aboutsummaryrefslogtreecommitdiff
path: root/include/linux/pipe_fs_i.h
blob: 8e4120285f72ef3379be0de768880b67453437c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#ifndef _LINUX_PIPE_FS_I_H
#define _LINUX_PIPE_FS_I_H

#define PIPEFS_MAGIC 0x50495045

#define PIPE_BUFFERS (16)

#define PIPE_BUF_FLAG_LRU	0x01	/* page is on the LRU */
#define PIPE_BUF_FLAG_ATOMIC	0x02	/* was atomically mapped */
#define PIPE_BUF_FLAG_GIFT	0x04	/* page is a gift */

/**
 *	struct pipe_buffer - a linux kernel pipe buffer
 *	@page: the page containing the data for the pipe buffer
 *	@offset: offset of data inside the @page
 *	@len: length of data inside the @page
 *	@ops: operations associated with this buffer. See @pipe_buf_operations.
 *	@flags: pipe buffer flags. See above.
 *	@private: private data owned by the ops.
 **/
struct pipe_buffer {
	struct page *page;
	unsigned int offset, len;
	const struct pipe_buf_operations *ops;
	unsigned int flags;
	unsigned long private;
};

/**
 *	struct pipe_inode_info - a linux kernel pipe
 *	@wait: reader/writer wait point in case of empty/full pipe
 *	@nrbufs: the number of non-empty pipe buffers in this pipe
 *	@curbuf: the current pipe buffer entry
 *	@tmp_page: cached released page
 *	@readers: number of current readers of this pipe
 *	@writers: number of current writers of this pipe
 *	@waiting_writers: number of writers blocked waiting for room
 *	@r_counter: reader counter
 *	@w_counter: writer counter
 *	@fasync_readers: reader side fasync
 *	@fasync_writers: writer side fasync
 *	@inode: inode this pipe is attached to
 *	@bufs: the circular array of pipe buffers
 **/
struct pipe_inode_info {
	wait_queue_head_t wait;
	unsigned int nrbufs, curbuf;
	struct page *tmp_page;
	unsigned int readers;
	unsigned int writers;
	unsigned int waiting_writers;
	unsigned int r_counter;
	unsigned int w_counter;
	struct fasync_struct *fasync_readers;
	struct fasync_struct *fasync_writers;
	struct inode *inode;
	struct pipe_buffer bufs[PIPE_BUFFERS];
};

/*
 * Note on the nesting of these functions:
 *
 * ->confirm()
 *	->steal()
 *	...
 *	->map()
 *	...
 *	->unmap()
 *
 * That is, ->map() must be called on a confirmed buffer,
 * same goes for ->steal(). See below for the meaning of each
 * operation. Also see kerneldoc in fs/pipe.c for the pipe
 * and generic variants of these hooks.
 */
struct pipe_buf_operations {
	/*
	 * This is set to 1, if the generic pipe read/write may coalesce
	 * data into an existing buffer. If this is set to 0, a new pipe
	 * page segment is always used for new data.
	 */
	int can_merge;

	/*
	 * ->map() returns a virtual address mapping of the pipe buffer.
	 * The last integer flag reflects whether this should be an atomic
	 * mapping or not. The atomic map is faster, however you can't take
	 * page faults before calling ->unmap() again. So if you need to eg
	 * access user data through copy_to/from_user(), then you must get
	 * a non-atomic map. ->map() uses the KM_USER0 atomic slot for
	 * atomic maps, so you can't map more than one pipe_buffer at once
	 * and you have to be careful if mapping another page as source
	 * or destination for a copy (IOW, it has to use something else
	 * than KM_USER0).
	 */
	void * (*map)(struct pipe_inode_info *, struct pipe_buffer *, int);

	/*
	 * Undoes ->map(), finishes the virtual mapping of the pipe buffer.
	 */
	void (*unmap)(struct pipe_inode_info *, struct pipe_buffer *, void *);

	/*
	 * ->confirm() verifies that the data in the pipe buffer is there
	 * and that the contents are good. If the pages in the pipe belong
	 * to a file system, we may need to wait for IO completion in this
	 * hook. Returns 0 for good, or a negative error value in case of
	 * error.
	 */
	int (*confirm)(struct pipe_inode_info *, struct pipe_buffer *);

	/*
	 * When the contents of this pipe buffer has been completely
	 * consumed by a reader, ->release() is called.
	 */
	void (*release)(struct pipe_inode_info *, struct pipe_buffer *);

	/*
	 * Attempt to take ownership of the pipe buffer and its contents.
	 * ->steal() returns 0 for success, in which case the contents
	 * of the pipe (the buf->page) is locked and now completely owned
	 * by the caller. The page may then be transferred to a different
	 * mapping, the most often used case is insertion into different
	 * file address space cache.
	 */
	int (*steal)(struct pipe_inode_info *, struct pipe_buffer *);

	/*
	 * Get a reference to the pipe buffer.
	 */
	void (*get)(struct pipe_inode_info *, struct pipe_buffer *);
};

/* Differs from PIPE_BUF in that PIPE_SIZE is the length of the actual
   memory allocation, whereas PIPE_BUF makes atomicity guarantees.  */
#define PIPE_SIZE		PAGE_SIZE

/* Drop the inode semaphore and wait for a pipe event, atomically */
void pipe_wait(struct pipe_inode_info *pipe);

struct pipe_inode_info * alloc_pipe_info(struct inode * inode);
void free_pipe_info(struct inode * inode);
void __free_pipe_info(struct pipe_inode_info *);

/* Generic pipe buffer ops functions */
void *generic_pipe_buf_map(struct pipe_inode_info *, struct pipe_buffer *, int);
void generic_pipe_buf_unmap(struct pipe_inode_info *, struct pipe_buffer *, void *);
void generic_pipe_buf_get(struct pipe_inode_info *, struct pipe_buffer *);
int generic_pipe_buf_confirm(struct pipe_inode_info *, struct pipe_buffer *);
int generic_pipe_buf_steal(struct pipe_inode_info *, struct pipe_buffer *);

#endif