1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
/*
* symop.y
*
* Parser for symmetry operations
*
* Copyright © 2019 Deutsches Elektronen-Synchrotron DESY,
* a research centre of the Helmholtz Association.
*
* Authors:
* 2019 Thomas White <taw@physics.org>
*
* This file is part of CrystFEL.
*
* CrystFEL is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* CrystFEL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CrystFEL. If not, see <http://www.gnu.org/licenses/>.
*
*/
%{
#include <stdio.h>
#include "rational.h"
extern int symoplex();
extern int symopparse(RationalMatrix *m);
void symoperror(RationalMatrix *m, const char *s);
%}
%define api.prefix {symop}
%parse-param {RationalMatrix *m}
%union {
RationalMatrix *m; /* Full rational matrix */
Rational rv[3]; /* Rational vector, e.g. '1/2h+3k' */
Rational r; /* Rational number */
int n; /* Just a number */
}
%token COMMA
%token NUMBER
%token OPENB CLOSEB
%token H K L
%left PLUS MINUS
%left DIVIDE
%precedence MUL
%precedence NEG
%type <m> symop
%type <rv> axexpr
%type <rv> part
%type <n> NUMBER
%type <r> fraction
%%
symop:
axexpr COMMA axexpr COMMA axexpr { rtnl_mtx_set(m, 0, 0, $1[0]);
rtnl_mtx_set(m, 0, 1, $1[1]);
rtnl_mtx_set(m, 0, 2, $1[2]);
rtnl_mtx_set(m, 1, 0, $3[0]);
rtnl_mtx_set(m, 1, 1, $3[1]);
rtnl_mtx_set(m, 1, 2, $3[2]);
rtnl_mtx_set(m, 2, 0, $5[0]);
rtnl_mtx_set(m, 2, 1, $5[1]);
rtnl_mtx_set(m, 2, 2, $5[2]);
}
;
axexpr:
part { int i; for ( i=0; i<3; i++ ) $$[i] = $1[i]; }
| axexpr PLUS axexpr { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_add($1[i], $3[i]); }
| axexpr MINUS axexpr { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_sub($1[i], $3[i]); }
| MINUS axexpr %prec NEG { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_sub(rtnl_zero(), $2[i]); }
| OPENB axexpr CLOSEB { int i; for ( i=0; i<3; i++ ) $$[i] = $2[i]; }
| axexpr DIVIDE NUMBER { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_div($1[i], rtnl($3, 1)); }
| NUMBER axexpr %prec MUL { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_mul($2[i], rtnl($1, 1)); }
| fraction axexpr %prec MUL { int i; for ( i=0; i<3; i++ ) $$[i] = rtnl_mul($2[i], $1); }
;
part:
H { $$[0] = rtnl(1, 1); $$[1] = rtnl_zero(); $$[2] = rtnl_zero(); }
| K { $$[1] = rtnl(1, 1); $$[0] = rtnl_zero(); $$[2] = rtnl_zero(); }
| L { $$[2] = rtnl(1, 1); $$[0] = rtnl_zero(); $$[1] = rtnl_zero(); }
;
fraction:
NUMBER DIVIDE NUMBER { $$ = rtnl($1, $3); }
;
%%
void symoperror(RationalMatrix *m, const char *s) {
printf("Error\n");
}
|