1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
|
/*
* diffraction.cl
*
* GPU calculation kernel for truncated lattice diffraction
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#define INDMAX 30
#define IDIM (INDMAX*2 +1)
float4 quat_rot(float4 q, float4 z)
{
float4 res;
float t01, t02, t03, t11, t12, t13, t22, t23, t33;
t01 = z.x*z.y;
t02 = z.x*z.z;
t03 = z.x*z.w;
t11 = z.y*z.y;
t12 = z.y*z.z;
t13 = z.y*z.w;
t22 = z.z*z.z;
t23 = z.z*z.w;
t33 = z.w*z.w;
res.x = (1.0 - 2.0 * (t22 + t33)) * q.x
+ (2.0 * (t12 + t03)) * q.y
+ (2.0 * (t13 - t02)) * q.z;
res.y = (2.0 * (t12 - t03)) * q.x
+ (1.0 - 2.0 * (t11 + t33)) * q.y
+ (2.0 * (t01 + t23)) * q.z;
res.z = (2.0 * (t02 + t13)) * q.x
+ (2.0 * (t23 - t01)) * q.y
+ (1.0 - 2.0 * (t11 + t22)) * q.z;
return res;
}
float4 get_q(int x, int y, float cx, float cy, float res, float clen, float k,
float *ttp, float4 z)
{
float rx, ry, r;
float ttx, tty, tt;
float4 q;
rx = ((float)x - cx)/res;
ry = ((float)y - cy)/res;
r = sqrt(pow(rx, 2.0) + pow(ry, 2.0));
ttx = atan2(rx, clen);
tty = atan2(ry, clen);
tt = atan2(r, clen);
*ttp = tt;
q = (float4)(k*sin(ttx), k*sin(tty), k-k*cos(tt), 0.0);
return quat_rot(q, z);
}
float lattice_factor(float16 cell, float4 q)
{
float f1, f2, f3;
float4 Udotq;
const int na = 8;
const int nb = 8;
const int nc = 8;
Udotq.x = cell.s0*q.x + cell.s1*q.y + cell.s2*q.z;
Udotq.y = cell.s3*q.x + cell.s4*q.y + cell.s5*q.z;
Udotq.z = cell.s6*q.x + cell.s7*q.y + cell.s8*q.z;
/* At exact Bragg condition, f1 = na */
f1 = sin(M_PI*(float)na*Udotq.x) / sin(M_PI*Udotq.x);
/* At exact Bragg condition, f2 = nb */
f2 = sin(M_PI*(float)nb*Udotq.y) / sin(M_PI*Udotq.y);
/* At exact Bragg condition, f3 = nc */
f3 = sin(M_PI*(float)nc*Udotq.z) / sin(M_PI*Udotq.z);
/* At exact Bragg condition, this will multiply the molecular
* part of the structure factor by the number of unit cells,
* as desired (more scattering from bigger crystal!) */
return f1 * f2 * f3;
}
float2 get_sfac(global float2 *sfacs, float16 cell, float4 q)
{
signed int h, k, l;
int idx;
h = rint(cell.s0*q.x + cell.s1*q.y + cell.s2*q.z); /* h */
k = rint(cell.s3*q.x + cell.s4*q.y + cell.s5*q.z); /* k */
l = rint(cell.s6*q.x + cell.s7*q.y + cell.s8*q.z); /* l */
if ( (abs(h) > INDMAX) || (abs(k) > INDMAX) || (abs(l) > INDMAX) ) {
return 100.0;
}
if ( h < 0 ) h += IDIM;
if ( k < 0 ) k += IDIM;
if ( l < 0 ) l += IDIM;
idx = h + (IDIM*k) + (IDIM*IDIM*l);
return sfacs[idx];
}
kernel void diffraction(global float2 *diff, global float *tt, float k,
int w, float cx, float cy,
float res, float clen, float16 cell,
global float2 *sfacs, float4 z)
{
float ttv;
const int x = get_global_id(0);
const int y = get_global_id(1);
float f_lattice;
float2 f_molecule;
float4 q = get_q(x, y, cx, cy, res, clen, k, &ttv, z);
f_lattice = lattice_factor(cell, q);
f_molecule = get_sfac(sfacs, cell, q);
diff[x+w*y] = f_molecule * f_lattice;
tt[x+w*y] = ttv;
}
|