aboutsummaryrefslogtreecommitdiff
path: root/arch/sparc/mm/leon_mm.c
blob: c0e01297e64eb84a03b8582e135c616b7c129ba0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
 *  linux/arch/sparc/mm/leon_m.c
 *
 * Copyright (C) 2004 Konrad Eisele (eiselekd@web.de, konrad@gaisler.com) Gaisler Research
 * Copyright (C) 2009 Daniel Hellstrom (daniel@gaisler.com) Aeroflex Gaisler AB
 * Copyright (C) 2009 Konrad Eisele (konrad@gaisler.com) Aeroflex Gaisler AB
 *
 * do srmmu probe in software
 *
 */

#include <linux/kernel.h>
#include <linux/mm.h>
#include <asm/asi.h>
#include <asm/leon.h>
#include <asm/tlbflush.h>

int leon_flush_during_switch = 1;
int srmmu_swprobe_trace;

unsigned long srmmu_swprobe(unsigned long vaddr, unsigned long *paddr)
{

	unsigned int ctxtbl;
	unsigned int pgd, pmd, ped;
	unsigned int ptr;
	unsigned int lvl, pte, paddrbase;
	unsigned int ctx;
	unsigned int paddr_calc;

	paddrbase = 0;

	if (srmmu_swprobe_trace)
		printk(KERN_INFO "swprobe: trace on\n");

	ctxtbl = srmmu_get_ctable_ptr();
	if (!(ctxtbl)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: srmmu_get_ctable_ptr returned 0=>0\n");
		return 0;
	}
	if (!_pfn_valid(PFN(ctxtbl))) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO
			       "swprobe: !_pfn_valid(%x)=>0\n",
			       PFN(ctxtbl));
		return 0;
	}

	ctx = srmmu_get_context();
	if (srmmu_swprobe_trace)
		printk(KERN_INFO "swprobe:  --- ctx (%x) ---\n", ctx);

	pgd = LEON_BYPASS_LOAD_PA(ctxtbl + (ctx * 4));

	if (((pgd & SRMMU_ET_MASK) == SRMMU_ET_PTE)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: pgd is entry level 3\n");
		lvl = 3;
		pte = pgd;
		paddrbase = pgd & _SRMMU_PTE_PMASK_LEON;
		goto ready;
	}
	if (((pgd & SRMMU_ET_MASK) != SRMMU_ET_PTD)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: pgd is invalid => 0\n");
		return 0;
	}

	if (srmmu_swprobe_trace)
		printk(KERN_INFO "swprobe:  --- pgd (%x) ---\n", pgd);

	ptr = (pgd & SRMMU_PTD_PMASK) << 4;
	ptr += ((((vaddr) >> LEON_PGD_SH) & LEON_PGD_M) * 4);
	if (!_pfn_valid(PFN(ptr)))
		return 0;

	pmd = LEON_BYPASS_LOAD_PA(ptr);
	if (((pmd & SRMMU_ET_MASK) == SRMMU_ET_PTE)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: pmd is entry level 2\n");
		lvl = 2;
		pte = pmd;
		paddrbase = pmd & _SRMMU_PTE_PMASK_LEON;
		goto ready;
	}
	if (((pmd & SRMMU_ET_MASK) != SRMMU_ET_PTD)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: pmd is invalid => 0\n");
		return 0;
	}

	if (srmmu_swprobe_trace)
		printk(KERN_INFO "swprobe:  --- pmd (%x) ---\n", pmd);

	ptr = (pmd & SRMMU_PTD_PMASK) << 4;
	ptr += (((vaddr >> LEON_PMD_SH) & LEON_PMD_M) * 4);
	if (!_pfn_valid(PFN(ptr))) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: !_pfn_valid(%x)=>0\n",
			       PFN(ptr));
		return 0;
	}

	ped = LEON_BYPASS_LOAD_PA(ptr);

	if (((ped & SRMMU_ET_MASK) == SRMMU_ET_PTE)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: ped is entry level 1\n");
		lvl = 1;
		pte = ped;
		paddrbase = ped & _SRMMU_PTE_PMASK_LEON;
		goto ready;
	}
	if (((ped & SRMMU_ET_MASK) != SRMMU_ET_PTD)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: ped is invalid => 0\n");
		return 0;
	}

	if (srmmu_swprobe_trace)
		printk(KERN_INFO "swprobe:  --- ped (%x) ---\n", ped);

	ptr = (ped & SRMMU_PTD_PMASK) << 4;
	ptr += (((vaddr >> LEON_PTE_SH) & LEON_PTE_M) * 4);
	if (!_pfn_valid(PFN(ptr)))
		return 0;

	ptr = LEON_BYPASS_LOAD_PA(ptr);
	if (((ptr & SRMMU_ET_MASK) == SRMMU_ET_PTE)) {
		if (srmmu_swprobe_trace)
			printk(KERN_INFO "swprobe: ptr is entry level 0\n");
		lvl = 0;
		pte = ptr;
		paddrbase = ptr & _SRMMU_PTE_PMASK_LEON;
		goto ready;
	}
	if (srmmu_swprobe_trace)
		printk(KERN_INFO "swprobe: ptr is invalid => 0\n");
	return 0;

ready:
	switch (lvl) {
	case 0:
		paddr_calc =
		    (vaddr & ~(-1 << LEON_PTE_SH)) | ((pte & ~0xff) << 4);
		break;
	case 1:
		paddr_calc =
		    (vaddr & ~(-1 << LEON_PMD_SH)) | ((pte & ~0xff) << 4);
		break;
	case 2:
		paddr_calc =
		    (vaddr & ~(-1 << LEON_PGD_SH)) | ((pte & ~0xff) << 4);
		break;
	default:
	case 3:
		paddr_calc = vaddr;
		break;
	}
	if (srmmu_swprobe_trace)
		printk(KERN_INFO "swprobe: padde %x\n", paddr_calc);
	if (paddr)
		*paddr = paddr_calc;
	return paddrbase;
}

void leon_flush_icache_all(void)
{
	__asm__ __volatile__(" flush ");	/*iflush*/
}

void leon_flush_dcache_all(void)
{
	__asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" : :
			     "i"(ASI_LEON_DFLUSH) : "memory");
}

void leon_flush_pcache_all(struct vm_area_struct *vma, unsigned long page)
{
	if (vma->vm_flags & VM_EXEC)
		leon_flush_icache_all();
	leon_flush_dcache_all();
}

void leon_flush_cache_all(void)
{
	__asm__ __volatile__(" flush ");	/*iflush*/
	__asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" : :
			     "i"(ASI_LEON_DFLUSH) : "memory");
}

void leon_flush_tlb_all(void)
{
	leon_flush_cache_all();
	__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r"(0x400),
			     "i"(ASI_LEON_MMUFLUSH) : "memory");
}

/* get all cache regs */
void leon3_getCacheRegs(struct leon3_cacheregs *regs)
{
	unsigned long ccr, iccr, dccr;

	if (!regs)
		return;
	/* Get Cache regs from "Cache ASI" address 0x0, 0x8 and 0xC */
	__asm__ __volatile__("lda [%%g0] %3, %0\n\t"
			     "mov 0x08, %%g1\n\t"
			     "lda [%%g1] %3, %1\n\t"
			     "mov 0x0c, %%g1\n\t"
			     "lda [%%g1] %3, %2\n\t"
			     : "=r"(ccr), "=r"(iccr), "=r"(dccr)
			       /* output */
			     : "i"(ASI_LEON_CACHEREGS)	/* input */
			     : "g1"	/* clobber list */
	    );
	regs->ccr = ccr;
	regs->iccr = iccr;
	regs->dccr = dccr;
}

/* Due to virtual cache we need to check cache configuration if
 * it is possible to skip flushing in some cases.
 *
 * Leon2 and Leon3 differ in their way of telling cache information
 *
 */
int leon_flush_needed(void)
{
	int flush_needed = -1;
	unsigned int ssize, sets;
	char *setStr[4] =
	    { "direct mapped", "2-way associative", "3-way associative",
		"4-way associative"
	};
	/* leon 3 */
	struct leon3_cacheregs cregs;
	leon3_getCacheRegs(&cregs);
	sets = (cregs.dccr & LEON3_XCCR_SETS_MASK) >> 24;
	/* (ssize=>realsize) 0=>1k, 1=>2k, 2=>4k, 3=>8k ... */
	ssize = 1 << ((cregs.dccr & LEON3_XCCR_SSIZE_MASK) >> 20);

	printk(KERN_INFO "CACHE: %s cache, set size %dk\n",
	       sets > 3 ? "unknown" : setStr[sets], ssize);
	if ((ssize <= (PAGE_SIZE / 1024)) && (sets == 0)) {
		/* Set Size <= Page size  ==>
		   flush on every context switch not needed. */
		flush_needed = 0;
		printk(KERN_INFO "CACHE: not flushing on every context switch\n");
	}
	return flush_needed;
}

void leon_switch_mm(void)
{
	flush_tlb_mm((void *)0);
	if (leon_flush_during_switch)
		leon_flush_cache_all();
}