diff options
Diffstat (limited to 'libcrystfel/src')
-rw-r--r-- | libcrystfel/src/asdf.c | 1175 | ||||
-rw-r--r-- | libcrystfel/src/asdf.h | 28 | ||||
-rw-r--r-- | libcrystfel/src/cell-utils.c | 28 | ||||
-rw-r--r-- | libcrystfel/src/cell-utils.h | 2 | ||||
-rw-r--r-- | libcrystfel/src/index.c | 29 | ||||
-rw-r--r-- | libcrystfel/src/index.h | 4 |
6 files changed, 1259 insertions, 7 deletions
diff --git a/libcrystfel/src/asdf.c b/libcrystfel/src/asdf.c new file mode 100644 index 00000000..d28fcf6a --- /dev/null +++ b/libcrystfel/src/asdf.c @@ -0,0 +1,1175 @@ +#include <stdlib.h> +#include <stdio.h> +#include <math.h> +#include <string.h> +#include <gsl/gsl_matrix.h> +#include <gsl/gsl_vector.h> +#include <gsl/gsl_blas.h> +#include <gsl/gsl_linalg.h> +#include <gsl/gsl_multifit.h> +#include <fftw3.h> + +#include "image.h" +#include "dirax.h" +#include "utils.h" +#include "peaks.h" +#include "cell-utils.h" +#include "asdf.h" + + +struct fftw_vars { + int N; + fftw_plan p; + double *in; + fftw_complex *out; +}; + + +struct asdf_private { + IndexingMethod indm; + float *ltl; + UnitCell *template; + struct fftw_vars fftw; +}; + + +/* Possible direct vector */ +struct tvector { + gsl_vector *t; + int n; // number of fitting reflections + int *fits; +}; + + +struct fftw_vars fftw_vars_new() +{ + int N = 1024; + + struct fftw_vars fftw; + + fftw.N = N; + fftw.in = fftw_malloc(N * sizeof(double)); + fftw.out = fftw_malloc(N * sizeof(fftw_complex)); + fftw.p = fftw_plan_dft_r2c_1d(N, fftw.in, fftw.out, FFTW_MEASURE); + + return fftw; +} + + +static int fftw_vars_free(struct fftw_vars fftw) +{ + fftw_free(fftw.in); + fftw_free(fftw.out); + fftw_destroy_plan(fftw.p); + fftw_cleanup(); +} + + +struct asdf_cell { + gsl_vector *axes[3]; + gsl_vector *reciprocal[3]; + + int n; // number of fitting reflections + double volume; + + int N_refls; // total number of reflections + int *reflections; // reflections[i] = 1 if reflections fits + double **indices; // indices[i] = [h, k, l] for all reflections (not rounded) + + int acl; // minimum number of reflections fitting to one of the axes[] + int n_max; // maximum number of reflections fitting to some t-vector +}; + + +struct tvector tvector_new(int n) +{ + struct tvector t; + + t.t = gsl_vector_alloc(3); + t.n = 0; + t.fits = malloc(sizeof(int) * n); + + return t; +} + + +static int tvector_free(struct tvector t) +{ + gsl_vector_free(t.t); + free(t.fits); + + return 1; +} + + +static int tvector_memcpy(struct tvector *dest, struct tvector *src, int n) +{ + gsl_vector_memcpy(dest->t, src->t); + dest->n = src->n; + memcpy(dest->fits, src->fits, sizeof(int) * n); + + return 1; +} + + +static int asdf_cell_free(struct asdf_cell *c) +{ + int i; + for ( i = 0; i < 3; i++ ) { + gsl_vector_free(c->axes[i]); + gsl_vector_free(c->reciprocal[i]); + } + + free(c->reflections); + for ( i = 0; i < c->N_refls; i++ ) { + free(c->indices[i]); + } + free(c->indices); + free(c); + + return 1; +} + + +static struct asdf_cell *asdf_cell_new(int n) +{ + struct asdf_cell *c; + c = malloc(sizeof(struct asdf_cell)); + + int i; + for ( i = 0; i < 3; i++ ) { + c->axes[i] = gsl_vector_alloc(3); + c->reciprocal[i] = gsl_vector_alloc(3); + } + + c->N_refls = n; + c->reflections = malloc(sizeof(int) * n); + if (c->reflections == NULL) return NULL; + + c->indices = malloc(sizeof(double *) * n); + if (c->indices == NULL) return NULL; + + for ( i = 0; i < n; i++ ) { + c->indices[i] = malloc(sizeof(double) * 3); + if (c->indices[i] == NULL) return NULL; + } + + c->n = 0; + + c->acl = 0; + c->n_max = 0; + + return c; +} + + +static int asdf_cell_memcpy(struct asdf_cell *dest, struct asdf_cell *src) +{ + int i; + for ( i = 0; i < 3; i++ ) { + gsl_vector_memcpy(dest->axes[i], src->axes[i]); + gsl_vector_memcpy(dest->reciprocal[i], src->reciprocal[i]); + } + + dest->volume = src->volume; + + int n = src->N_refls; + dest->N_refls = n; + + dest->n = src->n; + memcpy(dest->reflections, src->reflections, sizeof(int) * n); + + for (i = 0; i < n; i++ ) { + memcpy(dest->indices[i], src->indices[i], sizeof(double) * 3); + } + + dest->acl = src->acl; + dest->n_max = src->n_max; + return 1; +} + + +/* result = vec1 cross vec2 */ +static int cross_product(gsl_vector *vec1, gsl_vector *vec2, + gsl_vector **result) +{ + double c1[3], c2[3], p[3]; + int i; + for ( i = 0; i < 3; i++ ) { + c1[i] = gsl_vector_get(vec1, i); + c2[i] = gsl_vector_get(vec2, i); + } + + p[0] = c1[1] * c2[2] - c1[2] * c2[1]; + p[1] = - c1[0] * c2[2] + c1[2] * c2[0]; + p[2] = c1[0] * c2[1] - c1[1] * c2[0]; + + for ( i = 0; i < 3; i++ ) { + gsl_vector_set(*result, i, p[i]); + } + + return 1; +} + + +/* Returns triple product of three gsl_vectors */ +static double calc_volume(gsl_vector *vec1, gsl_vector *vec2, gsl_vector *vec3) +{ + double volume; + gsl_vector *cross = gsl_vector_alloc(3); + + cross_product(vec1, vec2, &cross); + gsl_blas_ddot(vec3, cross, &volume); + + gsl_vector_free(cross); + return volume; +} + + +static int calc_reciprocal(gsl_vector **direct, gsl_vector **reciprocal) +{ + double volume; + + cross_product(direct[1], direct[2], &reciprocal[0]); + gsl_blas_ddot(direct[0], reciprocal[0], &volume); + gsl_vector_scale(reciprocal[0], 1/volume); + + cross_product(direct[2], direct[0], &reciprocal[1]); + gsl_vector_scale(reciprocal[1], 1/volume); + + cross_product(direct[0], direct[1], &reciprocal[2]); + gsl_vector_scale(reciprocal[2], 1/volume); + + return 1; +} + + +static int check_cell(struct asdf_private *dp, struct image *image, + UnitCell *cell) +{ + UnitCell *out; + Crystal *cr; + + if ( dp->indm & INDEXING_CHECK_CELL_COMBINATIONS ) { + + out = match_cell(cell, dp->template, 0, dp->ltl, 1); + if ( out == NULL ) return 0; + + } else if ( dp->indm & INDEXING_CHECK_CELL_AXES ) { + + out = match_cell(cell, dp->template, 0, dp->ltl, 0); + if ( out == NULL ) return 0; + + } else { + out = cell_new_from_cell(cell); + } + + cr = crystal_new(); + if ( cr == NULL ) { + ERROR("Failed to allocate crystal.\n"); + return 0; + } + + crystal_set_cell(cr, out); + + if ( dp->indm & INDEXING_CHECK_PEAKS ) { + if ( !peak_sanity_check(image, &cr, 1) ) { + crystal_free(cr); /* Frees the cell as well */ + cell_free(out); + return 0; + } + } + + image_add_crystal(image, cr); + + return 1; +} + + +static int compare_doubles(const void *a, const void *b) +{ + const double *da = (const double *) a; + const double *db = (const double *) b; + + return (*da > *db) - (*da < *db); +} + + +/* Compares tvectors by length */ +static int compare_tvectors(const void *a, const void *b) +{ + struct tvector *ta = (struct tvector *) a; + struct tvector *tb = (struct tvector *) b; + + //~ if (ta->n == tb->n) { + return (gsl_blas_dnrm2(ta->t) > gsl_blas_dnrm2(tb->t)) - + (gsl_blas_dnrm2(ta->t) < gsl_blas_dnrm2(tb->t)); + //~ } + //~ + //~ return (ta->n > tb->n) - (ta->n < tb->n); +} + + +/* Calculates normal to a triplet c1, c2, c3. Returns 0 if reflections are on + * the same line */ +static int calc_normal(gsl_vector *c1, gsl_vector *c2, gsl_vector *c3, + gsl_vector *normal) +{ + gsl_vector *c12 = gsl_vector_alloc(3); + gsl_vector *c23 = gsl_vector_alloc(3); + gsl_vector *c31 = gsl_vector_alloc(3); + gsl_vector *res = gsl_vector_alloc(3); + + cross_product(c1, c2, &c12); + cross_product(c2, c3, &c23); + cross_product(c3, c1, &c31); + + int i; + for ( i = 0; i < 3; i++ ) { + gsl_vector_set(res, i, gsl_vector_get(c12, i) + + gsl_vector_get(c23, i) + + gsl_vector_get(c31, i)); + } + + gsl_vector_free(c12); + gsl_vector_free(c23); + gsl_vector_free(c31); + + double norm = gsl_blas_dnrm2(res); + if ( norm < 0.0001 ) { + gsl_vector_free(res); + return 0; + } else { + gsl_vector_scale(res, 1/norm); + gsl_vector_memcpy(normal, res); + gsl_vector_free(res); + } + + return 1; +} + + +static float find_ds_fft(double *projections, int N_projections, double d_max, + struct fftw_vars fftw) +{ + int n = N_projections; + double projections_sorted[n]; + memcpy(projections_sorted, projections, sizeof(double) * n); + qsort(projections_sorted, n, sizeof(double), compare_doubles); + + int i, k; + + int N = fftw.N; // number of points in fft calculation + double *in = fftw.in; + fftw_complex *out = fftw.out; + fftw_plan p = fftw.p; + + for ( i = 0; i < N; i++ ) { + in[i] = 0; + } + + for ( i = 0; i < n; i++ ) { + + k = (int)((projections_sorted[i] - projections_sorted[0]) / + (projections_sorted[n - 1] - projections_sorted[0]) * + (N - 1)); + in[k] ++; + } + + fftw_execute_dft_r2c(p, in, out); + + int i_max = (int)(d_max * (projections_sorted[n - 1] - + projections_sorted[0])); + + int d = 1; + double max = 0; + double a; + for ( i = 1; i <= i_max; i++ ) { + a = sqrt(out[i][0] * out[i][0] + out[i][1] * out[i][1]); + if (a > max) { + max = a; + d = i; + } + } + + double ds = (projections_sorted[n - 1] - projections_sorted[0]) / d; + + return ds; +} + + +/* Returns number of reflections fitting ds. + * A projected reflection fits a one-dimensional lattice with elementary + * lattice vector d* if its absolute distance to the nearest lattice + * point is less than LevelFit. */ +static int check_refl_fitting_ds(double *projections, int N_projections, + double ds, double LevelFit) +{ + if ( ds == 0 ) return 0; + + int i; + int n = 0; + for ( i = 0; i < N_projections; i++ ) { + if ( fabs(projections[i] - + ds * round(projections[i]/ds)) < LevelFit ) + { + n += 1; + } + } + + return n; +} + + +/* Refines d*, writes 1 to fits[i] if the i-th projection fits d* */ +static float refine_ds(double *projections, int N_projections, double ds, + double LevelFit, int *fits) +{ + double fit_refls[N_projections]; + double indices[N_projections]; + + int i; + + int N_fits = 0; + int N_new = N_projections; + + double c1, cov11, sumsq; + double ds_new = ds; + while ( N_fits < N_new ) { + N_fits = 0; + for ( i = 0; i < N_projections; i++ ) { + if ( fabs(projections[i] - ds_new * + round(projections[i] / ds_new)) < LevelFit ) + { + fit_refls[N_fits] = projections[i]; + indices[N_fits] = round(projections[i]/ds_new); + N_fits ++; + fits[i] = 1; + } else { + fits[i] = 0; + } + } + + + gsl_fit_mul(indices, 1, fit_refls, 1, N_fits, &c1, &cov11, + &sumsq); + N_new = check_refl_fitting_ds(projections, N_projections, c1, + LevelFit); + if ( N_new >= N_fits ) { + ds_new = c1; + } + } + + return ds_new; +} + + +static int check_refl_fitting_cell(struct asdf_cell *c, + gsl_vector **reflections, + int N_reflections, double IndexFit) +{ + double dist[3]; + + calc_reciprocal(c->axes, c->reciprocal); + c->n = 0; + int i, j, k; + for( i = 0; i < N_reflections; i += 1 ) { + + for ( j = 0; j < 3; j++ ) dist[j] = 0; + + for ( j = 0; j < 3; j++ ) { + gsl_blas_ddot(reflections[i], c->axes[j], + &c->indices[i][j]); + + for ( k = 0; k < 3; k++ ) { + dist[k] += gsl_vector_get(c->reciprocal[j], k) * + (c->indices[i][j] - round(c->indices[i][j])); + } + } + + /* A reflection fits if the distance (in reciprocal space) + * between the observed and calculated reflection position + * is less than Indexfit */ + + if ( dist[0]*dist[0] + dist[1]*dist[1] + dist[2]*dist[2] < + IndexFit * IndexFit ) { + c->reflections[i] = 1; + c->n++; + } else { + c->reflections[i] = 0; + } + } + + return 1; +} + + +static void print_asdf_cell(struct asdf_cell *cc) +{ + double a, b, c, alpha, beta, gamma, ab, bc, ca; + + a = gsl_blas_dnrm2(cc->axes[0]); + b = gsl_blas_dnrm2(cc->axes[1]); + c = gsl_blas_dnrm2(cc->axes[2]); + + gsl_blas_ddot(cc->axes[0], cc->axes[1], &ab); + gsl_blas_ddot(cc->axes[1], cc->axes[2], &bc); + gsl_blas_ddot(cc->axes[0], cc->axes[2], &ca); + + alpha = acos(bc/b/c)/M_PI*180; + beta = acos(ca/a/c)/M_PI*180; + gamma = acos(ab/a/b)/M_PI*180; + + //~ int i, j; + //~ for (i = 0; i < 3; i ++) { + //~ for (j = 0; j < 3; j ++) { + //~ printf("%f ", gsl_vector_get(cc.axes[i], j)); + //~ } + //~ printf("\n"); + //~ } + + printf("%.2f %.2f %.2f %.2f %.2f %.2f %.0f %d \n", a, b, c, + alpha, beta, gamma, + cc->volume, cc->n); + +} + + +/* Returns 0 when refinement doesn't converge (i.e. all fitting reflections + * lie in the same plane) */ +static int refine_asdf_cell(struct asdf_cell *c, gsl_vector **reflections, + int N_reflections, double IndexFit) +{ + gsl_matrix *X = gsl_matrix_alloc(c->n, 3); + + gsl_vector *r[] = {gsl_vector_alloc(c->n), + gsl_vector_alloc(c->n), + gsl_vector_alloc(c->n)}; + + gsl_vector *res = gsl_vector_alloc(3); + gsl_matrix *cov = gsl_matrix_alloc (3, 3); + double chisq; + + int i, j; + int n = 0; + for ( i = 0; i < N_reflections; i++ ) if ( c->reflections[i] == 1 ) + { + for ( j = 0; j < 3; j++ ) { + gsl_matrix_set(X, n, j, round(c->indices[i][j])); + gsl_vector_set(r[j], n, + gsl_vector_get(reflections[i], j)); + } + n++; + } + + gsl_multifit_linear_workspace *work = gsl_multifit_linear_alloc(c->n, + 3); + + for ( i = 0; i < 3; i++ ) { + gsl_multifit_linear (X, r[i], res, cov, &chisq, work); + + for (j = 0; j < 3; j++ ) { + gsl_vector_set(c->reciprocal[j], i, + gsl_vector_get(res, j)); + } + } + + calc_reciprocal(c->reciprocal, c->axes); + + double a[3]; + for ( i = 0; i < 3; i++ ) { + a[i] = gsl_blas_dnrm2(c->axes[i]); + } + + gsl_multifit_linear_free(work); + gsl_vector_free(res); + gsl_matrix_free(cov); + gsl_matrix_free(X); + for ( i = 0; i < 3; i++ ) { + gsl_vector_free(r[i]); + } + + if ( fabs(a[0]) > 10000 || fabs(a[1]) > 10000 || + fabs(a[2]) > 10000 || isnan(a[0]) ) + { + return 0; + } + + return 1; +} + + +static int reduce_asdf_cell(struct asdf_cell *cl) +{ + double a, b, c, alpha, beta, gamma, ab, bc, ca, bb, cc; + + gsl_vector *va = gsl_vector_alloc(3); + gsl_vector *vb = gsl_vector_alloc(3); + gsl_vector *vc = gsl_vector_alloc(3); + + int changed = 1; + while ( changed ) { + changed = 0; + + gsl_vector_memcpy(va, cl->axes[0]); + gsl_vector_memcpy(vb, cl->axes[1]); + gsl_vector_memcpy(vc, cl->axes[2]); + + a = gsl_blas_dnrm2(va); + b = gsl_blas_dnrm2(vb); + c = gsl_blas_dnrm2(vc); + + gsl_blas_ddot(va, vb, &ab); + gsl_blas_ddot(vb, vc, &bc); + gsl_blas_ddot(vc, va, &ca); + + alpha = acos(bc/b/c)/M_PI*180; + beta = acos(ca/a/c)/M_PI*180; + gamma = acos(ab/a/b)/M_PI*180; + + if ( changed == 0 ) { + + if ( gamma < 90 ) { + gsl_vector_scale(vb, -1); + gamma = 180 - gamma; + alpha = 180 - alpha; + } + + gsl_vector_add(vb, va); + bb = gsl_blas_dnrm2(vb); + if ( bb < b ) { + b = bb; + if ( a < b ) { + gsl_vector_memcpy(cl->axes[1], vb); + } else { + gsl_vector_memcpy(cl->axes[1], va); + gsl_vector_memcpy(cl->axes[0], vb); + } + changed = 1; + } + } + + if ( changed == 0 ) { + + if ( beta < 90 ) { + gsl_vector_scale(vc, -1); + beta = 180 - beta; + alpha = 180 - alpha; + } + + gsl_vector_add(vc, va); + cc = gsl_blas_dnrm2(vc); + if ( cc < c ) { + c = cc; + if ( b < c ) { + gsl_vector_memcpy(cl->axes[2], vc); + } else if ( a < c ) { + gsl_vector_memcpy(cl->axes[1], vc); + gsl_vector_memcpy(cl->axes[2], vb); + } else { + gsl_vector_memcpy(cl->axes[0], vc); + gsl_vector_memcpy(cl->axes[1], va); + gsl_vector_memcpy(cl->axes[2], vb); + } + changed = 1; + } + } + + if ( changed == 0 ) { + if ( alpha < 90 ) { + gsl_vector_scale(vc, -1); + beta = 180 - beta; + alpha = 180 - alpha; + } + + gsl_vector_add(vc, vb); + cc = gsl_blas_dnrm2(vc); + if ( cc < c ) { + c = cc; + if ( b < c ) { + gsl_vector_memcpy(cl->axes[2], vc); + } else if ( a < c ) { + gsl_vector_memcpy(cl->axes[1], vc); + gsl_vector_memcpy(cl->axes[2], vb); + } else { + gsl_vector_memcpy(cl->axes[0], vc); + gsl_vector_memcpy(cl->axes[1], va); + gsl_vector_memcpy(cl->axes[2], vb); + } + changed = 1; + } + } + } + + cross_product(cl->axes[0], cl->axes[1], &vc); + gsl_blas_ddot(vc, cl->axes[2], &cl->volume); + if ( cl->volume < 0 ) { + gsl_vector_scale(cl->axes[2], -1); + cl->volume *= -1; + } + + gsl_vector_free(va); + gsl_vector_free(vb); + gsl_vector_free(vc); + + return 1; +} + + +static int check_cell_angles(gsl_vector *va, gsl_vector *vb, gsl_vector *vc, + double max_cos) +{ + double a, b, c, cosa, cosb, cosg, ab, bc, ca; + + a = gsl_blas_dnrm2(va); + b = gsl_blas_dnrm2(vb); + c = gsl_blas_dnrm2(vc); + + gsl_blas_ddot(va, vb, &ab); + gsl_blas_ddot(vb, vc, &bc); + gsl_blas_ddot(vc, va, &ca); + + cosa = bc/b/c; + cosb = ca/a/c; + cosg = ab/a/b; + + if ( fabs(cosa) > max_cos || fabs(cosb) > max_cos || + fabs(cosg) > max_cos ) { + return 0; + } + + return 1; +} + + +/* Returns min(t1.n, t2.n, t3.n) */ +static int find_acl(struct tvector t1, struct tvector t2, struct tvector t3) +{ + int i = t1.n, j = t2.n, k = t3.n; + if ( i <= j && i <= k ) return i; + if ( j <= i && j <= k ) return j; + if ( k <= i && k <= j ) return k; +} + + +static int create_cell(struct tvector tvec1, struct tvector tvec2, + struct tvector tvec3, struct asdf_cell *c, + double IndexFit, double volume_min, double volume_max, + gsl_vector **reflections, int N_reflections) +{ + + double volume = calc_volume(tvec1.t, tvec2.t, tvec3.t); + if ( fabs(volume) < volume_min || fabs(volume) > volume_max ) return 0; + + gsl_vector_memcpy(c->axes[0], tvec1.t); + gsl_vector_memcpy(c->axes[1], tvec2.t); + gsl_vector_memcpy(c->axes[2], tvec3.t); + + c->volume = volume; + check_refl_fitting_cell(c, reflections, N_reflections, IndexFit); + + if ( c->n < 6 ) return 0; + + reduce_asdf_cell(c); + + /* If one of the cell angles > 135 or < 45 return 0 */ + if ( !check_cell_angles(c->axes[0], c->axes[1], + c->axes[2], 0.71) ) return 0; + + /* Index reflections with new cell axes */ + check_refl_fitting_cell(c, reflections, N_reflections, IndexFit); + + /* Refine cell until the number of fitting + * reflections stops increasing */ + int n = 0; + int cell_correct = 1; + while ( c->n - n > 0 && cell_correct ) { + + n = c->n; + cell_correct = refine_asdf_cell(c, reflections, N_reflections, + IndexFit); + check_refl_fitting_cell(c, reflections, N_reflections, + IndexFit); + } + + return cell_correct; +} + + +static int find_cell(struct tvector *tvectors, int N_tvectors, double IndexFit, + double volume_min, double volume_max, int n_max, + gsl_vector **reflections, int N_reflections, + struct asdf_cell *result) +{ + int i, j, k; + + /* Only tvectors with the number of fitting reflections > acl are + * considered */ + int acl = N_reflections < 18 ? 6 : N_reflections/3; + + struct asdf_cell *c = asdf_cell_new(N_reflections); + if (c == NULL) { + ERROR("Failed to allocate asdf_cell in find_cell!\n"); + return 0; + } + + /* Traversing a 3d array in slices perpendicular to the main diagonal */ + int sl; + for ( sl = 0; sl < 3 * N_tvectors - 1; sl++ ) { + + int i_min = sl < 2 * N_tvectors ? 0 : sl - 2 * N_tvectors; + int i_max = sl < N_tvectors ? sl : N_tvectors; + + for ( i = i_min; i < i_max; i++) if (tvectors[i].n > acl ) { + + int j_min = sl - N_tvectors - 2 * i - 1 < 0 ? + i + 1 : sl - N_tvectors - i; + int j_max = sl - N_tvectors - i < 0 ? + sl - i : N_tvectors; + + for ( j = j_min; j < j_max; j++ ) + if ( tvectors[j].n > acl ) { + + k = sl - i - j - 1; + + if ( k > j && tvectors[k].n > acl && + check_cell_angles(tvectors[i].t, + tvectors[j].t, + tvectors[k].t, 0.99) ) + { + + if ( !create_cell(tvectors[i], + tvectors[j], + tvectors[k], + c, IndexFit, + volume_min, + volume_max, + reflections, + N_reflections) ) + { + break; + } + + acl = find_acl(tvectors[i], + tvectors[j], + tvectors[k]); + c->acl = acl; + c->n_max = n_max; + + reduce_asdf_cell(c); + + /* If the new cell has more fitting + * reflections save it to result */ + if ( result->n < c->n ) { + asdf_cell_memcpy(result, c); + } + acl++; + + if ( acl > n_max ) break; + if ( tvectors[j].n <= acl || + tvectors[i].n <= acl ) break; + } + } + if ( acl > n_max ) break; + if ( tvectors[i].n <= acl ) break; + } + if ( acl > n_max ) break; + } + + asdf_cell_free(c); + + if ( result->n ) return 1; + return 0; +} + + +static void shuffle_triplets(int **triplets, int n) +{ + int i, j; + int t[3]; + for ( i = 0; i < n - 1; i++ ) { + j = i + rand() / (RAND_MAX / (n - i) + 1); + memcpy(t, triplets[j], 3 * sizeof(int)); + memcpy(triplets[j], triplets[i], 3 * sizeof(int)); + memcpy(triplets[i], t, 3 * sizeof(int)); + } +} + + +static double angle_between_gsl(gsl_vector *a, gsl_vector *b) +{ + double ab; + gsl_blas_ddot(a, b, &ab); + return acos(ab/gsl_blas_dnrm2(a)/gsl_blas_dnrm2(b)) * 180 / M_PI; +} + + +static int index_refls(gsl_vector **reflections, int N_reflections, + double d_max, double volume_min, double volume_max, + double LevelFit, double IndexFit, int i_max, + struct asdf_cell *c, struct fftw_vars fftw) +{ + + int i, j, k, l, n; + + /* Number of triplets = c_n^3 if n - number of reflections */ + int N_triplets = N_reflections * (N_reflections - 1) * + (N_reflections - 2) / 6; + + int **triplets = malloc(N_triplets * sizeof(int *)); + if (triplets == NULL) { + ERROR("Failed to allocate triplets in index_refls!\n"); + return 0; + } + + l = 0; + for ( i = 0; i < N_reflections; i++ ) { + for ( j = i + 1; j < N_reflections; j++ ) { + for ( k = j + 1; k < N_reflections; k++ ) { + triplets[l] = malloc(3 * sizeof(int)); + if (triplets[l] == NULL) { + ERROR("Failed to allocate triplets " + " in index_refls!\n"); + return 0; + } + + triplets[l][0] = i; + triplets[l][1] = j; + triplets[l][2] = k; + l++; + } + } + } + + /* Triplets are processed in a random sequence if N_triplets > 10000 */ + if ( N_reflections > 40 ) shuffle_triplets(triplets, N_triplets); + + gsl_vector *normal = gsl_vector_alloc(3); + + double projections[N_reflections]; + double ds; + + int *fits = malloc(N_reflections * sizeof(int)); + if (fits == NULL) { + ERROR("Failed to allocate fits in index_refls!\n"); + return 0; + } + + if ( i_max > N_triplets ) i_max = N_triplets; + + struct tvector *tvectors = malloc(i_max * sizeof(struct tvector)); + if (tvectors == NULL) { + ERROR("Failed to allocate tvectors in index_refls!\n"); + return 0; + } + + int N_tvectors = 0; + + int n_max = 0; // maximum number of reflections fitting one of tvectors + + for ( i = 0; i < i_max; i++ ) { + if ( calc_normal(reflections[triplets[i][0]], + reflections[triplets[i][1]], + reflections[triplets[i][2]], + normal) ) + { + + /* Calculate projections of reflections to normal */ + for ( k = 0; k < N_reflections; k++ ) { + gsl_blas_ddot(normal, reflections[k], + &projections[k]); + } + + /* Find ds - period in 1d lattice of projections */ + ds = find_ds_fft(projections, N_reflections, d_max, + fftw); + + /* Refine ds, write 1 to fits[i] if reflections[i] + * fits ds */ + ds = refine_ds(projections, N_reflections, ds, LevelFit, + fits); + + /* n - number of reflections fitting ds */ + n = check_refl_fitting_ds(projections, N_reflections, + ds, LevelFit); + + /* normal/ds - possible direct vector */ + gsl_vector_scale(normal, 1/ds); + + if ( n > N_reflections/3 && n > 6 ) { + + tvectors[N_tvectors] = tvector_new(N_reflections); + + gsl_vector_memcpy(tvectors[N_tvectors].t, + normal); + memcpy(tvectors[N_tvectors].fits, fits, + N_reflections * sizeof(int)); + + tvectors[N_tvectors].n = n; + + N_tvectors++; + + if (n > n_max) n_max = n; + } + } + + if ( (i != 0 && i % 10000 == 0) || i == i_max - 1 ) { + + /* Sort tvectors by length */ + qsort(tvectors, N_tvectors, sizeof(struct tvector), + compare_tvectors); + + /* Three shortest independent tvectors with t.n > acl + * determine the final cell. acl is selected for the + * solution with the maximum number of fitting + * reflections */ + + find_cell(tvectors, N_tvectors, IndexFit, volume_min, + volume_max, n_max, reflections, + N_reflections, c); + + if ( c->n > 4 * n_max / 5 ) { + break; + } + } + } + free(fits); + + for ( i = 0; i < N_tvectors; i++ ) { + tvector_free(tvectors[i]); + } + free(tvectors); + + for ( i = 0; i < N_triplets; i++ ) { + free(triplets[i]); + } + free(triplets); + + gsl_vector_free(normal); + + if ( c->n ) return 1; + + return 0; +} + + +int run_asdf(struct image *image, IndexingPrivate *ipriv) +{ + int i, j; + + double LevelFit = 1./1000; + double IndexFit = 1./500; + double d_max = 220.; // thrice the maximum expected axis length + double volume_min = 100.; + double volume_max = 1000000.; + + int i_max = 10000; // maximum number of triplets + + struct asdf_private *dp = (struct asdf_private *)ipriv; + + if ( dp->indm & INDEXING_CHECK_CELL_AXES ) { + double volume = cell_get_volume(dp->template); + double vtol = (dp->ltl[0] + dp->ltl[1] + dp->ltl[2]) / 100 + + dp->ltl[3] / 180 * M_PI; + volume_min = volume * (1 - vtol); + volume_max = volume * (1 + vtol); + } + + int N_reflections = image_feature_count(image->features); + gsl_vector *reflections[N_reflections]; + + for ( i = 0; i < N_reflections; i++ ) { + struct imagefeature *f; + + f = image_get_feature(image->features, i); + if ( f == NULL ) continue; + + reflections[i] = gsl_vector_alloc(3); + gsl_vector_set(reflections[i], 0, f->rx/1e10); + gsl_vector_set(reflections[i], 1, f->ry/1e10); + gsl_vector_set(reflections[i], 2, f->rz/1e10); + } + + struct asdf_cell *c = asdf_cell_new(N_reflections); + if (c == NULL) { + ERROR("Failed to allocate asdf_cell in run_asdf!\n"); + return 0; + } + + if ( N_reflections == 0 ) return 0; + + j = index_refls(reflections, N_reflections, d_max, volume_min, + volume_max, LevelFit, IndexFit, i_max, c, dp->fftw); + + for ( i = 0; i < N_reflections; i++ ) { + gsl_vector_free(reflections[i]); + } + + if ( j ) { + UnitCell *uc; + uc = cell_new(); + + cell_set_cartesian(uc, gsl_vector_get(c->axes[0], 0) * 1e-10, + gsl_vector_get(c->axes[0], 1) * 1e-10, + gsl_vector_get(c->axes[0], 2) * 1e-10, + gsl_vector_get(c->axes[1], 0) * 1e-10, + gsl_vector_get(c->axes[1], 1) * 1e-10, + gsl_vector_get(c->axes[1], 2) * 1e-10, + gsl_vector_get(c->axes[2], 0) * 1e-10, + gsl_vector_get(c->axes[2], 1) * 1e-10, + gsl_vector_get(c->axes[2], 2) * 1e-10); + + if ( check_cell(dp, image, uc) ) { + asdf_cell_free(c); + cell_free(uc); + return 1; + } + + cell_free(uc); + } + + asdf_cell_free(c); + return 0; +} + + +IndexingPrivate *asdf_prepare(IndexingMethod *indm, UnitCell *cell, + struct detector *det, float *ltl) +{ + struct asdf_private *dp; + int need_cell = 0; + + if ( *indm & INDEXING_CHECK_CELL_COMBINATIONS ) need_cell = 1; + if ( *indm & INDEXING_CHECK_CELL_AXES ) need_cell = 1; + + if ( need_cell && !cell_has_parameters(cell) ) { + ERROR("Altering your asdf flags because cell parameters were" + " not provided.\n"); + *indm &= ~INDEXING_CHECK_CELL_COMBINATIONS; + *indm &= ~INDEXING_CHECK_CELL_AXES; + } + + /* Flags that asdf knows about */ + *indm &= INDEXING_METHOD_MASK | INDEXING_CHECK_CELL_COMBINATIONS + | INDEXING_CHECK_CELL_AXES | INDEXING_CHECK_PEAKS; + + dp = malloc(sizeof(struct asdf_private)); + if ( dp == NULL ) return NULL; + + dp->ltl = ltl; + dp->template = cell; + dp->indm = *indm; + + dp->fftw = fftw_vars_new(); + + return (IndexingPrivate *)dp; +} + + +void asdf_cleanup(IndexingPrivate *pp) +{ + struct asdf_private *p; + p = (struct asdf_private *)pp; + fftw_vars_free(p->fftw); + free(p); +} diff --git a/libcrystfel/src/asdf.h b/libcrystfel/src/asdf.h new file mode 100644 index 00000000..402636d1 --- /dev/null +++ b/libcrystfel/src/asdf.h @@ -0,0 +1,28 @@ + + +#ifndef ASDF_H +#define ASDF_H + +#ifdef HAVE_CONFIG_H +#include <config.h> +#endif + +#include "index.h" + +#ifdef __cplusplus +extern "C" { +#endif + +extern int run_asdf(struct image *image, IndexingPrivate *ipriv); + +extern IndexingPrivate *asdf_prepare(IndexingMethod *indm, + UnitCell *cell, struct detector *det, + float *ltl); + +extern void asdf_cleanup(IndexingPrivate *pp); + +#ifdef __cplusplus +} +#endif + +#endif /* DIRAX_H */ diff --git a/libcrystfel/src/cell-utils.c b/libcrystfel/src/cell-utils.c index 9676aade..75419c99 100644 --- a/libcrystfel/src/cell-utils.c +++ b/libcrystfel/src/cell-utils.c @@ -1576,3 +1576,31 @@ int forbidden_reflection(UnitCell *cell, return 0; } + + +/* Returns cell volume in A^3 */ +double cell_get_volume(UnitCell *cell) +{ + double asx, asy, asz; + double bsx, bsy, bsz; + double csx, csy, csz; + struct rvec aCb; + double rec_volume; + + if ( cell_get_reciprocal(cell, &asx, &asy, &asz, + &bsx, &bsy, &bsz, + &csx, &csy, &csz) ) { + ERROR("Couldn't get reciprocal cell.\n"); + return 0; + } + + /* "a" cross "b" */ + aCb.u = asy*bsz - asz*bsy; + aCb.v = - (asx*bsz - asz*bsx); + aCb.w = asx*bsy - asy*bsx; + + /* "a cross b" dot "c" */ + rec_volume = (aCb.u*csx + aCb.v*csy + aCb.w*csz)/1e30; + + return 1/rec_volume; +} diff --git a/libcrystfel/src/cell-utils.h b/libcrystfel/src/cell-utils.h index 0b900096..98bc667c 100644 --- a/libcrystfel/src/cell-utils.h +++ b/libcrystfel/src/cell-utils.h @@ -74,6 +74,8 @@ extern LatticeType lattice_from_str(const char *s); extern int forbidden_reflection(UnitCell *cell, signed int h, signed int k, signed int l); +extern double cell_get_volume(UnitCell *cell); + #ifdef __cplusplus } #endif diff --git a/libcrystfel/src/index.c b/libcrystfel/src/index.c index 6f046ab6..6b36af3e 100644 --- a/libcrystfel/src/index.c +++ b/libcrystfel/src/index.c @@ -44,6 +44,7 @@ #include "utils.h" #include "peaks.h" #include "dirax.h" +#include "asdf.h" #include "mosflm.h" #include "xds.h" #include "detector.h" @@ -92,12 +93,16 @@ IndexingPrivate **prepare_indexing(IndexingMethod *indm, UnitCell *cell, iprivs[n] = dirax_prepare(&indm[n], cell, det, ltl); break; + case INDEXING_ASDF : + iprivs[n] = asdf_prepare(&indm[n], cell, det, ltl); + break; + case INDEXING_MOSFLM : iprivs[n] = mosflm_prepare(&indm[n], cell, det, ltl); break; case INDEXING_XDS : - iprivs[n] = xds_prepare(&indm[n], cell, det, ltl); + iprivs[n] = xds_prepare(&indm[n], cell, det, ltl); break; case INDEXING_REAX : @@ -167,6 +172,10 @@ void cleanup_indexing(IndexingMethod *indms, IndexingPrivate **privs) dirax_cleanup(privs[n]); break; + case INDEXING_ASDF : + asdf_cleanup(privs[n]); + break; + case INDEXING_MOSFLM : mosflm_cleanup(privs[n]); break; @@ -236,6 +245,10 @@ static int try_indexer(struct image *image, IndexingMethod indm, return run_dirax(image, ipriv); break; + case INDEXING_ASDF : + return run_asdf(image, ipriv); + break; + case INDEXING_MOSFLM : return run_mosflm(image, ipriv); break; @@ -272,11 +285,6 @@ void index_pattern(struct image *image, if ( indms == NULL ) return; - if ( image_feature_count(image->features) > 10000 ) { - STATUS("WARNING: The number of peaks is very large for '%s'.\n", - image->filename); - } - map_all_peaks(image); image->crystals = NULL; image->n_crystals = 0; @@ -373,6 +381,10 @@ char *indexer_str(IndexingMethod indm) strcpy(str, "dirax"); break; + case INDEXING_ASDF : + strcpy(str, "asdf"); + break; + case INDEXING_MOSFLM : strcpy(str, "mosflm"); break; @@ -451,13 +463,16 @@ IndexingMethod *build_indexer_list(const char *str) if ( strcmp(methods[i], "dirax") == 0) { list[++nmeth] = INDEXING_DEFAULTS_DIRAX; + } else if ( strcmp(methods[i], "asdf") == 0) { + list[++nmeth] = INDEXING_DEFAULTS_ASDF; + } else if ( strcmp(methods[i], "mosflm") == 0) { list[++nmeth] = INDEXING_DEFAULTS_MOSFLM; } else if ( strcmp(methods[i], "grainspotter") == 0) { list[++nmeth] = INDEXING_DEFAULTS_GRAINSPOTTER; - } else if ( strcmp(methods[i], "xds") == 0) { + } else if ( strcmp(methods[i], "xds") == 0) { list[++nmeth] = INDEXING_DEFAULTS_XDS; } else if ( strcmp(methods[i], "reax") == 0) { diff --git a/libcrystfel/src/index.h b/libcrystfel/src/index.h index dcb21858..ff1cd5df 100644 --- a/libcrystfel/src/index.h +++ b/libcrystfel/src/index.h @@ -41,6 +41,9 @@ #define INDEXING_DEFAULTS_DIRAX (INDEXING_DIRAX | INDEXING_CHECK_PEAKS \ | INDEXING_CHECK_CELL_COMBINATIONS) +#define INDEXING_DEFAULTS_ASDF (INDEXING_ASDF | INDEXING_CHECK_PEAKS \ + | INDEXING_CHECK_CELL_COMBINATIONS) + #define INDEXING_DEFAULTS_MOSFLM (INDEXING_MOSFLM | INDEXING_CHECK_PEAKS \ | INDEXING_CHECK_CELL_COMBINATIONS \ | INDEXING_USE_LATTICE_TYPE) @@ -97,6 +100,7 @@ typedef enum { INDEXING_XDS = 5, INDEXING_SIMULATION = 6, INDEXING_DEBUG = 7, + INDEXING_ASDF = 8, /* Bits at the top of the IndexingMethod are flags which modify the * behaviour of the indexer. */ |