aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/mtrr/main.c
blob: 406074c46f1ed3e84488763927e43b630c49e2da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
/*  Generic MTRR (Memory Type Range Register) driver.

    Copyright (C) 1997-2000  Richard Gooch
    Copyright (c) 2002	     Patrick Mochel

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Library General Public License for more details.

    You should have received a copy of the GNU Library General Public
    License along with this library; if not, write to the Free
    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

    Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
    The postal address is:
      Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.

    Source: "Pentium Pro Family Developer's Manual, Volume 3:
    Operating System Writer's Guide" (Intel document number 242692),
    section 11.11.7

    This was cleaned and made readable by Patrick Mochel <mochel@osdl.org> 
    on 6-7 March 2002. 
    Source: Intel Architecture Software Developers Manual, Volume 3: 
    System Programming Guide; Section 9.11. (1997 edition - PPro).
*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/sort.h>

#include <asm/e820.h>
#include <asm/mtrr.h>
#include <asm/uaccess.h>
#include <asm/processor.h>
#include <asm/msr.h>
#include <asm/kvm_para.h>
#include "mtrr.h"

u32 num_var_ranges = 0;

unsigned int mtrr_usage_table[MAX_VAR_RANGES];
static DEFINE_MUTEX(mtrr_mutex);

u64 size_or_mask, size_and_mask;

static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};

struct mtrr_ops * mtrr_if = NULL;

static void set_mtrr(unsigned int reg, unsigned long base,
		     unsigned long size, mtrr_type type);

void set_mtrr_ops(struct mtrr_ops * ops)
{
	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
		mtrr_ops[ops->vendor] = ops;
}

/*  Returns non-zero if we have the write-combining memory type  */
static int have_wrcomb(void)
{
	struct pci_dev *dev;
	u8 rev;
	
	if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
		/* ServerWorks LE chipsets < rev 6 have problems with write-combining
		   Don't allow it and leave room for other chipsets to be tagged */
		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
			pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
			if (rev <= 5) {
				printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
				pci_dev_put(dev);
				return 0;
			}
		}
		/* Intel 450NX errata # 23. Non ascending cacheline evictions to
		   write combining memory may resulting in data corruption */
		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
			printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
			pci_dev_put(dev);
			return 0;
		}
		pci_dev_put(dev);
	}		
	return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
}

/*  This function returns the number of variable MTRRs  */
static void __init set_num_var_ranges(void)
{
	unsigned long config = 0, dummy;

	if (use_intel()) {
		rdmsr(MTRRcap_MSR, config, dummy);
	} else if (is_cpu(AMD))
		config = 2;
	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
		config = 8;
	num_var_ranges = config & 0xff;
}

static void __init init_table(void)
{
	int i, max;

	max = num_var_ranges;
	for (i = 0; i < max; i++)
		mtrr_usage_table[i] = 1;
}

struct set_mtrr_data {
	atomic_t	count;
	atomic_t	gate;
	unsigned long	smp_base;
	unsigned long	smp_size;
	unsigned int	smp_reg;
	mtrr_type	smp_type;
};

static void ipi_handler(void *info)
/*  [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
    [RETURNS] Nothing.
*/
{
#ifdef CONFIG_SMP
	struct set_mtrr_data *data = info;
	unsigned long flags;

	local_irq_save(flags);

	atomic_dec(&data->count);
	while(!atomic_read(&data->gate))
		cpu_relax();

	/*  The master has cleared me to execute  */
	if (data->smp_reg != ~0U) 
		mtrr_if->set(data->smp_reg, data->smp_base, 
			     data->smp_size, data->smp_type);
	else
		mtrr_if->set_all();

	atomic_dec(&data->count);
	while(atomic_read(&data->gate))
		cpu_relax();

	atomic_dec(&data->count);
	local_irq_restore(flags);
#endif
}

static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
	return type1 == MTRR_TYPE_UNCACHABLE ||
	       type2 == MTRR_TYPE_UNCACHABLE ||
	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
}

/**
 * set_mtrr - update mtrrs on all processors
 * @reg:	mtrr in question
 * @base:	mtrr base
 * @size:	mtrr size
 * @type:	mtrr type
 *
 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
 * 
 * 1. Send IPI to do the following:
 * 2. Disable Interrupts
 * 3. Wait for all procs to do so 
 * 4. Enter no-fill cache mode
 * 5. Flush caches
 * 6. Clear PGE bit
 * 7. Flush all TLBs
 * 8. Disable all range registers
 * 9. Update the MTRRs
 * 10. Enable all range registers
 * 11. Flush all TLBs and caches again
 * 12. Enter normal cache mode and reenable caching
 * 13. Set PGE 
 * 14. Wait for buddies to catch up
 * 15. Enable interrupts.
 * 
 * What does that mean for us? Well, first we set data.count to the number
 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
 * Meanwhile, they are waiting for that flag to be set. Once it's set, each 
 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it 
 * differently, so we call mtrr_if->set() callback and let them take care of it.
 * When they're done, they again decrement data->count and wait for data.gate to 
 * be reset. 
 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
 * Everyone then enables interrupts and we all continue on.
 *
 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
 * becomes nops.
 */
static void set_mtrr(unsigned int reg, unsigned long base,
		     unsigned long size, mtrr_type type)
{
	struct set_mtrr_data data;
	unsigned long flags;

	data.smp_reg = reg;
	data.smp_base = base;
	data.smp_size = size;
	data.smp_type = type;
	atomic_set(&data.count, num_booting_cpus() - 1);
	/* make sure data.count is visible before unleashing other CPUs */
	smp_wmb();
	atomic_set(&data.gate,0);

	/*  Start the ball rolling on other CPUs  */
	if (smp_call_function(ipi_handler, &data, 0) != 0)
		panic("mtrr: timed out waiting for other CPUs\n");

	local_irq_save(flags);

	while(atomic_read(&data.count))
		cpu_relax();

	/* ok, reset count and toggle gate */
	atomic_set(&data.count, num_booting_cpus() - 1);
	smp_wmb();
	atomic_set(&data.gate,1);

	/* do our MTRR business */

	/* HACK!
	 * We use this same function to initialize the mtrrs on boot.
	 * The state of the boot cpu's mtrrs has been saved, and we want
	 * to replicate across all the APs. 
	 * If we're doing that @reg is set to something special...
	 */
	if (reg != ~0U) 
		mtrr_if->set(reg,base,size,type);

	/* wait for the others */
	while(atomic_read(&data.count))
		cpu_relax();

	atomic_set(&data.count, num_booting_cpus() - 1);
	smp_wmb();
	atomic_set(&data.gate,0);

	/*
	 * Wait here for everyone to have seen the gate change
	 * So we're the last ones to touch 'data'
	 */
	while(atomic_read(&data.count))
		cpu_relax();

	local_irq_restore(flags);
}

/**
 *	mtrr_add_page - Add a memory type region
 *	@base: Physical base address of region in pages (in units of 4 kB!)
 *	@size: Physical size of region in pages (4 kB)
 *	@type: Type of MTRR desired
 *	@increment: If this is true do usage counting on the region
 *
 *	Memory type region registers control the caching on newer Intel and
 *	non Intel processors. This function allows drivers to request an
 *	MTRR is added. The details and hardware specifics of each processor's
 *	implementation are hidden from the caller, but nevertheless the 
 *	caller should expect to need to provide a power of two size on an
 *	equivalent power of two boundary.
 *
 *	If the region cannot be added either because all regions are in use
 *	or the CPU cannot support it a negative value is returned. On success
 *	the register number for this entry is returned, but should be treated
 *	as a cookie only.
 *
 *	On a multiprocessor machine the changes are made to all processors.
 *	This is required on x86 by the Intel processors.
 *
 *	The available types are
 *
 *	%MTRR_TYPE_UNCACHABLE	-	No caching
 *
 *	%MTRR_TYPE_WRBACK	-	Write data back in bursts whenever
 *
 *	%MTRR_TYPE_WRCOMB	-	Write data back soon but allow bursts
 *
 *	%MTRR_TYPE_WRTHROUGH	-	Cache reads but not writes
 *
 *	BUGS: Needs a quiet flag for the cases where drivers do not mind
 *	failures and do not wish system log messages to be sent.
 */

int mtrr_add_page(unsigned long base, unsigned long size, 
		  unsigned int type, bool increment)
{
	int i, replace, error;
	mtrr_type ltype;
	unsigned long lbase, lsize;

	if (!mtrr_if)
		return -ENXIO;
		
	if ((error = mtrr_if->validate_add_page(base,size,type)))
		return error;

	if (type >= MTRR_NUM_TYPES) {
		printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
		return -EINVAL;
	}

	/*  If the type is WC, check that this processor supports it  */
	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
		printk(KERN_WARNING
		       "mtrr: your processor doesn't support write-combining\n");
		return -ENOSYS;
	}

	if (!size) {
		printk(KERN_WARNING "mtrr: zero sized request\n");
		return -EINVAL;
	}

	if (base & size_or_mask || size & size_or_mask) {
		printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
		return -EINVAL;
	}

	error = -EINVAL;
	replace = -1;

	/* No CPU hotplug when we change MTRR entries */
	get_online_cpus();
	/*  Search for existing MTRR  */
	mutex_lock(&mtrr_mutex);
	for (i = 0; i < num_var_ranges; ++i) {
		mtrr_if->get(i, &lbase, &lsize, &ltype);
		if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
			continue;
		/*  At this point we know there is some kind of overlap/enclosure  */
		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
			if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
				/*  New region encloses an existing region  */
				if (type == ltype) {
					replace = replace == -1 ? i : -2;
					continue;
				}
				else if (types_compatible(type, ltype))
					continue;
			}
			printk(KERN_WARNING
			       "mtrr: 0x%lx000,0x%lx000 overlaps existing"
			       " 0x%lx000,0x%lx000\n", base, size, lbase,
			       lsize);
			goto out;
		}
		/*  New region is enclosed by an existing region  */
		if (ltype != type) {
			if (types_compatible(type, ltype))
				continue;
			printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
			     base, size, mtrr_attrib_to_str(ltype),
			     mtrr_attrib_to_str(type));
			goto out;
		}
		if (increment)
			++mtrr_usage_table[i];
		error = i;
		goto out;
	}
	/*  Search for an empty MTRR  */
	i = mtrr_if->get_free_region(base, size, replace);
	if (i >= 0) {
		set_mtrr(i, base, size, type);
		if (likely(replace < 0)) {
			mtrr_usage_table[i] = 1;
		} else {
			mtrr_usage_table[i] = mtrr_usage_table[replace];
			if (increment)
				mtrr_usage_table[i]++;
			if (unlikely(replace != i)) {
				set_mtrr(replace, 0, 0, 0);
				mtrr_usage_table[replace] = 0;
			}
		}
	} else
		printk(KERN_INFO "mtrr: no more MTRRs available\n");
	error = i;
 out:
	mutex_unlock(&mtrr_mutex);
	put_online_cpus();
	return error;
}

static int mtrr_check(unsigned long base, unsigned long size)
{
	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
		printk(KERN_WARNING
			"mtrr: size and base must be multiples of 4 kiB\n");
		printk(KERN_DEBUG
			"mtrr: size: 0x%lx  base: 0x%lx\n", size, base);
		dump_stack();
		return -1;
	}
	return 0;
}

/**
 *	mtrr_add - Add a memory type region
 *	@base: Physical base address of region
 *	@size: Physical size of region
 *	@type: Type of MTRR desired
 *	@increment: If this is true do usage counting on the region
 *
 *	Memory type region registers control the caching on newer Intel and
 *	non Intel processors. This function allows drivers to request an
 *	MTRR is added. The details and hardware specifics of each processor's
 *	implementation are hidden from the caller, but nevertheless the 
 *	caller should expect to need to provide a power of two size on an
 *	equivalent power of two boundary.
 *
 *	If the region cannot be added either because all regions are in use
 *	or the CPU cannot support it a negative value is returned. On success
 *	the register number for this entry is returned, but should be treated
 *	as a cookie only.
 *
 *	On a multiprocessor machine the changes are made to all processors.
 *	This is required on x86 by the Intel processors.
 *
 *	The available types are
 *
 *	%MTRR_TYPE_UNCACHABLE	-	No caching
 *
 *	%MTRR_TYPE_WRBACK	-	Write data back in bursts whenever
 *
 *	%MTRR_TYPE_WRCOMB	-	Write data back soon but allow bursts
 *
 *	%MTRR_TYPE_WRTHROUGH	-	Cache reads but not writes
 *
 *	BUGS: Needs a quiet flag for the cases where drivers do not mind
 *	failures and do not wish system log messages to be sent.
 */

int
mtrr_add(unsigned long base, unsigned long size, unsigned int type,
	 bool increment)
{
	if (mtrr_check(base, size))
		return -EINVAL;
	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
			     increment);
}

/**
 *	mtrr_del_page - delete a memory type region
 *	@reg: Register returned by mtrr_add
 *	@base: Physical base address
 *	@size: Size of region
 *
 *	If register is supplied then base and size are ignored. This is
 *	how drivers should call it.
 *
 *	Releases an MTRR region. If the usage count drops to zero the 
 *	register is freed and the region returns to default state.
 *	On success the register is returned, on failure a negative error
 *	code.
 */

int mtrr_del_page(int reg, unsigned long base, unsigned long size)
{
	int i, max;
	mtrr_type ltype;
	unsigned long lbase, lsize;
	int error = -EINVAL;

	if (!mtrr_if)
		return -ENXIO;

	max = num_var_ranges;
	/* No CPU hotplug when we change MTRR entries */
	get_online_cpus();
	mutex_lock(&mtrr_mutex);
	if (reg < 0) {
		/*  Search for existing MTRR  */
		for (i = 0; i < max; ++i) {
			mtrr_if->get(i, &lbase, &lsize, &ltype);
			if (lbase == base && lsize == size) {
				reg = i;
				break;
			}
		}
		if (reg < 0) {
			printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
			       size);
			goto out;
		}
	}
	if (reg >= max) {
		printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
		goto out;
	}
	mtrr_if->get(reg, &lbase, &lsize, &ltype);
	if (lsize < 1) {
		printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
		goto out;
	}
	if (mtrr_usage_table[reg] < 1) {
		printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
		goto out;
	}
	if (--mtrr_usage_table[reg] < 1)
		set_mtrr(reg, 0, 0, 0);
	error = reg;
 out:
	mutex_unlock(&mtrr_mutex);
	put_online_cpus();
	return error;
}
/**
 *	mtrr_del - delete a memory type region
 *	@reg: Register returned by mtrr_add
 *	@base: Physical base address
 *	@size: Size of region
 *
 *	If register is supplied then base and size are ignored. This is
 *	how drivers should call it.
 *
 *	Releases an MTRR region. If the usage count drops to zero the 
 *	register is freed and the region returns to default state.
 *	On success the register is returned, on failure a negative error
 *	code.
 */

int
mtrr_del(int reg, unsigned long base, unsigned long size)
{
	if (mtrr_check(base, size))
		return -EINVAL;
	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
}

EXPORT_SYMBOL(mtrr_add);
EXPORT_SYMBOL(mtrr_del);

/* HACK ALERT!
 * These should be called implicitly, but we can't yet until all the initcall
 * stuff is done...
 */
static void __init init_ifs(void)
{
#ifndef CONFIG_X86_64
	amd_init_mtrr();
	cyrix_init_mtrr();
	centaur_init_mtrr();
#endif
}

/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
 * MTRR driver doesn't require this
 */
struct mtrr_value {
	mtrr_type	ltype;
	unsigned long	lbase;
	unsigned long	lsize;
};

static struct mtrr_value mtrr_state[MAX_VAR_RANGES];

static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
{
	int i;

	for (i = 0; i < num_var_ranges; i++) {
		mtrr_if->get(i,
			     &mtrr_state[i].lbase,
			     &mtrr_state[i].lsize,
			     &mtrr_state[i].ltype);
	}
	return 0;
}

static int mtrr_restore(struct sys_device * sysdev)
{
	int i;

	for (i = 0; i < num_var_ranges; i++) {
		if (mtrr_state[i].lsize) 
			set_mtrr(i,
				 mtrr_state[i].lbase,
				 mtrr_state[i].lsize,
				 mtrr_state[i].ltype);
	}
	return 0;
}



static struct sysdev_driver mtrr_sysdev_driver = {
	.suspend	= mtrr_save,
	.resume		= mtrr_restore,
};

/* should be related to MTRR_VAR_RANGES nums */
#define RANGE_NUM 256

struct res_range {
	unsigned long start;
	unsigned long end;
};

static int __init
add_range(struct res_range *range, int nr_range, unsigned long start,
			      unsigned long end)
{
	/* out of slots */
	if (nr_range >= RANGE_NUM)
		return nr_range;

	range[nr_range].start = start;
	range[nr_range].end = end;

	nr_range++;

	return nr_range;
}

static int __init
add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
			      unsigned long end)
{
	int i;

	/* try to merge it with old one */
	for (i = 0; i < nr_range; i++) {
		unsigned long final_start, final_end;
		unsigned long common_start, common_end;

		if (!range[i].end)
			continue;

		common_start = max(range[i].start, start);
		common_end = min(range[i].end, end);
		if (common_start > common_end + 1)
			continue;

		final_start = min(range[i].start, start);
		final_end = max(range[i].end, end);

		range[i].start = final_start;
		range[i].end =  final_end;
		return nr_range;
	}

	/* need to add that */
	return add_range(range, nr_range, start, end);
}

static void __init
subtract_range(struct res_range *range, unsigned long start, unsigned long end)
{
	int i, j;

	for (j = 0; j < RANGE_NUM; j++) {
		if (!range[j].end)
			continue;

		if (start <= range[j].start && end >= range[j].end) {
			range[j].start = 0;
			range[j].end = 0;
			continue;
		}

		if (start <= range[j].start && end < range[j].end &&
		    range[j].start < end + 1) {
			range[j].start = end + 1;
			continue;
		}


		if (start > range[j].start && end >= range[j].end &&
		    range[j].end > start - 1) {
			range[j].end = start - 1;
			continue;
		}

		if (start > range[j].start && end < range[j].end) {
			/* find the new spare */
			for (i = 0; i < RANGE_NUM; i++) {
				if (range[i].end == 0)
					break;
			}
			if (i < RANGE_NUM) {
				range[i].end = range[j].end;
				range[i].start = end + 1;
			} else {
				printk(KERN_ERR "run of slot in ranges\n");
			}
			range[j].end = start - 1;
			continue;
		}
	}
}

static int __init cmp_range(const void *x1, const void *x2)
{
	const struct res_range *r1 = x1;
	const struct res_range *r2 = x2;
	long start1, start2;

	start1 = r1->start;
	start2 = r2->start;

	return start1 - start2;
}

struct var_mtrr_range_state {
	unsigned long base_pfn;
	unsigned long size_pfn;
	mtrr_type type;
};

struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
static int __initdata debug_print;

static int __init
x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
		       unsigned long extra_remove_base,
		       unsigned long extra_remove_size)
{
	unsigned long i, base, size;
	mtrr_type type;

	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type != MTRR_TYPE_WRBACK)
			continue;
		base = range_state[i].base_pfn;
		size = range_state[i].size_pfn;
		nr_range = add_range_with_merge(range, nr_range, base,
						base + size - 1);
	}
	if (debug_print) {
		printk(KERN_DEBUG "After WB checking\n");
		for (i = 0; i < nr_range; i++)
			printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
				 range[i].start, range[i].end + 1);
	}

	/* take out UC ranges */
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type != MTRR_TYPE_UNCACHABLE)
			continue;
		size = range_state[i].size_pfn;
		if (!size)
			continue;
		base = range_state[i].base_pfn;
		subtract_range(range, base, base + size - 1);
	}
	if (extra_remove_size)
		subtract_range(range, extra_remove_base,
				 extra_remove_base + extra_remove_size  - 1);

	/* get new range num */
	nr_range = 0;
	for (i = 0; i < RANGE_NUM; i++) {
		if (!range[i].end)
			continue;
		nr_range++;
	}
	if  (debug_print) {
		printk(KERN_DEBUG "After UC checking\n");
		for (i = 0; i < nr_range; i++)
			printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
				 range[i].start, range[i].end + 1);
	}

	/* sort the ranges */
	sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
	if  (debug_print) {
		printk(KERN_DEBUG "After sorting\n");
		for (i = 0; i < nr_range; i++)
			printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
				 range[i].start, range[i].end + 1);
	}

	/* clear those is not used */
	for (i = nr_range; i < RANGE_NUM; i++)
		memset(&range[i], 0, sizeof(range[i]));

	return nr_range;
}

static struct res_range __initdata range[RANGE_NUM];

#ifdef CONFIG_MTRR_SANITIZER

static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
{
	unsigned long sum;
	int i;

	sum = 0;
	for (i = 0; i < nr_range; i++)
		sum += range[i].end + 1 - range[i].start;

	return sum;
}

static int enable_mtrr_cleanup __initdata =
	CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;

static int __init disable_mtrr_cleanup_setup(char *str)
{
	if (enable_mtrr_cleanup != -1)
		enable_mtrr_cleanup = 0;
	return 0;
}
early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);

static int __init enable_mtrr_cleanup_setup(char *str)
{
	if (enable_mtrr_cleanup != -1)
		enable_mtrr_cleanup = 1;
	return 0;
}
early_param("enble_mtrr_cleanup", enable_mtrr_cleanup_setup);

static int __init mtrr_cleanup_debug_setup(char *str)
{
	debug_print = 1;
	return 0;
}
early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);

struct var_mtrr_state {
	unsigned long	range_startk;
	unsigned long	range_sizek;
	unsigned long	chunk_sizek;
	unsigned long	gran_sizek;
	unsigned int	reg;
};

static void __init
set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
		unsigned char type, unsigned int address_bits)
{
	u32 base_lo, base_hi, mask_lo, mask_hi;
	u64 base, mask;

	if (!sizek) {
		fill_mtrr_var_range(reg, 0, 0, 0, 0);
		return;
	}

	mask = (1ULL << address_bits) - 1;
	mask &= ~((((u64)sizek) << 10) - 1);

	base  = ((u64)basek) << 10;

	base |= type;
	mask |= 0x800;

	base_lo = base & ((1ULL<<32) - 1);
	base_hi = base >> 32;

	mask_lo = mask & ((1ULL<<32) - 1);
	mask_hi = mask >> 32;

	fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
}

static void __init
save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
		unsigned char type)
{
	range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
	range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
	range_state[reg].type = type;
}

static void __init
set_var_mtrr_all(unsigned int address_bits)
{
	unsigned long basek, sizek;
	unsigned char type;
	unsigned int reg;

	for (reg = 0; reg < num_var_ranges; reg++) {
		basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
		sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
		type = range_state[reg].type;

		set_var_mtrr(reg, basek, sizek, type, address_bits);
	}
}

static unsigned long to_size_factor(unsigned long sizek, char *factorp)
{
	char factor;
	unsigned long base = sizek;

	if (base & ((1<<10) - 1)) {
		/* not MB alignment */
		factor = 'K';
	} else if (base & ((1<<20) - 1)){
		factor = 'M';
		base >>= 10;
	} else {
		factor = 'G';
		base >>= 20;
	}

	*factorp = factor;

	return base;
}

static unsigned int __init
range_to_mtrr(unsigned int reg, unsigned long range_startk,
	      unsigned long range_sizek, unsigned char type)
{
	if (!range_sizek || (reg >= num_var_ranges))
		return reg;

	while (range_sizek) {
		unsigned long max_align, align;
		unsigned long sizek;

		/* Compute the maximum size I can make a range */
		if (range_startk)
			max_align = ffs(range_startk) - 1;
		else
			max_align = 32;
		align = fls(range_sizek) - 1;
		if (align > max_align)
			align = max_align;

		sizek = 1 << align;
		if (debug_print) {
			char start_factor = 'K', size_factor = 'K';
			unsigned long start_base, size_base;

			start_base = to_size_factor(range_startk, &start_factor),
			size_base = to_size_factor(sizek, &size_factor),

			printk(KERN_DEBUG "Setting variable MTRR %d, "
				"base: %ld%cB, range: %ld%cB, type %s\n",
				reg, start_base, start_factor,
				size_base, size_factor,
				(type == MTRR_TYPE_UNCACHABLE)?"UC":
				    ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
				);
		}
		save_var_mtrr(reg++, range_startk, sizek, type);
		range_startk += sizek;
		range_sizek -= sizek;
		if (reg >= num_var_ranges)
			break;
	}
	return reg;
}

static unsigned __init
range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
			unsigned long sizek)
{
	unsigned long hole_basek, hole_sizek;
	unsigned long second_basek, second_sizek;
	unsigned long range0_basek, range0_sizek;
	unsigned long range_basek, range_sizek;
	unsigned long chunk_sizek;
	unsigned long gran_sizek;

	hole_basek = 0;
	hole_sizek = 0;
	second_basek = 0;
	second_sizek = 0;
	chunk_sizek = state->chunk_sizek;
	gran_sizek = state->gran_sizek;

	/* align with gran size, prevent small block used up MTRRs */
	range_basek = ALIGN(state->range_startk, gran_sizek);
	if ((range_basek > basek) && basek)
		return second_sizek;
	state->range_sizek -= (range_basek - state->range_startk);
	range_sizek = ALIGN(state->range_sizek, gran_sizek);

	while (range_sizek > state->range_sizek) {
		range_sizek -= gran_sizek;
		if (!range_sizek)
			return 0;
	}
	state->range_sizek = range_sizek;

	/* try to append some small hole */
	range0_basek = state->range_startk;
	range0_sizek = ALIGN(state->range_sizek, chunk_sizek);

	/* no increase */
	if (range0_sizek == state->range_sizek) {
		if (debug_print)
			printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
				range0_basek<<10,
				(range0_basek + state->range_sizek)<<10);
		state->reg = range_to_mtrr(state->reg, range0_basek,
				state->range_sizek, MTRR_TYPE_WRBACK);
		return 0;
	}

	/* only cut back, when it is not the last */
	if (sizek) {
		while (range0_basek + range0_sizek > (basek + sizek)) {
			if (range0_sizek >= chunk_sizek)
				range0_sizek -= chunk_sizek;
			else
				range0_sizek = 0;

			if (!range0_sizek)
				break;
		}
	}

second_try:
	range_basek = range0_basek + range0_sizek;

	/* one hole in the middle */
	if (range_basek > basek && range_basek <= (basek + sizek))
		second_sizek = range_basek - basek;

	if (range0_sizek > state->range_sizek) {

		/* one hole in middle or at end */
		hole_sizek = range0_sizek - state->range_sizek - second_sizek;

		/* hole size should be less than half of range0 size */
		if (hole_sizek >= (range0_sizek >> 1) &&
		    range0_sizek >= chunk_sizek) {
			range0_sizek -= chunk_sizek;
			second_sizek = 0;
			hole_sizek = 0;

			goto second_try;
		}
	}

	if (range0_sizek) {
		if (debug_print)
			printk(KERN_DEBUG "range0: %016lx - %016lx\n",
				range0_basek<<10,
				(range0_basek + range0_sizek)<<10);
		state->reg = range_to_mtrr(state->reg, range0_basek,
				range0_sizek, MTRR_TYPE_WRBACK);
	}

	if (range0_sizek < state->range_sizek) {
		/* need to handle left over */
		range_sizek = state->range_sizek - range0_sizek;

		if (debug_print)
			printk(KERN_DEBUG "range: %016lx - %016lx\n",
				 range_basek<<10,
				 (range_basek + range_sizek)<<10);
		state->reg = range_to_mtrr(state->reg, range_basek,
				 range_sizek, MTRR_TYPE_WRBACK);
	}

	if (hole_sizek) {
		hole_basek = range_basek - hole_sizek - second_sizek;
		if (debug_print)
			printk(KERN_DEBUG "hole: %016lx - %016lx\n",
				 hole_basek<<10,
				 (hole_basek + hole_sizek)<<10);
		state->reg = range_to_mtrr(state->reg, hole_basek,
				 hole_sizek, MTRR_TYPE_UNCACHABLE);
	}

	return second_sizek;
}

static void __init
set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
		   unsigned long size_pfn)
{
	unsigned long basek, sizek;
	unsigned long second_sizek = 0;

	if (state->reg >= num_var_ranges)
		return;

	basek = base_pfn << (PAGE_SHIFT - 10);
	sizek = size_pfn << (PAGE_SHIFT - 10);

	/* See if I can merge with the last range */
	if ((basek <= 1024) ||
	    (state->range_startk + state->range_sizek == basek)) {
		unsigned long endk = basek + sizek;
		state->range_sizek = endk - state->range_startk;
		return;
	}
	/* Write the range mtrrs */
	if (state->range_sizek != 0)
		second_sizek = range_to_mtrr_with_hole(state, basek, sizek);

	/* Allocate an msr */
	state->range_startk = basek + second_sizek;
	state->range_sizek  = sizek - second_sizek;
}

/* mininum size of mtrr block that can take hole */
static u64 mtrr_chunk_size __initdata = (256ULL<<20);

static int __init parse_mtrr_chunk_size_opt(char *p)
{
	if (!p)
		return -EINVAL;
	mtrr_chunk_size = memparse(p, &p);
	return 0;
}
early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);

/* granity of mtrr of block */
static u64 mtrr_gran_size __initdata;

static int __init parse_mtrr_gran_size_opt(char *p)
{
	if (!p)
		return -EINVAL;
	mtrr_gran_size = memparse(p, &p);
	return 0;
}
early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);

static int nr_mtrr_spare_reg __initdata =
				 CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;

static int __init parse_mtrr_spare_reg(char *arg)
{
	if (arg)
		nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
	return 0;
}

early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);

static int __init
x86_setup_var_mtrrs(struct res_range *range, int nr_range,
		    u64 chunk_size, u64 gran_size)
{
	struct var_mtrr_state var_state;
	int i;
	int num_reg;

	var_state.range_startk	= 0;
	var_state.range_sizek	= 0;
	var_state.reg		= 0;
	var_state.chunk_sizek	= chunk_size >> 10;
	var_state.gran_sizek	= gran_size >> 10;

	memset(range_state, 0, sizeof(range_state));

	/* Write the range etc */
	for (i = 0; i < nr_range; i++)
		set_var_mtrr_range(&var_state, range[i].start,
				   range[i].end - range[i].start + 1);

	/* Write the last range */
	if (var_state.range_sizek != 0)
		range_to_mtrr_with_hole(&var_state, 0, 0);

	num_reg = var_state.reg;
	/* Clear out the extra MTRR's */
	while (var_state.reg < num_var_ranges) {
		save_var_mtrr(var_state.reg, 0, 0, 0);
		var_state.reg++;
	}

	return num_reg;
}

struct mtrr_cleanup_result {
	unsigned long gran_sizek;
	unsigned long chunk_sizek;
	unsigned long lose_cover_sizek;
	unsigned int num_reg;
	int bad;
};

/*
 * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
 * chunk size: gran_size, ..., 2G
 * so we need (1+16)*8
 */
#define NUM_RESULT	136
#define PSHIFT		(PAGE_SHIFT - 10)

static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
static struct res_range __initdata range_new[RANGE_NUM];
static unsigned long __initdata min_loss_pfn[RANGE_NUM];

static int __init mtrr_cleanup(unsigned address_bits)
{
	unsigned long extra_remove_base, extra_remove_size;
	unsigned long base, size, def, dummy;
	mtrr_type type;
	int nr_range, nr_range_new;
	u64 chunk_size, gran_size;
	unsigned long range_sums, range_sums_new;
	int index_good;
	int num_reg_good;
	int i;

	/* extra one for all 0 */
	int num[MTRR_NUM_TYPES + 1];

	if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
		return 0;
	rdmsr(MTRRdefType_MSR, def, dummy);
	def &= 0xff;
	if (def != MTRR_TYPE_UNCACHABLE)
		return 0;

	/* get it and store it aside */
	memset(range_state, 0, sizeof(range_state));
	for (i = 0; i < num_var_ranges; i++) {
		mtrr_if->get(i, &base, &size, &type);
		range_state[i].base_pfn = base;
		range_state[i].size_pfn = size;
		range_state[i].type = type;
	}

	/* check entries number */
	memset(num, 0, sizeof(num));
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		size = range_state[i].size_pfn;
		if (type >= MTRR_NUM_TYPES)
			continue;
		if (!size)
			type = MTRR_NUM_TYPES;
		num[type]++;
	}

	/* check if we got UC entries */
	if (!num[MTRR_TYPE_UNCACHABLE])
		return 0;

	/* check if we only had WB and UC */
	if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
		num_var_ranges - num[MTRR_NUM_TYPES])
		return 0;

	/* print original var MTRRs at first, for debugging: */
	printk(KERN_DEBUG "original variable MTRRs\n");
	for (i = 0; i < num_var_ranges; i++) {
		char start_factor = 'K', size_factor = 'K';
		unsigned long start_base, size_base;

		size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
		if (!size_base)
			continue;

		size_base = to_size_factor(size_base, &size_factor),
		start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
		start_base = to_size_factor(start_base, &start_factor),

		printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
			i, start_base, start_factor,
			size_base, size_factor,
			(type == MTRR_TYPE_UNCACHABLE) ? "UC" :
			    ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other")
			);
	}

	memset(range, 0, sizeof(range));
	extra_remove_size = 0;
	if (mtrr_tom2) {
		extra_remove_base = 1 << (32 - PAGE_SHIFT);
		extra_remove_size =
			(mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
	}
	nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
					  extra_remove_size);
	range_sums = sum_ranges(range, nr_range);
	printk(KERN_INFO "total RAM coverred: %ldM\n",
	       range_sums >> (20 - PAGE_SHIFT));

	if (mtrr_chunk_size && mtrr_gran_size) {
		int num_reg;
		char gran_factor, chunk_factor, lose_factor;
		unsigned long gran_base, chunk_base, lose_base;

		debug_print++;
		/* convert ranges to var ranges state */
		num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
					      mtrr_gran_size);

		/* we got new setting in range_state, check it */
		memset(range_new, 0, sizeof(range_new));
		nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
						      extra_remove_base,
						      extra_remove_size);
		range_sums_new = sum_ranges(range_new, nr_range_new);

		i = 0;
		result[i].chunk_sizek = mtrr_chunk_size >> 10;
		result[i].gran_sizek = mtrr_gran_size >> 10;
		result[i].num_reg = num_reg;
		if (range_sums < range_sums_new) {
			result[i].lose_cover_sizek =
				(range_sums_new - range_sums) << PSHIFT;
			result[i].bad = 1;
		} else
			result[i].lose_cover_sizek =
				(range_sums - range_sums_new) << PSHIFT;

		gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
		chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
		lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
		printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
			 result[i].bad?"*BAD*":" ",
			 gran_base, gran_factor, chunk_base, chunk_factor);
		printk(KERN_CONT "num_reg: %d  \tlose cover RAM: %s%ld%c\n",
			 result[i].num_reg, result[i].bad?"-":"",
			 lose_base, lose_factor);
		if (!result[i].bad) {
			set_var_mtrr_all(address_bits);
			return 1;
		}
		printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
		       "will find optimal one\n");
		debug_print--;
		memset(result, 0, sizeof(result[0]));
	}

	i = 0;
	memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
	memset(result, 0, sizeof(result));
	for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
		char gran_factor;
		unsigned long gran_base;

		if (debug_print)
			gran_base = to_size_factor(gran_size >> 10, &gran_factor);

		for (chunk_size = gran_size; chunk_size < (1ULL<<32);
		     chunk_size <<= 1) {
			int num_reg;

			if (debug_print) {
				char chunk_factor;
				unsigned long chunk_base;

				chunk_base = to_size_factor(chunk_size>>10, &chunk_factor),
				printk(KERN_INFO "\n");
				printk(KERN_INFO "gran_size: %ld%c   chunk_size: %ld%c \n",
				       gran_base, gran_factor, chunk_base, chunk_factor);
			}
			if (i >= NUM_RESULT)
				continue;

			/* convert ranges to var ranges state */
			num_reg = x86_setup_var_mtrrs(range, nr_range,
							 chunk_size, gran_size);

			/* we got new setting in range_state, check it */
			memset(range_new, 0, sizeof(range_new));
			nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
					 extra_remove_base, extra_remove_size);
			range_sums_new = sum_ranges(range_new, nr_range_new);

			result[i].chunk_sizek = chunk_size >> 10;
			result[i].gran_sizek = gran_size >> 10;
			result[i].num_reg = num_reg;
			if (range_sums < range_sums_new) {
				result[i].lose_cover_sizek =
					(range_sums_new - range_sums) << PSHIFT;
				result[i].bad = 1;
			} else
				result[i].lose_cover_sizek =
					(range_sums - range_sums_new) << PSHIFT;

			/* double check it */
			if (!result[i].bad && !result[i].lose_cover_sizek) {
				if (nr_range_new != nr_range ||
					memcmp(range, range_new, sizeof(range)))
						result[i].bad = 1;
			}

			if (!result[i].bad && (range_sums - range_sums_new <
					       min_loss_pfn[num_reg])) {
				min_loss_pfn[num_reg] =
					range_sums - range_sums_new;
			}
			i++;
		}
	}

	/* print out all */
	for (i = 0; i < NUM_RESULT; i++) {
		char gran_factor, chunk_factor, lose_factor;
		unsigned long gran_base, chunk_base, lose_base;

		gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
		chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
		lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
		printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
			 result[i].bad?"*BAD*":" ",
			 gran_base, gran_factor, chunk_base, chunk_factor);
		printk(KERN_CONT "num_reg: %d  \tlose cover RAM: %s%ld%c\n",
			 result[i].num_reg, result[i].bad?"-":"",
			 lose_base, lose_factor);
	}

	/* try to find the optimal index */
	if (nr_mtrr_spare_reg >= num_var_ranges)
		nr_mtrr_spare_reg = num_var_ranges - 1;
	num_reg_good = -1;
	for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
		if (!min_loss_pfn[i])
			num_reg_good = i;
	}

	index_good = -1;
	if (num_reg_good != -1) {
		for (i = 0; i < NUM_RESULT; i++) {
			if (!result[i].bad &&
			    result[i].num_reg == num_reg_good &&
			    !result[i].lose_cover_sizek) {
				index_good = i;
				break;
			}
		}
	}

	if (index_good != -1) {
		char gran_factor, chunk_factor, lose_factor;
		unsigned long gran_base, chunk_base, lose_base;

		printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
		i = index_good;
		gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
		chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
		lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
		printk(KERN_INFO "gran_size: %ld%c \tchunk_size: %ld%c \t",
			 gran_base, gran_factor, chunk_base, chunk_factor);
		printk(KERN_CONT "num_reg: %d  \tlose RAM: %ld%c\n",
			 result[i].num_reg, lose_base, lose_factor);
		/* convert ranges to var ranges state */
		chunk_size = result[i].chunk_sizek;
		chunk_size <<= 10;
		gran_size = result[i].gran_sizek;
		gran_size <<= 10;
		debug_print++;
		x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
		debug_print--;
		set_var_mtrr_all(address_bits);
		return 1;
	}

	printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
	printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");

	return 0;
}
#else
static int __init mtrr_cleanup(unsigned address_bits)
{
	return 0;
}
#endif

static int __initdata changed_by_mtrr_cleanup;

static int disable_mtrr_trim;

static int __init disable_mtrr_trim_setup(char *str)
{
	disable_mtrr_trim = 1;
	return 0;
}
early_param("disable_mtrr_trim", disable_mtrr_trim_setup);

/*
 * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
 * for memory >4GB. Check for that here.
 * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
 * apply to are wrong, but so far we don't know of any such case in the wild.
 */
#define Tom2Enabled (1U << 21)
#define Tom2ForceMemTypeWB (1U << 22)

int __init amd_special_default_mtrr(void)
{
	u32 l, h;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
		return 0;
	if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
		return 0;
	/* In case some hypervisor doesn't pass SYSCFG through */
	if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
		return 0;
	/*
	 * Memory between 4GB and top of mem is forced WB by this magic bit.
	 * Reserved before K8RevF, but should be zero there.
	 */
	if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
		 (Tom2Enabled | Tom2ForceMemTypeWB))
		return 1;
	return 0;
}

static u64 __init real_trim_memory(unsigned long start_pfn,
				   unsigned long limit_pfn)
{
	u64 trim_start, trim_size;
	trim_start = start_pfn;
	trim_start <<= PAGE_SHIFT;
	trim_size = limit_pfn;
	trim_size <<= PAGE_SHIFT;
	trim_size -= trim_start;

	return e820_update_range(trim_start, trim_size, E820_RAM,
				E820_RESERVED);
}
/**
 * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
 * @end_pfn: ending page frame number
 *
 * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
 * memory configurations.  This routine checks that the highest MTRR matches
 * the end of memory, to make sure the MTRRs having a write back type cover
 * all of the memory the kernel is intending to use. If not, it'll trim any
 * memory off the end by adjusting end_pfn, removing it from the kernel's
 * allocation pools, warning the user with an obnoxious message.
 */
int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
{
	unsigned long i, base, size, highest_pfn = 0, def, dummy;
	mtrr_type type;
	int nr_range;
	u64 total_trim_size;

	/* extra one for all 0 */
	int num[MTRR_NUM_TYPES + 1];
	/*
	 * Make sure we only trim uncachable memory on machines that
	 * support the Intel MTRR architecture:
	 */
	if (!is_cpu(INTEL) || disable_mtrr_trim)
		return 0;
	rdmsr(MTRRdefType_MSR, def, dummy);
	def &= 0xff;
	if (def != MTRR_TYPE_UNCACHABLE)
		return 0;

	/* get it and store it aside */
	memset(range_state, 0, sizeof(range_state));
	for (i = 0; i < num_var_ranges; i++) {
		mtrr_if->get(i, &base, &size, &type);
		range_state[i].base_pfn = base;
		range_state[i].size_pfn = size;
		range_state[i].type = type;
	}

	/* Find highest cached pfn */
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type != MTRR_TYPE_WRBACK)
			continue;
		base = range_state[i].base_pfn;
		size = range_state[i].size_pfn;
		if (highest_pfn < base + size)
			highest_pfn = base + size;
	}

	/* kvm/qemu doesn't have mtrr set right, don't trim them all */
	if (!highest_pfn) {
		WARN(!kvm_para_available(), KERN_WARNING
				"WARNING: strange, CPU MTRRs all blank?\n");
		return 0;
	}

	/* check entries number */
	memset(num, 0, sizeof(num));
	for (i = 0; i < num_var_ranges; i++) {
		type = range_state[i].type;
		if (type >= MTRR_NUM_TYPES)
			continue;
		size = range_state[i].size_pfn;
		if (!size)
			type = MTRR_NUM_TYPES;
		num[type]++;
	}

	/* no entry for WB? */
	if (!num[MTRR_TYPE_WRBACK])
		return 0;

	/* check if we only had WB and UC */
	if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
		num_var_ranges - num[MTRR_NUM_TYPES])
		return 0;

	memset(range, 0, sizeof(range));
	nr_range = 0;
	if (mtrr_tom2) {
		range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
		range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
		if (highest_pfn < range[nr_range].end + 1)
			highest_pfn = range[nr_range].end + 1;
		nr_range++;
	}
	nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);

	total_trim_size = 0;
	/* check the head */
	if (range[0].start)
		total_trim_size += real_trim_memory(0, range[0].start);
	/* check the holes */
	for (i = 0; i < nr_range - 1; i++) {
		if (range[i].end + 1 < range[i+1].start)
			total_trim_size += real_trim_memory(range[i].end + 1,
							    range[i+1].start);
	}
	/* check the top */
	i = nr_range - 1;
	if (range[i].end + 1 < end_pfn)
		total_trim_size += real_trim_memory(range[i].end + 1,
							 end_pfn);

	if (total_trim_size) {
		printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
			" all of memory, losing %lluMB of RAM.\n",
			total_trim_size >> 20);

		if (!changed_by_mtrr_cleanup)
			WARN_ON(1);

		printk(KERN_INFO "update e820 for mtrr\n");
		update_e820();

		return 1;
	}

	return 0;
}

/**
 * mtrr_bp_init - initialize mtrrs on the boot CPU
 *
 * This needs to be called early; before any of the other CPUs are 
 * initialized (i.e. before smp_init()).
 * 
 */
void __init mtrr_bp_init(void)
{
	u32 phys_addr;
	init_ifs();

	phys_addr = 32;

	if (cpu_has_mtrr) {
		mtrr_if = &generic_mtrr_ops;
		size_or_mask = 0xff000000;	/* 36 bits */
		size_and_mask = 0x00f00000;
		phys_addr = 36;

		/* This is an AMD specific MSR, but we assume(hope?) that
		   Intel will implement it to when they extend the address
		   bus of the Xeon. */
		if (cpuid_eax(0x80000000) >= 0x80000008) {
			phys_addr = cpuid_eax(0x80000008) & 0xff;
			/* CPUID workaround for Intel 0F33/0F34 CPU */
			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
			    boot_cpu_data.x86 == 0xF &&
			    boot_cpu_data.x86_model == 0x3 &&
			    (boot_cpu_data.x86_mask == 0x3 ||
			     boot_cpu_data.x86_mask == 0x4))
				phys_addr = 36;

			size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
			   boot_cpu_data.x86 == 6) {
			/* VIA C* family have Intel style MTRRs, but
			   don't support PAE */
			size_or_mask = 0xfff00000;	/* 32 bits */
			size_and_mask = 0;
			phys_addr = 32;
		}
	} else {
		switch (boot_cpu_data.x86_vendor) {
		case X86_VENDOR_AMD:
			if (cpu_has_k6_mtrr) {
				/* Pre-Athlon (K6) AMD CPU MTRRs */
				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
				size_or_mask = 0xfff00000;	/* 32 bits */
				size_and_mask = 0;
			}
			break;
		case X86_VENDOR_CENTAUR:
			if (cpu_has_centaur_mcr) {
				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
				size_or_mask = 0xfff00000;	/* 32 bits */
				size_and_mask = 0;
			}
			break;
		case X86_VENDOR_CYRIX:
			if (cpu_has_cyrix_arr) {
				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
				size_or_mask = 0xfff00000;	/* 32 bits */
				size_and_mask = 0;
			}
			break;
		default:
			break;
		}
	}

	if (mtrr_if) {
		set_num_var_ranges();
		init_table();
		if (use_intel()) {
			get_mtrr_state();

			if (mtrr_cleanup(phys_addr)) {
				changed_by_mtrr_cleanup = 1;
				mtrr_if->set_all();
			}

		}
	}
}

void mtrr_ap_init(void)
{
	unsigned long flags;

	if (!mtrr_if || !use_intel())
		return;
	/*
	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
	 * but this routine will be called in cpu boot time, holding the lock
	 * breaks it. This routine is called in two cases: 1.very earily time
	 * of software resume, when there absolutely isn't mtrr entry changes;
	 * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
	 * prevent mtrr entry changes
	 */
	local_irq_save(flags);

	mtrr_if->set_all();

	local_irq_restore(flags);
}

/**
 * Save current fixed-range MTRR state of the BSP
 */
void mtrr_save_state(void)
{
	smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
}

static int __init mtrr_init_finialize(void)
{
	if (!mtrr_if)
		return 0;
	if (use_intel()) {
		if (!changed_by_mtrr_cleanup)
			mtrr_state_warn();
	} else {
		/* The CPUs haven't MTRR and seem to not support SMP. They have
		 * specific drivers, we use a tricky method to support
		 * suspend/resume for them.
		 * TBD: is there any system with such CPU which supports
		 * suspend/resume?  if no, we should remove the code.
		 */
		sysdev_driver_register(&cpu_sysdev_class,
			&mtrr_sysdev_driver);
	}
	return 0;
}
subsys_initcall(mtrr_init_finialize);