1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Determine mean detector shift based on prediction refinement results
#
# Copyright © 2015-2017 Deutsches Elektronen-Synchrotron DESY,
# a research centre of the Helmholtz Association.
#
# Author:
# 2015-2017 Thomas White <taw@physics.org>
# 2016 Mamoru Suzuki <mamoru.suzuki@protein.osaka-u.ac.jp>
#
import sys
import os
import re
import numpy as np
import matplotlib.pyplot as plt
if sys.argv[1] == "-":
f = sys.stdin
else:
f = open(sys.argv[1], 'r')
if len(sys.argv) > 2:
geom = sys.argv[2]
have_geom = 1
else:
have_geom = 0
# Determine the mean shifts
x_shifts = []
y_shifts = []
z_shifts = []
prog1 = re.compile("^predict_refine/det_shift\sx\s=\s([0-9\.\-]+)\sy\s=\s([0-9\.\-]+)\smm$")
prog2 = re.compile("^predict_refine/clen_shift\s=\s([0-9\.\-]+)\smm$")
while True:
fline = f.readline()
if not fline:
break
match = prog1.match(fline)
if match:
xshift = float(match.group(1))
yshift = float(match.group(2))
x_shifts.append(xshift)
y_shifts.append(yshift)
match = prog2.match(fline)
if match:
zshift = float(match.group(1))
z_shifts.append(zshift)
f.close()
mean_x = sum(x_shifts) / len(x_shifts)
mean_y = sum(y_shifts) / len(y_shifts)
print('Mean shifts: dx = {:.2} mm, dy = {:.2} mm'.format(mean_x,mean_y))
# Apply shifts to geometry
if have_geom:
out = os.path.splitext(geom)[0]+'-predrefine.geom'
print('Applying corrections to {}, output filename {}'.format(geom,out))
g = open(geom, 'r')
h = open(out, 'w')
panel_resolutions = {}
prog1 = re.compile("^\s*res\s+=\s+([0-9\.]+)\s")
prog2 = re.compile("^\s*(.*)\/res\s+=\s+([0-9\.]+)\s")
prog3 = re.compile("^\s*(.*)\/corner_x\s+=\s+([0-9\.\-]+)\s")
prog4 = re.compile("^\s*(.*)\/corner_y\s+=\s+([0-9\.\-]+)\s")
default_res = 0
while True:
fline = g.readline()
if not fline:
break
match = prog1.match(fline)
if match:
default_res = float(match.group(1))
h.write(fline)
continue
match = prog2.match(fline)
if match:
panel = match.group(1)
panel_res = float(match.group(2))
default_res = panel_res
panel_resolutions[panel] = panel_res
h.write(fline)
continue
match = prog3.match(fline)
if match:
panel = match.group(1)
panel_cnx = float(match.group(2))
if panel in panel_resolutions:
res = panel_resolutions[panel]
else:
res = default_res
print('Using default resolution ({} px/m) for panel {}'.format(res, panel))
h.write('%s/corner_x = %f\n' % (panel,panel_cnx+(mean_x*res*1e-3)))
continue
match = prog4.match(fline)
if match:
panel = match.group(1)
panel_cny = float(match.group(2))
if panel in panel_resolutions:
res = panel_resolutions[panel]
else:
res = default_res
print('Using default resolution ({} px/m) for panel {}'.format(res, panel))
h.write('%s/corner_y = %f\n' % (panel,panel_cny+(mean_y*res*1e-3)))
continue
h.write(fline)
g.close()
h.close()
nbins = 200
H, xedges, yedges = np.histogram2d(x_shifts,y_shifts,bins=nbins)
H = np.rot90(H)
H = np.flipud(H)
Hmasked = np.ma.masked_where(H==0,H)
# Plot 2D histogram using pcolor
fig2 = plt.figure()
plt.pcolormesh(xedges,yedges,Hmasked)
plt.title('Detector shifts according to prediction refinement')
plt.xlabel('x shift / mm')
plt.ylabel('y shift / mm')
circle1 = plt.Circle((mean_x,mean_y),.1,color='r',fill=False)
fig = plt.gcf()
fig.gca().add_artist(circle1)
cbar = plt.colorbar()
cbar.ax.set_ylabel('Counts')
plt.plot(0, 0, 'bH', color='c')
plt.plot(mean_x, mean_y, 'b8', color='m')
plt.grid(True)
plt.show()
|