1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
|
/*
* predict-refine.c
*
* Prediction refinement
*
* Copyright © 2012-2016 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2010-2016 Thomas White <taw@physics.org>
* 2016 Valerio Mariani
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include "image.h"
#include "geometry.h"
#include "cell-utils.h"
/* Maximum number of iterations of NLSq to do for each image per macrocycle. */
#define MAX_CYCLES (10)
/* Weighting of excitation error term (m^-1) compared to position term (m) */
#define EXC_WEIGHT (4e-20)
/* Parameters to refine */
static const enum gparam rv[] =
{
GPARAM_ASX,
GPARAM_ASY,
GPARAM_ASZ,
GPARAM_BSX,
GPARAM_BSY,
GPARAM_BSZ,
GPARAM_CSX,
GPARAM_CSY,
GPARAM_CSZ,
GPARAM_DETX,
GPARAM_DETY,
};
static const int num_params = 11;
struct reflpeak {
Reflection *refl;
struct imagefeature *peak;
double Ih; /* normalised */
struct panel *panel; /* panel the reflection appears on
* (we assume this never changes) */
};
static void twod_mapping(double fs, double ss, double *px, double *py,
struct panel *p)
{
double xs, ys;
xs = fs*p->fsx + ss*p->ssx;
ys = fs*p->fsy + ss*p->ssy;
*px = (xs + p->cnx) / p->res;
*py = (ys + p->cny) / p->res;
}
static double r_dev(struct reflpeak *rp)
{
/* Excitation error term */
double rlow, rhigh, p;
get_partial(rp->refl, &rlow, &rhigh, &p);
return (rlow+rhigh)/2.0;
}
static double x_dev(struct reflpeak *rp, struct detector *det)
{
/* Peak position term */
double xpk, ypk, xh, yh;
double fsh, ssh;
twod_mapping(rp->peak->fs, rp->peak->ss, &xpk, &ypk, rp->panel);
get_detector_pos(rp->refl, &fsh, &ssh);
twod_mapping(fsh, ssh, &xh, &yh, rp->panel);
return xh-xpk;
}
static double y_dev(struct reflpeak *rp, struct detector *det)
{
/* Peak position term */
double xpk, ypk, xh, yh;
double fsh, ssh;
twod_mapping(rp->peak->fs, rp->peak->ss, &xpk, &ypk, rp->panel);
get_detector_pos(rp->refl, &fsh, &ssh);
twod_mapping(fsh, ssh, &xh, &yh, rp->panel);
return yh-ypk;
}
static void UNUSED write_pairs(const char *filename, struct reflpeak *rps,
int n, struct detector *det)
{
int i;
FILE *fh;
fh = fopen(filename, "w");
if ( fh == NULL ) {
ERROR("Failed to open '%s'\n", filename);
return;
}
for ( i=0; i<n; i++ ) {
double write_fs, write_ss;
double fs, ss;
struct panel *p;
signed int h, k, l;
fs = rps[i].peak->fs;
ss = rps[i].peak->ss;
p = rps[i].panel;
get_indices(rps[i].refl, &h, &k, &l);
write_fs = fs + p->orig_min_fs;
write_ss = ss + p->orig_min_ss;
fprintf(fh, "%7.2f %7.2f dev r,x,y: %9f %9f %9f %9f\n",
write_fs, write_ss,
r_dev(&rps[i])/1e9, fabs(r_dev(&rps[i])/1e9),
x_dev(&rps[i], det),
y_dev(&rps[i], det));
//fprintf(fh, "%4i %4i %4i 0.0 - 0.0 1 %7.2f %7.2f %s\n",
// h, k, l, write_fs, write_ss, p->name);
}
fclose(fh);
STATUS("Wrote %i pairs to %s\n", n, filename);
}
static int cmpd2(const void *av, const void *bv)
{
struct reflpeak *a, *b;
a = (struct reflpeak *)av;
b = (struct reflpeak *)bv;
if ( fabs(r_dev(a)) < fabs(r_dev(b)) ) return -1;
return 1;
}
static int check_outlier_transition(struct reflpeak *rps, int n,
struct detector *det)
{
int i;
if ( n < 3 ) return n;
qsort(rps, n, sizeof(struct reflpeak), cmpd2);
//write_pairs("pairs-before-outlier.lst", rps, n, det);
for ( i=1; i<n-1; i++ ) {
int j;
double grad = fabs(r_dev(&rps[i])) / i;
for ( j=i+1; j<n; j++ ) {
if ( fabs(r_dev(&rps[j])) < 0.001e9+grad*j ) {
break;
}
}
if ( j == n ) {
//STATUS("Outlier transition found at position %i / %i\n",
// i, n);
return i;
}
}
//STATUS("No outlier transition found.\n");
return n;
}
/* Associate a Reflection with each peak in "image" which is close to Bragg.
* Reflections will be added to "reflist", which can be NULL if this is not
* needed. "rps" must be an array of sufficient size for all the peaks */
static int pair_peaks(struct image *image, Crystal *cr,
RefList *reflist, struct reflpeak *rps)
{
int i;
int n_acc = 0;
int n_final;
int n = 0;
double ax, ay, az;
double bx, by, bz;
double cx, cy, cz;
RefList *all_reflist;
all_reflist = reflist_new();
cell_get_cartesian(crystal_get_cell(cr),
&ax, &ay, &az, &bx, &by, &bz, &cx, &cy, &cz);
/* First, create a RefList containing the most likely indices for each
* peak, with no exclusion criteria */
for ( i=0; i<image_feature_count(image->features); i++ ) {
struct imagefeature *f;
double h, k, l, hd, kd, ld;
Reflection *refl;
/* Assume all image "features" are genuine peaks */
f = image_get_feature(image->features, i);
if ( f == NULL ) continue;
/* Decimal and fractional Miller indices of nearest reciprocal
* lattice point */
hd = f->rx * ax + f->ry * ay + f->rz * az;
kd = f->rx * bx + f->ry * by + f->rz * bz;
ld = f->rx * cx + f->ry * cy + f->rz * cz;
h = lrint(hd);
k = lrint(kd);
l = lrint(ld);
refl = reflection_new(h, k, l);
if ( refl == NULL ) {
ERROR("Failed to create reflection\n");
return 0;
}
add_refl_to_list(refl, all_reflist);
set_symmetric_indices(refl, h, k, l);
/* It doesn't matter if the actual predicted location
* doesn't fall on this panel. We're only interested
* in how far away it is from the peak location.
* The predicted position and excitation errors will be
* filled in by update_predictions(). */
set_panel(refl, f->p);
rps[n].refl = refl;
rps[n].peak = f;
rps[n].panel = f->p;
n++;
}
/* Get the excitation errors and detector positions for the candidate
* reflections */
crystal_set_reflections(cr, all_reflist);
update_predictions(cr);
/* Pass over the peaks again, keeping only the ones which look like
* good pairings */
for ( i=0; i<n; i++ ) {
double fs, ss, pd;
signed int h, k, l;
Reflection *refl = rps[i].refl;
get_indices(refl, &h, &k, &l);
/* Is the supposed reflection anywhere near the peak? */
get_detector_pos(refl, &fs, &ss);
pd = pow(fs - rps[i].peak->fs, 2.0)
+ pow(ss - rps[i].peak->ss, 2.0);
if ( pd > 10.0 * 10.0 ) continue; /* FIXME Hardcoded distance */
rps[n_acc] = rps[i];
rps[n_acc].refl = reflection_new(h, k, l);
copy_data(rps[n_acc].refl, refl);
n_acc++;
}
reflist_free(all_reflist);
/* Sort the pairings by excitation error and look for a transition
* between good pairings and outliers */
n_final = check_outlier_transition(rps, n_acc, image->det);
/* Add the final accepted reflections to the caller's list */
if ( reflist != NULL ) {
for ( i=0; i<n_final; i++ ) {
add_refl_to_list(rps[i].refl, reflist);
}
}
/* Free the reflections beyond the outlier cutoff */
for ( i=n_final; i<n_acc; i++ ) {
reflection_free(rps[i].refl);
}
return n_final;
}
void refine_radius(Crystal *cr, struct image *image)
{
int n, n_acc;
struct reflpeak *rps;
RefList *reflist;
/* Maximum possible size */
rps = malloc(image_feature_count(image->features)
* sizeof(struct reflpeak));
if ( rps == NULL ) return;
reflist = reflist_new();
n_acc = pair_peaks(image, cr, reflist, rps);
if ( n_acc < 3 ) {
free(rps);
return;
}
crystal_set_reflections(cr, reflist);
update_predictions(cr);
crystal_set_reflections(cr, NULL);
qsort(rps, n_acc, sizeof(struct reflpeak), cmpd2);
n = (n_acc-1) - n_acc/50;
if ( n < 2 ) n = 2; /* n_acc is always >= 2 */
crystal_set_profile_radius(cr, fabs(r_dev(&rps[n])));
reflist_free(reflist);
free(rps);
}
static void update_detector(struct detector *det, double xoffs, double yoffs,
double coffs)
{
int i;
for ( i=0; i<det->n_panels; i++ ) {
struct panel *p = &det->panels[i];
p->cnx += xoffs * p->res;
p->cny += yoffs * p->res;
p->clen += coffs;
}
}
static int iterate(struct reflpeak *rps, int n, UnitCell *cell,
struct image *image,
double *total_x, double *total_y, double *total_z)
{
int i;
gsl_matrix *M;
gsl_vector *v;
gsl_vector *shifts;
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
/* Number of parameters to refine */
M = gsl_matrix_calloc(num_params, num_params);
v = gsl_vector_calloc(num_params);
for ( i=0; i<n; i++ ) {
int k;
double gradients[num_params];
double w;
/* Excitation error terms */
w = EXC_WEIGHT * rps[i].Ih;
for ( k=0; k<num_params; k++ ) {
gradients[k] = r_gradient(cell, rv[k], rps[i].refl,
image);
}
for ( k=0; k<num_params; k++ ) {
int g;
double v_c, v_curr;
for ( g=0; g<num_params; g++ ) {
double M_c, M_curr;
/* Matrix is symmetric */
if ( g > k ) continue;
M_c = w * gradients[g] * gradients[k];
M_curr = gsl_matrix_get(M, k, g);
gsl_matrix_set(M, k, g, M_curr + M_c);
gsl_matrix_set(M, g, k, M_curr + M_c);
}
v_c = w * r_dev(&rps[i]);
v_c *= -gradients[k];
v_curr = gsl_vector_get(v, k);
gsl_vector_set(v, k, v_curr + v_c);
}
/* Positional x terms */
for ( k=0; k<num_params; k++ ) {
gradients[k] = x_gradient(rv[k], rps[i].refl, cell,
rps[i].panel, image->lambda);
}
for ( k=0; k<num_params; k++ ) {
int g;
double v_c, v_curr;
for ( g=0; g<num_params; g++ ) {
double M_c, M_curr;
/* Matrix is symmetric */
if ( g > k ) continue;
M_c = gradients[g] * gradients[k];
M_curr = gsl_matrix_get(M, k, g);
gsl_matrix_set(M, k, g, M_curr + M_c);
gsl_matrix_set(M, g, k, M_curr + M_c);
}
v_c = x_dev(&rps[i], image->det);
v_c *= -gradients[k];
v_curr = gsl_vector_get(v, k);
gsl_vector_set(v, k, v_curr + v_c);
}
/* Positional y terms */
for ( k=0; k<num_params; k++ ) {
gradients[k] = y_gradient(rv[k], rps[i].refl, cell,
rps[i].panel, image->lambda);
}
for ( k=0; k<num_params; k++ ) {
int g;
double v_c, v_curr;
for ( g=0; g<num_params; g++ ) {
double M_c, M_curr;
/* Matrix is symmetric */
if ( g > k ) continue;
M_c = gradients[g] * gradients[k];
M_curr = gsl_matrix_get(M, k, g);
gsl_matrix_set(M, k, g, M_curr + M_c);
gsl_matrix_set(M, g, k, M_curr + M_c);
}
v_c = y_dev(&rps[i], image->det);
v_c *= -gradients[k];
v_curr = gsl_vector_get(v, k);
gsl_vector_set(v, k, v_curr + v_c);
}
}
int k;
for ( k=0; k<num_params; k++ ) {
double M_curr;
M_curr = gsl_matrix_get(M, k, k);
if ( (rv[k] == GPARAM_DETX) || (rv[k] == GPARAM_DETY) ) {
M_curr += 10.0;
} else {
M_curr += 1e-18;
}
gsl_matrix_set(M, k, k, M_curr);
}
//show_matrix_eqn(M, v);
shifts = solve_svd(v, M, NULL, 0);
if ( shifts == NULL ) {
ERROR("Failed to solve equations.\n");
gsl_matrix_free(M);
gsl_vector_free(v);
return 1;
}
for ( i=0; i<num_params; i++ ) {
// STATUS("Shift %i = %e\n", i, gsl_vector_get(shifts, i));
if ( isnan(gsl_vector_get(shifts, i)) ) {
gsl_vector_set(shifts, i, 0.0);
}
}
/* Apply shifts */
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
/* Ensure the order here matches the order in rv[] */
asx += gsl_vector_get(shifts, 0);
asy += gsl_vector_get(shifts, 1);
asz += gsl_vector_get(shifts, 2);
bsx += gsl_vector_get(shifts, 3);
bsy += gsl_vector_get(shifts, 4);
bsz += gsl_vector_get(shifts, 5);
csx += gsl_vector_get(shifts, 6);
csy += gsl_vector_get(shifts, 7);
csz += gsl_vector_get(shifts, 8);
update_detector(image->det, gsl_vector_get(shifts, 9),
gsl_vector_get(shifts, 10),
gsl_vector_get(shifts, 11));
*total_x += gsl_vector_get(shifts, 9);
*total_y += gsl_vector_get(shifts, 10);
*total_z += gsl_vector_get(shifts, 11);
cell_set_reciprocal(cell, asx, asy, asz, bsx, bsy, bsz, csx, csy, csz);
gsl_vector_free(shifts);
gsl_matrix_free(M);
gsl_vector_free(v);
return 0;
}
static double UNUSED residual(struct reflpeak *rps, int n, struct detector *det)
{
int i;
double res = 0.0;
double r;
r = 0.0;
for ( i=0; i<n; i++ ) {
r += EXC_WEIGHT * rps[i].Ih * pow(r_dev(&rps[i]), 2.0);
}
printf("%e ", r);
res += r;
r = 0.0;
for ( i=0; i<n; i++ ) {
r += pow(x_dev(&rps[i], det), 2.0);
}
printf("%e ", r);
res += r;
r = 0.0;
for ( i=0; i<n; i++ ) {
r += pow(y_dev(&rps[i], det), 2.0);
}
printf("%e\n", r);
res += r;
return res;
}
/* NB Only for use when the list of reflpeaks was created without a RefList.
* If a RefList was used, then reflist_free the list then just free() the rps */
static void free_rps_noreflist(struct reflpeak *rps, int n)
{
int i;
for ( i=0; i<n; i++ ) {
reflection_free(rps[i].refl);
}
free(rps);
}
int refine_prediction(struct image *image, Crystal *cr)
{
int n;
int i;
struct reflpeak *rps;
double max_I;
RefList *reflist;
double total_x = 0.0;
double total_y = 0.0;
double total_z = 0.0;
rps = malloc(image_feature_count(image->features)
* sizeof(struct reflpeak));
if ( rps == NULL ) return 1;
reflist = reflist_new();
n = pair_peaks(image, cr, reflist, rps);
if ( n < 10 ) {
free(rps);
reflist_free(reflist);
return 1;
}
crystal_set_reflections(cr, reflist);
/* Normalise the intensities to max 1 */
max_I = -INFINITY;
for ( i=0; i<n; i++ ) {
double cur_I = rps[i].peak->intensity;
if ( cur_I > max_I ) max_I = cur_I;
}
if ( max_I <= 0.0 ) {
ERROR("All peaks negative?\n");
free(rps);
return 1;
}
for ( i=0; i<n; i++ ) {
rps[i].Ih = rps[i].peak->intensity / max_I;
}
//STATUS("Initial residual = %e\n", residual(rps, n, image->det));
/* Refine */
for ( i=0; i<MAX_CYCLES; i++ ) {
update_predictions(cr);
if ( iterate(rps, n, crystal_get_cell(cr), image,
&total_x, &total_y, &total_z) ) return 1;
//STATUS("Residual after %i = %e\n", i,
// residual(rps, n, image->det));
}
//STATUS("Final residual = %e\n", residual(rps, n, image->det));
crystal_set_det_shift(cr, total_x, total_y);
crystal_set_reflections(cr, NULL);
reflist_free(reflist);
n = pair_peaks(image, cr, NULL, rps);
free_rps_noreflist(rps, n);
if ( n < 10 ) {
return 1;
}
return 0;
}
|