1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <asm/io.h>
#include <linux/pm.h>
#include <asm/system.h>
#include <linux/dmi.h>
#include <linux/bootmem.h>
struct dmi_header
{
u8 type;
u8 length;
u16 handle;
};
#undef DMI_DEBUG
#ifdef DMI_DEBUG
#define dmi_printk(x) printk x
#else
#define dmi_printk(x)
#endif
static char * __init dmi_string(struct dmi_header *dm, u8 s)
{
u8 *bp=(u8 *)dm;
bp+=dm->length;
if(!s)
return "";
s--;
while(s>0 && *bp)
{
bp+=strlen(bp);
bp++;
s--;
}
return bp;
}
/*
* We have to be cautious here. We have seen BIOSes with DMI pointers
* pointing to completely the wrong place for example
*/
static int __init dmi_table(u32 base, int len, int num, void (*decode)(struct dmi_header *))
{
u8 *buf;
struct dmi_header *dm;
u8 *data;
int i=0;
buf = bt_ioremap(base, len);
if(buf==NULL)
return -1;
data = buf;
/*
* Stop when we see all the items the table claimed to have
* OR we run off the end of the table (also happens)
*/
while(i<num && data-buf+sizeof(struct dmi_header)<=len)
{
dm=(struct dmi_header *)data;
/*
* We want to know the total length (formated area and strings)
* before decoding to make sure we won't run off the table in
* dmi_decode or dmi_string
*/
data+=dm->length;
while(data-buf<len-1 && (data[0] || data[1]))
data++;
if(data-buf<len-1)
decode(dm);
data+=2;
i++;
}
bt_iounmap(buf, len);
return 0;
}
inline static int __init dmi_checksum(u8 *buf)
{
u8 sum=0;
int a;
for(a=0; a<15; a++)
sum+=buf[a];
return (sum==0);
}
static int __init dmi_iterate(void (*decode)(struct dmi_header *))
{
u8 buf[15];
char __iomem *p, *q;
/*
* no iounmap() for that ioremap(); it would be a no-op, but it's
* so early in setup that sucker gets confused into doing what
* it shouldn't if we actually call it.
*/
p = ioremap(0xF0000, 0x10000);
if (p == NULL)
return -1;
for (q = p; q < p + 0x10000; q += 16) {
memcpy_fromio(buf, q, 15);
if(memcmp(buf, "_DMI_", 5)==0 && dmi_checksum(buf))
{
u16 num=buf[13]<<8|buf[12];
u16 len=buf[7]<<8|buf[6];
u32 base=buf[11]<<24|buf[10]<<16|buf[9]<<8|buf[8];
/*
* DMI version 0.0 means that the real version is taken from
* the SMBIOS version, which we don't know at this point.
*/
if(buf[14]!=0)
printk(KERN_INFO "DMI %d.%d present.\n",
buf[14]>>4, buf[14]&0x0F);
else
printk(KERN_INFO "DMI present.\n");
dmi_printk((KERN_INFO "%d structures occupying %d bytes.\n",
num, len));
dmi_printk((KERN_INFO "DMI table at 0x%08X.\n",
base));
if(dmi_table(base,len, num, decode)==0)
return 0;
}
}
return -1;
}
static char *dmi_ident[DMI_STRING_MAX];
/*
* Save a DMI string
*/
static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string)
{
char *d = (char*)dm;
char *p = dmi_string(dm, d[string]);
if(p==NULL || *p == 0)
return;
if (dmi_ident[slot])
return;
dmi_ident[slot] = alloc_bootmem(strlen(p)+1);
if(dmi_ident[slot])
strcpy(dmi_ident[slot], p);
else
printk(KERN_ERR "dmi_save_ident: out of memory.\n");
}
/*
* Ugly compatibility crap.
*/
#define dmi_blacklist dmi_system_id
#define NO_MATCH { DMI_NONE, NULL}
#define MATCH DMI_MATCH
/*
* Toshiba keyboard likes to repeat keys when they are not repeated.
*/
static __init int broken_toshiba_keyboard(struct dmi_blacklist *d)
{
printk(KERN_WARNING "Toshiba with broken keyboard detected. If your keyboard sometimes generates 3 keypresses instead of one, see http://davyd.ucc.asn.au/projects/toshiba/README\n");
return 0;
}
#ifdef CONFIG_ACPI_SLEEP
static __init int reset_videomode_after_s3(struct dmi_blacklist *d)
{
/* See acpi_wakeup.S */
extern long acpi_video_flags;
acpi_video_flags |= 2;
return 0;
}
#endif
/*
* Process the DMI blacklists
*/
/*
* This will be expanded over time to force things like the APM
* interrupt mask settings according to the laptop
*/
static __initdata struct dmi_blacklist dmi_blacklist[]={
{ broken_toshiba_keyboard, "Toshiba Satellite 4030cdt", { /* Keyboard generates spurious repeats */
MATCH(DMI_PRODUCT_NAME, "S4030CDT/4.3"),
NO_MATCH, NO_MATCH, NO_MATCH
} },
#ifdef CONFIG_ACPI_SLEEP
{ reset_videomode_after_s3, "Toshiba Satellite 4030cdt", { /* Reset video mode after returning from ACPI S3 sleep */
MATCH(DMI_PRODUCT_NAME, "S4030CDT/4.3"),
NO_MATCH, NO_MATCH, NO_MATCH
} },
#endif
{ NULL, }
};
/*
* Process a DMI table entry. Right now all we care about are the BIOS
* and machine entries. For 2.5 we should pull the smbus controller info
* out of here.
*/
static void __init dmi_decode(struct dmi_header *dm)
{
#ifdef DMI_DEBUG
u8 *data = (u8 *)dm;
#endif
switch(dm->type)
{
case 0:
dmi_printk(("BIOS Vendor: %s\n",
dmi_string(dm, data[4])));
dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
dmi_printk(("BIOS Version: %s\n",
dmi_string(dm, data[5])));
dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
dmi_printk(("BIOS Release: %s\n",
dmi_string(dm, data[8])));
dmi_save_ident(dm, DMI_BIOS_DATE, 8);
break;
case 1:
dmi_printk(("System Vendor: %s\n",
dmi_string(dm, data[4])));
dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
dmi_printk(("Product Name: %s\n",
dmi_string(dm, data[5])));
dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
dmi_printk(("Version: %s\n",
dmi_string(dm, data[6])));
dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
dmi_printk(("Serial Number: %s\n",
dmi_string(dm, data[7])));
dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
break;
case 2:
dmi_printk(("Board Vendor: %s\n",
dmi_string(dm, data[4])));
dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
dmi_printk(("Board Name: %s\n",
dmi_string(dm, data[5])));
dmi_save_ident(dm, DMI_BOARD_NAME, 5);
dmi_printk(("Board Version: %s\n",
dmi_string(dm, data[6])));
dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
break;
}
}
void __init dmi_scan_machine(void)
{
int err = dmi_iterate(dmi_decode);
if(err == 0)
dmi_check_system(dmi_blacklist);
else
printk(KERN_INFO "DMI not present.\n");
}
/**
* dmi_check_system - check system DMI data
* @list: array of dmi_system_id structures to match against
*
* Walk the blacklist table running matching functions until someone
* returns non zero or we hit the end. Callback function is called for
* each successfull match. Returns the number of matches.
*/
int dmi_check_system(struct dmi_system_id *list)
{
int i, count = 0;
struct dmi_system_id *d = list;
while (d->ident) {
for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
int s = d->matches[i].slot;
if (s == DMI_NONE)
continue;
if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
continue;
/* No match */
goto fail;
}
if (d->callback && d->callback(d))
break;
count++;
fail: d++;
}
return count;
}
EXPORT_SYMBOL(dmi_check_system);
/**
* dmi_get_system_info - return DMI data value
* @field: data index (see enum dmi_filed)
*
* Returns one DMI data value, can be used to perform
* complex DMI data checks.
*/
char *dmi_get_system_info(int field)
{
return dmi_ident[field];
}
EXPORT_SYMBOL(dmi_get_system_info);
|