1) {
		if (addr >= COREB_L1_SCRATCH_START
		   && (addr + size <= COREB_L1_SCRATCH_START
		   + L1_SCRATCH_LENGTH))
			return 0;
# if L1_CODE_LENGTH != 0
		if (addr >= COREB_L1_CODE_START
		   && (addr + size <= COREB_L1_CODE_START + L1_CODE_LENGTH))
			return 0;
# endif
# if L1_DATA_A_LENGTH != 0
		if (addr >= COREB_L1_DATA_A_START
		   && (addr + size <= COREB_L1_DATA_A_START + L1_DATA_A_LENGTH))
			return 0;
# endif
# if L1_DATA_B_LENGTH != 0
		if (addr >= COREB_L1_DATA_B_START
		   && (addr + size <= COREB_L1_DATA_B_START + L1_DATA_B_LENGTH))
			return 0;
# endif
#endif
	}

#if L2_LENGTH != 0
	if (addr >= L2_START
	   && addr + size <= L2_START + L2_LENGTH)
		return 0;
#endif

	return EFAULT;
}

/*
 * Convert the memory pointed to by mem into hex, placing result in buf.
 * Return a pointer to the last char put in buf (null). May return an error.
 */
int kgdb_mem2hex(char *mem, char *buf, int count)
{
	char *tmp;
	int err = 0;
	unsigned char *pch;
	unsigned short mmr16;
	unsigned long mmr32;
	int cpu = raw_smp_processor_id();

	if (validate_memory_access_address((unsigned long)mem, count))
		return EFAULT;

	/*
	 * We use the upper half of buf as an intermediate buffer for the
	 * raw memory copy.  Hex conversion will work against this one.
	 */
	tmp = buf + count;

	if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
		switch (count) {
		case 2:
			if ((unsigned int)mem % 2 == 0) {
				mmr16 = *(unsigned short *)mem;
				pch = (unsigned char *)&mmr16;
				*tmp++ = *pch++;
				*tmp++ = *pch++;
				tmp -= 2;
			} else
				err = EFAULT;
			break;
		case 4:
			if ((unsigned int)mem % 4 == 0) {
				mmr32 = *(unsigned long *)mem;
				pch = (unsigned char *)&mmr32;
				*tmp++ = *pch++;
				*tmp++ = *pch++;
				*tmp++ = *pch++;
				*tmp++ = *pch++;
				tmp -= 4;
			} else
				err = EFAULT;
			break;
		default:
			err = EFAULT;
		}
	} else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
		(unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
#ifdef CONFIG_SMP
		|| cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
		(unsigned int)(mem + count) <=
		COREB_L1_CODE_START + L1_CODE_LENGTH
#endif
		) {
		/* access L1 instruction SRAM*/
		if (dma_memcpy(tmp, mem, count) == NULL)
			err = EFAULT;
	} else
		err = probe_kernel_read(tmp, mem, count);

	if (!err) {
		while (count > 0) {
			buf = pack_hex_byte(buf, *tmp);
			tmp++;
			count--;
		}

		*buf = 0;
	}

	return err;
}

/*
 * Copy the binary array pointed to by buf into mem.  Fix $, #, and
 * 0x7d escaped with 0x7d.  Return a pointer to the character after
 * the last byte written.
 */
int kgdb_ebin2mem(char *buf, char *mem, int count)
{
	char *tmp_old;
	char *tmp_new;
	unsigned short *mmr16;
	unsigned long *mmr32;
	int err = 0;
	int size = 0;
	int cpu = raw_smp_processor_id();

	tmp_old = tmp_new = buf;

	while (count-- > 0) {
		if (*tmp_old == 0x7d)
			*tmp_new = *(++tmp_old) ^ 0x20;
		else
			*tmp_new = *tmp_old;
		tmp_new++;
		tmp_old++;
		size++;
	}

	if (validate_memory_access_address((unsigned long)mem, size))
		return EFAULT;

	if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
		switch (size) {
		case 2:
			if ((unsigned int)mem % 2 == 0) {
				mmr16 = (unsigned short *)buf;
				*(unsigned short *)mem = *mmr16;
			} else
				return EFAULT;
			break;
		case 4:
			if ((unsigned int)mem % 4 == 0) {
				mmr32 = (unsigned long *)buf;
				*(unsigned long *)mem = *mmr32;
			} else
				return EFAULT;
			break;
		default:
			return EFAULT;
		}
	} else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
		(unsigned int)(mem + count) < L1_CODE_START + L1_CODE_LENGTH
#ifdef CONFIG_SMP
		|| cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
		(unsigned int)(mem + count) <=
		COREB_L1_CODE_START + L1_CODE_LENGTH
#endif
		) {
		/* access L1 instruction SRAM */
		if (dma_memcpy(mem, buf, size) == NULL)
			err = EFAULT;
	} else
		err = probe_kernel_write(mem, buf, size);

	return err;
}

/*
 * Convert the hex array pointed to by buf into binary to be placed in mem.
 * Return a pointer to the character AFTER the last byte written.
 * May return an error.
 */
int kgdb_hex2mem(char *buf, char *mem, int count)
{
	char *tmp_raw;
	char *tmp_hex;
	unsigned short *mmr16;
	unsigned long *mmr32;
	int cpu = raw_smp_processor_id();

	if (validate_memory_access_address((unsigned long)mem, count))
		return EFAULT;

	/*
	 * We use the upper half of buf as an intermediate buffer for the
	 * raw memory that is converted from hex.
	 */
	tmp_raw = buf + count * 2;

	tmp_hex = tmp_raw - 1;
	while (tmp_hex >= buf) {
		tmp_raw--;
		*tmp_raw = hex(*tmp_hex--);
		*tmp_raw |= hex(*tmp_hex--) << 4;
	}

	if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
		switch (count) {
		case 2:
			if ((unsigned int)mem % 2 == 0) {
				mmr16 = (unsigned short *)tmp_raw;
				*(unsigned short *)mem = *mmr16;
			} else
				return EFAULT;
			break;
		case 4:
			if ((unsigned int)mem % 4 == 0) {
				mmr32 = (unsigned long *)tmp_raw;
				*(unsigned long *)mem = *mmr32;
			} else
				return EFAULT;
			break;
		default:
			return EFAULT;
		}
	} else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
		(unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
#ifdef CONFIG_SMP
		|| cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
		(unsigned int)(mem + count) <=
		COREB_L1_CODE_START + L1_CODE_LENGTH
#endif
		) {
		/* access L1 instruction SRAM */
		if (dma_memcpy(mem, tmp_raw, count) == NULL)
			return EFAULT;
	} else
		return probe_kernel_write(mem, tmp_raw, count);
	return 0;
}

int kgdb_validate_break_address(unsigned long addr)
{
	int cpu = raw_smp_processor_id();

	if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
		return 0;
	if (addr >= ASYNC_BANK0_BASE
	   && addr + BREAK_INSTR_SIZE <= ASYNC_BANK3_BASE + ASYNC_BANK3_BASE)
		return 0;
#if L1_CODE_LENGTH != 0
	if (cpu == 0 && addr >= L1_CODE_START
	   && addr + BREAK_INSTR_SIZE <= L1_CODE_START + L1_CODE_LENGTH)
		return 0;
# ifdef CONFIG_SMP
	else if (cpu == 1 && addr >= COREB_L1_CODE_START
	   && addr + BREAK_INSTR_SIZE <= COREB_L1_CODE_START + L1_CODE_LENGTH)
		return 0;
# endif
#endif
#if L2_LENGTH != 0
	if (addr >= L2_START
	   && addr + BREAK_INSTR_SIZE <= L2_START + L2_LENGTH)
		return 0;
#endif

	return EFAULT;
}

int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
{
	int err;
	int cpu = raw_smp_processor_id();

	if ((cpu == 0 && (unsigned int)addr >= L1_CODE_START
		&& (unsigned int)(addr + BREAK_INSTR_SIZE)
		< L1_CODE_START + L1_CODE_LENGTH)
#ifdef CONFIG_SMP
		|| (cpu == 1 && (unsigned int)addr >= COREB_L1_CODE_START
		&& (unsigned int)(addr + BREAK_INSTR_SIZE)
		< COREB_L1_CODE_START + L1_CODE_LENGTH)
#endif
		) {
		/* access L1 instruction SRAM */
		if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE)
			== NULL)
			return -EFAULT;

		if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr,
			BREAK_INSTR_SIZE) == NULL)
			return -EFAULT;

		return 0;
	} else {
		err = probe_kernel_read(saved_instr, (char *)addr,
			BREAK_INSTR_SIZE);
		if (err)
			return err;

		return probe_kernel_write((char *)addr,
			arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
	}
}

int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
{
	if ((unsigned int)addr >= L1_CODE_START &&
		(unsigned int)(addr + BREAK_INSTR_SIZE) <
			L1_CODE_START + L1_CODE_LENGTH) {
		/* access L1 instruction SRAM */
		if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL)
			return -EFAULT;

		return 0;
	} else
		return probe_kernel_write((char *)addr,
				(char *)bundle, BREAK_INSTR_SIZE);
}

int kgdb_arch_init(void)
{
	kgdb_single_step = 0;

	bfin_remove_all_hw_break();
	return 0;
}

void kgdb_arch_exit(void)
{
}