aboutsummaryrefslogtreecommitdiff
path: root/drivers/media/video/cx18/cx18-av-audio.c
blob: 9e30983f2ff632496e2bcf731185956a79542ab6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 *  cx18 ADEC audio functions
 *
 *  Derived from cx25840-audio.c
 *
 *  Copyright (C) 2007  Hans Verkuil <hverkuil@xs4all.nl>
 *  Copyright (C) 2008  Andy Walls <awalls@radix.net>
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version 2
 *  of the License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 *  02110-1301, USA.
 */

#include "cx18-driver.h"

static int set_audclk_freq(struct cx18 *cx, u32 freq)
{
	struct cx18_av_state *state = &cx->av_state;

	if (freq != 32000 && freq != 44100 && freq != 48000)
		return -EINVAL;

	/*
	 * The PLL parameters are based on the external crystal frequency that
	 * would ideally be:
	 *
	 * NTSC Color subcarrier freq * 8 =
	 * 	4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz
	 *
	 * The accidents of history and rationale that explain from where this
	 * combination of magic numbers originate can be found in:
	 *
	 * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in
	 * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80
	 *
	 * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the
	 * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83
	 *
	 * As Mike Bradley has rightly pointed out, it's not the exact crystal
	 * frequency that matters, only that all parts of the driver and
	 * firmware are using the same value (close to the ideal value).
	 *
	 * Since I have a strong suspicion that, if the firmware ever assumes a
	 * crystal value at all, it will assume 28.636360 MHz, the crystal
	 * freq used in calculations in this driver will be:
	 *
	 *	xtal_freq = 28.636360 MHz
	 *
	 * an error of less than 0.13 ppm which is way, way better than any off
	 * the shelf crystal will have for accuracy anyway.
	 *
	 * Below I aim to run the PLLs' VCOs near 400 MHz to minimze error.
	 *
	 * Many thanks to Jeff Campbell and Mike Bradley for their extensive
	 * investigation, experimentation, testing, and suggested solutions of
	 * of audio/video sync problems with SVideo and CVBS captures.
	 */

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		switch (freq) {
		case 32000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
			 */
			cx18_av_write4(cx, 0x108, 0x200d040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x176740c */
			/* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0176740c);

			/* src3/4/6_ctl */
			/* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */
			cx18_av_write4(cx, 0x900, 0x0801f77f);
			cx18_av_write4(cx, 0x904, 0x0801f77f);
			cx18_av_write4(cx, 0x90c, 0x0801f77f);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
			cx18_av_write(cx, 0x127, 0x60);

			/* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11202fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
			break;

		case 44100:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18
			 */
			cx18_av_write4(cx, 0x108, 0x180e040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x062a1f2 */
			/* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0062a1f2);

			/* src3/4/6_ctl */
			/* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */
			cx18_av_write4(cx, 0x900, 0x08016d59);
			cx18_av_write4(cx, 0x904, 0x08016d59);
			cx18_av_write4(cx, 0x90c, 0x08016d59);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */
			cx18_av_write(cx, 0x127, 0x58);

			/* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x112092ff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
			break;

		case 48000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16
			 */
			cx18_av_write4(cx, 0x108, 0x160e040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x05227ad */
			/* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x005227ad);

			/* src3/4/6_ctl */
			/* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */
			cx18_av_write4(cx, 0x900, 0x08014faa);
			cx18_av_write4(cx, 0x904, 0x08014faa);
			cx18_av_write4(cx, 0x90c, 0x08014faa);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */
			cx18_av_write(cx, 0x127, 0x56);

			/* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11205fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01193f8);
			break;
		}
	} else {
		switch (freq) {
		case 32000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30
			 */
			cx18_av_write4(cx, 0x108, 0x300d040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x176740c */
			/* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0176740c);

			/* src1_ctl */
			/* 0x1.0000 = 32000/32000 */
			cx18_av_write4(cx, 0x8f8, 0x08010000);

			/* src3/4/6_ctl */
			/* 0x2.0000 = 2 * (32000/32000) */
			cx18_av_write4(cx, 0x900, 0x08020000);
			cx18_av_write4(cx, 0x904, 0x08020000);
			cx18_av_write4(cx, 0x90c, 0x08020000);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */
			cx18_av_write(cx, 0x127, 0x70);

			/* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11201fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 =
			 *  ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa00d2ef8);
			break;

		case 44100:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24
			 */
			cx18_av_write4(cx, 0x108, 0x240e040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x062a1f2 */
			/* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0062a1f2);

			/* src1_ctl */
			/* 0x1.60cd = 44100/32000 */
			cx18_av_write4(cx, 0x8f8, 0x080160cd);

			/* src3/4/6_ctl */
			/* 0x1.7385 = 2 * (32000/44100) */
			cx18_av_write4(cx, 0x900, 0x08017385);
			cx18_av_write4(cx, 0x904, 0x08017385);
			cx18_av_write4(cx, 0x90c, 0x08017385);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */
			cx18_av_write(cx, 0x127, 0x64);

			/* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x112061ff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 =
			 *  ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01d4bf8);
			break;

		case 48000:
			/*
			 * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04
			 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20
			 */
			cx18_av_write4(cx, 0x108, 0x200d040f);

			/* VID_PLL Fraction = 0x2be2fe */
			/* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/
			cx18_av_write4(cx, 0x10c, 0x002be2fe);

			/* AUX_PLL Fraction = 0x176740c */
			/* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/
			cx18_av_write4(cx, 0x110, 0x0176740c);

			/* src1_ctl */
			/* 0x1.8000 = 48000/32000 */
			cx18_av_write4(cx, 0x8f8, 0x08018000);

			/* src3/4/6_ctl */
			/* 0x1.5555 = 2 * (32000/48000) */
			cx18_av_write4(cx, 0x900, 0x08015555);
			cx18_av_write4(cx, 0x904, 0x08015555);
			cx18_av_write4(cx, 0x90c, 0x08015555);

			/* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */
			cx18_av_write(cx, 0x127, 0x60);

			/* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */
			cx18_av_write4(cx, 0x12c, 0x11203fff);

			/*
			 * EN_AV_LOCK = 0
			 * VID_COUNT = 0x1193f8 = 143999.000 * 8 =
			 *  ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8
			 */
			cx18_av_write4(cx, 0x128, 0xa01193f8);
			break;
		}
	}

	state->audclk_freq = freq;

	return 0;
}

void cx18_av_audio_set_path(struct cx18 *cx)
{
	struct cx18_av_state *state = &cx->av_state;
	u8 v;

	/* stop microcontroller */
	v = cx18_av_read(cx, 0x803) & ~0x10;
	cx18_av_write_expect(cx, 0x803, v, v, 0x1f);

	/* assert soft reset */
	v = cx18_av_read(cx, 0x810) | 0x01;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);

	/* Mute everything to prevent the PFFT! */
	cx18_av_write(cx, 0x8d3, 0x1f);

	if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) {
		/* Set Path1 to Serial Audio Input */
		cx18_av_write4(cx, 0x8d0, 0x01011012);

		/* The microcontroller should not be started for the
		 * non-tuner inputs: autodetection is specific for
		 * TV audio. */
	} else {
		/* Set Path1 to Analog Demod Main Channel */
		cx18_av_write4(cx, 0x8d0, 0x1f063870);
	}

	set_audclk_freq(cx, state->audclk_freq);

	/* deassert soft reset */
	v = cx18_av_read(cx, 0x810) & ~0x01;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		/* When the microcontroller detects the
		 * audio format, it will unmute the lines */
		v = cx18_av_read(cx, 0x803) | 0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
	}
}

static int get_volume(struct cx18 *cx)
{
	/* Volume runs +18dB to -96dB in 1/2dB steps
	 * change to fit the msp3400 -114dB to +12dB range */

	/* check PATH1_VOLUME */
	int vol = 228 - cx18_av_read(cx, 0x8d4);
	vol = (vol / 2) + 23;
	return vol << 9;
}

static void set_volume(struct cx18 *cx, int volume)
{
	/* First convert the volume to msp3400 values (0-127) */
	int vol = volume >> 9;
	/* now scale it up to cx18_av values
	 * -114dB to -96dB maps to 0
	 * this should be 19, but in my testing that was 4dB too loud */
	if (vol <= 23)
		vol = 0;
	else
		vol -= 23;

	/* PATH1_VOLUME */
	cx18_av_write(cx, 0x8d4, 228 - (vol * 2));
}

static int get_bass(struct cx18 *cx)
{
	/* bass is 49 steps +12dB to -12dB */

	/* check PATH1_EQ_BASS_VOL */
	int bass = cx18_av_read(cx, 0x8d9) & 0x3f;
	bass = (((48 - bass) * 0xffff) + 47) / 48;
	return bass;
}

static void set_bass(struct cx18 *cx, int bass)
{
	/* PATH1_EQ_BASS_VOL */
	cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff));
}

static int get_treble(struct cx18 *cx)
{
	/* treble is 49 steps +12dB to -12dB */

	/* check PATH1_EQ_TREBLE_VOL */
	int treble = cx18_av_read(cx, 0x8db) & 0x3f;
	treble = (((48 - treble) * 0xffff) + 47) / 48;
	return treble;
}

static void set_treble(struct cx18 *cx, int treble)
{
	/* PATH1_EQ_TREBLE_VOL */
	cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff));
}

static int get_balance(struct cx18 *cx)
{
	/* balance is 7 bit, 0 to -96dB */

	/* check PATH1_BAL_LEVEL */
	int balance = cx18_av_read(cx, 0x8d5) & 0x7f;
	/* check PATH1_BAL_LEFT */
	if ((cx18_av_read(cx, 0x8d5) & 0x80) == 0)
		balance = 0x80 - balance;
	else
		balance = 0x80 + balance;
	return balance << 8;
}

static void set_balance(struct cx18 *cx, int balance)
{
	int bal = balance >> 8;
	if (bal > 0x80) {
		/* PATH1_BAL_LEFT */
		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80);
		/* PATH1_BAL_LEVEL */
		cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f);
	} else {
		/* PATH1_BAL_LEFT */
		cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00);
		/* PATH1_BAL_LEVEL */
		cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal);
	}
}

static int get_mute(struct cx18 *cx)
{
	/* check SRC1_MUTE_EN */
	return cx18_av_read(cx, 0x8d3) & 0x2 ? 1 : 0;
}

static void set_mute(struct cx18 *cx, int mute)
{
	struct cx18_av_state *state = &cx->av_state;
	u8 v;

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		/* Must turn off microcontroller in order to mute sound.
		 * Not sure if this is the best method, but it does work.
		 * If the microcontroller is running, then it will undo any
		 * changes to the mute register. */
		v = cx18_av_read(cx, 0x803);
		if (mute) {
			/* disable microcontroller */
			v &= ~0x10;
			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
			cx18_av_write(cx, 0x8d3, 0x1f);
		} else {
			/* enable microcontroller */
			v |= 0x10;
			cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
		}
	} else {
		/* SRC1_MUTE_EN */
		cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00);
	}
}

int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
{
	struct cx18 *cx = v4l2_get_subdevdata(sd);
	struct cx18_av_state *state = &cx->av_state;
	int retval;
	u8 v;

	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		v = cx18_av_read(cx, 0x803) & ~0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
		cx18_av_write(cx, 0x8d3, 0x1f);
	}
	v = cx18_av_read(cx, 0x810) | 0x1;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);

	retval = set_audclk_freq(cx, freq);

	v = cx18_av_read(cx, 0x810) & ~0x1;
	cx18_av_write_expect(cx, 0x810, v, v, 0x0f);
	if (state->aud_input > CX18_AV_AUDIO_SERIAL2) {
		v = cx18_av_read(cx, 0x803) | 0x10;
		cx18_av_write_expect(cx, 0x803, v, v, 0x1f);
	}
	return retval;
}

int cx18_av_audio_g_ctrl(struct cx18 *cx, struct v4l2_control *ctrl)
{
	switch (ctrl->id) {
	case V4L2_CID_AUDIO_VOLUME:
		ctrl->value = get_volume(cx);
		break;
	case V4L2_CID_AUDIO_BASS:
		ctrl->value = get_bass(cx);
		break;
	case V4L2_CID_AUDIO_TREBLE:
		ctrl->value = get_treble(cx);
		break;
	case V4L2_CID_AUDIO_BALANCE:
		ctrl->value = get_balance(cx);
		break;
	case V4L2_CID_AUDIO_MUTE:
		ctrl->value = get_mute(cx);
		break;
	default:
		return -EINVAL;
	}
	return 0;
}

int cx18_av_audio_s_ctrl(struct cx18 *cx, struct v4l2_control *ctrl)
{
	switch (ctrl->id) {
	case V4L2_CID_AUDIO_VOLUME:
		set_volume(cx, ctrl->value);
		break;
	case V4L2_CID_AUDIO_BASS:
		set_bass(cx, ctrl->value);
		break;
	case V4L2_CID_AUDIO_TREBLE:
		set_treble(cx, ctrl->value);
		break;
	case V4L2_CID_AUDIO_BALANCE:
		set_balance(cx, ctrl->value);
		break;
	case V4L2_CID_AUDIO_MUTE:
		set_mute(cx, ctrl->value);
		break;
	default:
		return -EINVAL;
	}
	return 0;
}