aboutsummaryrefslogtreecommitdiff
path: root/arch/x86_64/kernel/hpet.c
blob: e2d1b912e15469c1110553fa3ebc27c97fc3af9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/ioport.h>
#include <linux/acpi.h>
#include <linux/hpet.h>
#include <asm/pgtable.h>
#include <asm/vsyscall.h>
#include <asm/timex.h>
#include <asm/hpet.h>

#define HPET_MASK	0xFFFFFFFF
#define HPET_SHIFT	22

/* FSEC = 10^-15 NSEC = 10^-9 */
#define FSEC_PER_NSEC	1000000

int nohpet __initdata;

unsigned long hpet_address;
unsigned long hpet_period;	/* fsecs / HPET clock */
unsigned long hpet_tick;	/* HPET clocks / interrupt */

int hpet_use_timer;		/* Use counter of hpet for time keeping,
				 * otherwise PIT
				 */

#ifdef	CONFIG_HPET
static __init int late_hpet_init(void)
{
	struct hpet_data	hd;
	unsigned int 		ntimer;

	if (!hpet_address)
        	return 0;

	memset(&hd, 0, sizeof(hd));

	ntimer = hpet_readl(HPET_ID);
	ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
	ntimer++;

	/*
	 * Register with driver.
	 * Timer0 and Timer1 is used by platform.
	 */
	hd.hd_phys_address = hpet_address;
	hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
	hd.hd_nirqs = ntimer;
	hd.hd_flags = HPET_DATA_PLATFORM;
	hpet_reserve_timer(&hd, 0);
#ifdef	CONFIG_HPET_EMULATE_RTC
	hpet_reserve_timer(&hd, 1);
#endif
	hd.hd_irq[0] = HPET_LEGACY_8254;
	hd.hd_irq[1] = HPET_LEGACY_RTC;
	if (ntimer > 2) {
		struct hpet		*hpet;
		struct hpet_timer	*timer;
		int			i;

		hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
		timer = &hpet->hpet_timers[2];
		for (i = 2; i < ntimer; timer++, i++)
			hd.hd_irq[i] = (timer->hpet_config &
					Tn_INT_ROUTE_CNF_MASK) >>
				Tn_INT_ROUTE_CNF_SHIFT;

	}

	hpet_alloc(&hd);
	return 0;
}
fs_initcall(late_hpet_init);
#endif

int hpet_timer_stop_set_go(unsigned long tick)
{
	unsigned int cfg;

/*
 * Stop the timers and reset the main counter.
 */

	cfg = hpet_readl(HPET_CFG);
	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
	hpet_writel(cfg, HPET_CFG);
	hpet_writel(0, HPET_COUNTER);
	hpet_writel(0, HPET_COUNTER + 4);

/*
 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
 * and period also hpet_tick.
 */
	if (hpet_use_timer) {
		hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
		    HPET_TN_32BIT, HPET_T0_CFG);
		hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
		hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
		cfg |= HPET_CFG_LEGACY;
	}
/*
 * Go!
 */

	cfg |= HPET_CFG_ENABLE;
	hpet_writel(cfg, HPET_CFG);

	return 0;
}

static cycle_t read_hpet(void)
{
	return (cycle_t)hpet_readl(HPET_COUNTER);
}

static cycle_t __vsyscall_fn vread_hpet(void)
{
	return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}

struct clocksource clocksource_hpet = {
	.name		= "hpet",
	.rating		= 250,
	.read		= read_hpet,
	.mask		= (cycle_t)HPET_MASK,
	.mult		= 0, /* set below */
	.shift		= HPET_SHIFT,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
	.vread		= vread_hpet,
};

int __init hpet_arch_init(void)
{
	unsigned int id;
	u64 tmp;

	if (!hpet_address)
		return -1;
	set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);

/*
 * Read the period, compute tick and quotient.
 */

	id = hpet_readl(HPET_ID);

	if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
		return -1;

	hpet_period = hpet_readl(HPET_PERIOD);
	if (hpet_period < 100000 || hpet_period > 100000000)
		return -1;

	hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;

	hpet_use_timer = (id & HPET_ID_LEGSUP);

	/*
	 * hpet period is in femto seconds per cycle
	 * so we need to convert this to ns/cyc units
	 * aproximated by mult/2^shift
	 *
	 *  fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
	 *  fsec/cyc * 1ns/1000000fsec * 2^shift = mult
	 *  fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
	 *  (fsec/cyc << shift)/1000000 = mult
	 *  (hpet_period << shift)/FSEC_PER_NSEC = mult
	 */
	tmp = (u64)hpet_period << HPET_SHIFT;
	do_div(tmp, FSEC_PER_NSEC);
	clocksource_hpet.mult = (u32)tmp;
	clocksource_register(&clocksource_hpet);

	return hpet_timer_stop_set_go(hpet_tick);
}

int hpet_reenable(void)
{
	return hpet_timer_stop_set_go(hpet_tick);
}

/*
 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
 * it to the HPET timer of known frequency.
 */

#define TICK_COUNT 100000000
#define SMI_THRESHOLD 50000
#define MAX_TRIES  5

/*
 * Some platforms take periodic SMI interrupts with 5ms duration. Make sure none
 * occurs between the reads of the hpet & TSC.
 */
static void __init read_hpet_tsc(int *hpet, int *tsc)
{
	int tsc1, tsc2, hpet1, i;

	for (i = 0; i < MAX_TRIES; i++) {
		tsc1 = get_cycles_sync();
		hpet1 = hpet_readl(HPET_COUNTER);
		tsc2 = get_cycles_sync();
		if ((tsc2 - tsc1) < SMI_THRESHOLD)
			break;
	}
	*hpet = hpet1;
	*tsc = tsc2;
}

unsigned int __init hpet_calibrate_tsc(void)
{
	int tsc_start, hpet_start;
	int tsc_now, hpet_now;
	unsigned long flags;

	local_irq_save(flags);

	read_hpet_tsc(&hpet_start, &tsc_start);

	do {
		local_irq_disable();
		read_hpet_tsc(&hpet_now, &tsc_now);
		local_irq_restore(flags);
	} while ((tsc_now - tsc_start) < TICK_COUNT &&
		(hpet_now - hpet_start) < TICK_COUNT);

	return (tsc_now - tsc_start) * 1000000000L
		/ ((hpet_now - hpet_start) * hpet_period / 1000);
}

#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 * is enabled, we support RTC interrupt functionality in software.
 * RTC has 3 kinds of interrupts:
 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 *    is updated
 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 * (1) and (2) above are implemented using polling at a frequency of
 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 * overhead. (DEFAULT_RTC_INT_FREQ)
 * For (3), we use interrupts at 64Hz or user specified periodic
 * frequency, whichever is higher.
 */
#include <linux/rtc.h>

#define DEFAULT_RTC_INT_FREQ 	64
#define RTC_NUM_INTS 		1

static unsigned long UIE_on;
static unsigned long prev_update_sec;

static unsigned long AIE_on;
static struct rtc_time alarm_time;

static unsigned long PIE_on;
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
static unsigned long PIE_count;

static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
static unsigned int hpet_t1_cmp; /* cached comparator register */

int is_hpet_enabled(void)
{
	return hpet_address != 0;
}

/*
 * Timer 1 for RTC, we do not use periodic interrupt feature,
 * even if HPET supports periodic interrupts on Timer 1.
 * The reason being, to set up a periodic interrupt in HPET, we need to
 * stop the main counter. And if we do that everytime someone diables/enables
 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
 * So, for the time being, simulate the periodic interrupt in software.
 *
 * hpet_rtc_timer_init() is called for the first time and during subsequent
 * interuppts reinit happens through hpet_rtc_timer_reinit().
 */
int hpet_rtc_timer_init(void)
{
	unsigned int cfg, cnt;
	unsigned long flags;

	if (!is_hpet_enabled())
		return 0;
	/*
	 * Set the counter 1 and enable the interrupts.
	 */
	if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
		hpet_rtc_int_freq = PIE_freq;
	else
		hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;

	local_irq_save(flags);

	cnt = hpet_readl(HPET_COUNTER);
	cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
	hpet_writel(cnt, HPET_T1_CMP);
	hpet_t1_cmp = cnt;

	cfg = hpet_readl(HPET_T1_CFG);
	cfg &= ~HPET_TN_PERIODIC;
	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
	hpet_writel(cfg, HPET_T1_CFG);

	local_irq_restore(flags);

	return 1;
}

static void hpet_rtc_timer_reinit(void)
{
	unsigned int cfg, cnt, ticks_per_int, lost_ints;

	if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
		cfg = hpet_readl(HPET_T1_CFG);
		cfg &= ~HPET_TN_ENABLE;
		hpet_writel(cfg, HPET_T1_CFG);
		return;
	}

	if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
		hpet_rtc_int_freq = PIE_freq;
	else
		hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;

	/* It is more accurate to use the comparator value than current count.*/
	ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
	hpet_t1_cmp += ticks_per_int;
	hpet_writel(hpet_t1_cmp, HPET_T1_CMP);

	/*
	 * If the interrupt handler was delayed too long, the write above tries
	 * to schedule the next interrupt in the past and the hardware would
	 * not interrupt until the counter had wrapped around.
	 * So we have to check that the comparator wasn't set to a past time.
	 */
	cnt = hpet_readl(HPET_COUNTER);
	if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
		lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
		/* Make sure that, even with the time needed to execute
		 * this code, the next scheduled interrupt has been moved
		 * back to the future: */
		lost_ints++;

		hpet_t1_cmp += lost_ints * ticks_per_int;
		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);

		if (PIE_on)
			PIE_count += lost_ints;

		if (printk_ratelimit())
			printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
			       hpet_rtc_int_freq);
	}
}

/*
 * The functions below are called from rtc driver.
 * Return 0 if HPET is not being used.
 * Otherwise do the necessary changes and return 1.
 */
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
	if (!is_hpet_enabled())
		return 0;

	if (bit_mask & RTC_UIE)
		UIE_on = 0;
	if (bit_mask & RTC_PIE)
		PIE_on = 0;
	if (bit_mask & RTC_AIE)
		AIE_on = 0;

	return 1;
}

int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
	int timer_init_reqd = 0;

	if (!is_hpet_enabled())
		return 0;

	if (!(PIE_on | AIE_on | UIE_on))
		timer_init_reqd = 1;

	if (bit_mask & RTC_UIE) {
		UIE_on = 1;
	}
	if (bit_mask & RTC_PIE) {
		PIE_on = 1;
		PIE_count = 0;
	}
	if (bit_mask & RTC_AIE) {
		AIE_on = 1;
	}

	if (timer_init_reqd)
		hpet_rtc_timer_init();

	return 1;
}

int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
	if (!is_hpet_enabled())
		return 0;

	alarm_time.tm_hour = hrs;
	alarm_time.tm_min = min;
	alarm_time.tm_sec = sec;

	return 1;
}

int hpet_set_periodic_freq(unsigned long freq)
{
	if (!is_hpet_enabled())
		return 0;

	PIE_freq = freq;
	PIE_count = 0;

	return 1;
}

int hpet_rtc_dropped_irq(void)
{
	if (!is_hpet_enabled())
		return 0;

	return 1;
}

irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
{
	struct rtc_time curr_time;
	unsigned long rtc_int_flag = 0;
	int call_rtc_interrupt = 0;

	hpet_rtc_timer_reinit();

	if (UIE_on | AIE_on) {
		rtc_get_rtc_time(&curr_time);
	}
	if (UIE_on) {
		if (curr_time.tm_sec != prev_update_sec) {
			/* Set update int info, call real rtc int routine */
			call_rtc_interrupt = 1;
			rtc_int_flag = RTC_UF;
			prev_update_sec = curr_time.tm_sec;
		}
	}
	if (PIE_on) {
		PIE_count++;
		if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
			/* Set periodic int info, call real rtc int routine */
			call_rtc_interrupt = 1;
			rtc_int_flag |= RTC_PF;
			PIE_count = 0;
		}
	}
	if (AIE_on) {
		if ((curr_time.tm_sec == alarm_time.tm_sec) &&
		    (curr_time.tm_min == alarm_time.tm_min) &&
		    (curr_time.tm_hour == alarm_time.tm_hour)) {
			/* Set alarm int info, call real rtc int routine */
			call_rtc_interrupt = 1;
			rtc_int_flag |= RTC_AF;
		}
	}
	if (call_rtc_interrupt) {
		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
		rtc_interrupt(rtc_int_flag, dev_id);
	}
	return IRQ_HANDLED;
}
#endif

static int __init nohpet_setup(char *s)
{
	nohpet = 1;
	return 1;
}

__setup("nohpet", nohpet_setup);