aboutsummaryrefslogtreecommitdiff
path: root/src/calibrate_detector.c
blob: f7316da44cb61ca62010ea0fe47710d3b27cd224 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
/*
 * calibrate_detector.c
 *
 * Attempt to refine detector geometry
 *
 * (c) 2011 Rick Kirian <rkirian@asu.edu>
 * (c) 2006-2011 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */


#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <fenv.h>
#include <math.h>
#include <gsl/gsl_linalg.h>

#include "utils.h"
#include "image.h"
#include "detector.h"
#include "index.h"
#include "hdf5-file.h"
#include "stream.h"
#include "peaks.h"


static void show_help(const char *s)
{
	printf("Syntax: %s [options] -i <file.h5>\n\n", s);
	printf(
"Stream-based optimisation of detector geometry.\n"
"\n"
"  -h, --help                 Display this help message.\n"
"  -g. --geometry=<file>      Get detector geometry from file.\n"
"  -i, --input=<file>         Input filename.\n"
"  -m, --method=<method>      The calibration method.  Choose from:\n"
"               xy            Determine panel shifts in plane of detector\n"
"  -o, --output=<file>        Name of output geometry file.\n"
"  -n, --npeaks=<number>      Don't refine unless this many peaks are found\n"
"                              in the whole stream.\n"
"\n");
}


static int write_detector_geometry(const char *filename, struct detector *det)
{
	struct panel *p;
	int pi;
	FILE *fh;

	if ( filename == NULL ) return 2;
	if ( det->n_panels < 1 ) return 3;

	fh = fopen(filename, "w");
	if ( fh == NULL ) return 1;

	for ( pi=0; pi<det->n_panels; pi++) {

		p = &(det->panels[pi]);

		if ( p == NULL ) return 4;

		fprintf(fh, "%s/min_fs = %d\n", p->name, p->min_fs);
		fprintf(fh, "%s/min_ss = %d\n", p->name, p->min_ss);
		fprintf(fh, "%s/max_fs = %d\n", p->name, p->max_fs);
		fprintf(fh, "%s/max_ss = %d\n", p->name, p->max_ss);
		fprintf(fh, "%s/badrow_direction = %C\n", p->name, p->badrow);
		fprintf(fh, "%s/res = %g\n", p->name, p->res);
		fprintf(fh, "%s/peak_sep = %g\n", p->name, p->peak_sep);
		fprintf(fh, "%s/clen = %s\n", p->name, p->clen_from);
		fprintf(fh, "%s/fs = %+fx %+fy\n", p->name, p->fsx, p->fsy);
		fprintf(fh, "%s/ss = %+fx %+fy\n", p->name, p->ssx, p->ssy);
		fprintf(fh, "%s/corner_x = %g\n", p->name, p->cnx);
		fprintf(fh, "%s/corner_y = %g\n", p->name, p->cny);
		fprintf(fh, "%s/no_index = %d\n", p->name, p->no_index);

	}
	fclose(fh);

	return 0;
}


static int calculate_projected_peak(struct panel *panel, struct rvec q,
                                    double kk, double *fs, double *ss)
{
	if ( panel == NULL ) return 1;

	double xd, yd, cl;
	double plx, ply;
	const double den = kk + q.w;

	/* Camera length for this panel */
	cl = panel->clen;

	/* Coordinates of peak relative to central beam, in m */
	xd = cl * q.u / den;
	yd = cl * q.v / den;

	/* Convert to pixels */
	xd *= panel->res;
	yd *= panel->res;

	/* Convert to relative to the panel corner */
	plx = xd - panel->cnx;
	ply = yd - panel->cny;

	*fs = panel->xfs*plx + panel->yfs*ply;
	*ss = panel->xss*plx + panel->yss*ply;

	*fs += panel->min_fs;
	*ss += panel->min_ss;

	/* Now, is this on this panel? */
	if ( *fs < panel->min_fs ) return 3;
	if ( *fs > panel->max_fs ) return 3;
	if ( *ss < panel->min_ss ) return 3;
	if ( *ss > panel->max_ss ) return 3;

	return 0;
}


static struct rvec nearest_bragg(struct image *image, struct rvec q)
{
	struct rvec g;
	double ax, ay, az;
	double bx, by, bz;
	double cx, cy, cz;
	double hd, kd, ld;
	double h, k, l;
	int s;
	double U[9];
	double hvec[3];

	/* Miller indices of nearest Bragg reflection */
	cell_get_cartesian(image->indexed_cell, &ax, &ay, &az,
	                                        &bx, &by, &bz,
	                                        &cx, &cy, &cz);

	hd = q.u * ax + q.v * ay + q.w * az;
	kd = q.u * bx + q.v * by + q.w * bz;
	ld = q.u * cx + q.v * cy + q.w * cz;

	h = lrint(hd);
	k = lrint(kd);
	l = lrint(ld);

	/* Now get scattering vector for reflection hkl
	 * by solving the equation U*q = h */
	U[0] = ax;  U[1] = ay;  U[2] = az;
	U[3] = bx;  U[4] = by;  U[5] = bz;
	U[6] = cx;  U[7] = cy;  U[8] = cz;

	hvec[0] = h;  hvec[1] = k;  hvec[2] = l;

	gsl_matrix_view m = gsl_matrix_view_array(U, 3, 3);
	gsl_vector_view b = gsl_vector_view_array(hvec, 3);
	gsl_vector *x = gsl_vector_alloc(3);

	gsl_permutation *perm = gsl_permutation_alloc(3);
	gsl_linalg_LU_decomp(&m.matrix, perm, &s);
	gsl_linalg_LU_solve(&m.matrix, perm, &b.vector, x);

	/* Outgoing wavevector for hkl */
	g.u = x->data[0];
	g.v = x->data[1];
	g.w = x->data[2];

	return g;
}


static void refine_xy(FILE *fh, struct image *image, int minpeaks,
                       const char *outfilename)
{
	double *weightedSumFS;
	double *weightedSumSS;
	double *summedWeights;
	double *meanShiftFS;
	double *meanShiftSS;
	int *peaksFound;
	double cnx, cny;
	double xsh, ysh;
	int pi;
	int nChunks;

	weightedSumFS = calloc(image->det->n_panels, sizeof(double));
	weightedSumSS = calloc(image->det->n_panels, sizeof(double));
	summedWeights = calloc(image->det->n_panels, sizeof(double));
	peaksFound = calloc(image->det->n_panels, sizeof(double));
	meanShiftFS = calloc(image->det->n_panels, sizeof(double));
	meanShiftSS = calloc(image->det->n_panels, sizeof(double));

	/* Initialize arrays  */
	for (pi=0; pi<image->det->n_panels; pi++) {
		weightedSumFS[pi] = 0;
		weightedSumSS[pi] = 0;
		summedWeights[pi] = 0;
		peaksFound[pi] = 0;
		meanShiftFS[pi] = 0;
		meanShiftSS[pi] = 0;
	}

	fesetround(1);  /* Round towards nearest */

	nChunks = 0;
	while ( 1 )  {

		int fail;
		int nFeatures;
		int i;

		/* Get next chunk */
		fail = read_chunk(fh, image);
		if ( fail ) break;
		nChunks += 1;

		/* Skip if no peaks found */
		if ( image->features == NULL ) {
			continue;
		}

		/* Loop through peaks to determine mean panel shift */
		nFeatures = image_feature_count(image->features);

		for ( i=0; i<nFeatures; i++ ) {

			struct panel *p;
			struct imagefeature *thisFeature;
			struct rvec q;
			double twotheta;
			struct rvec g;
			double fs, ss;   /* Observed peaks */
			double pfs, pss; /* Predicted peaks */
			double dfs, dss; /* Observed - predicted */
			int pi;
			double thisWeight;

			/* If we find a feature, determine peak
			 * position */
			thisFeature = image_get_feature(image->features, i);
			if ( thisFeature == NULL ) {
				continue;
			}

			fs = thisFeature->fs;
			ss = thisFeature->ss;

			p = find_panel(image->det, fs, ss);
			if ( p == NULL ) {
				continue;
			}
			if ( p->no_index ) continue;

			/* Now determine the predicted peak position.
			 * Scattering vector of this peak */
			q = get_q(image, fs, ss, &twotheta, 1.0/image->lambda);

			/* Scattering vector of nearest bragg peak */
			g = nearest_bragg(image, q);

			/* Coordinate of this predicted peak */
			fail = calculate_projected_peak(p, g, 1.0/image->lambda,
			                                &pfs, &pss);
			if ( fail != 0 ) continue;

			/* Finally, we have the shift for this peak */
			dfs = pfs - fs;
			dss = pss - ss;

			/* Add this shift to the weighted sum over shifts */
			pi = find_panel_number(image->det,fs,ss);
			thisWeight = 1.0;
			weightedSumFS[pi] += thisWeight*dfs;
			weightedSumSS[pi] += thisWeight*dss;
			summedWeights[pi] += thisWeight;
			peaksFound[pi] += 1;

		}

	}

	/* Calculate weighted average shift in peak positions */
	for ( pi=0; pi<image->det->n_panels; pi++ ) {
		meanShiftFS[pi] = weightedSumFS[pi]/summedWeights[pi];
		meanShiftSS[pi] = weightedSumSS[pi]/summedWeights[pi];
	}

	/* Populate the image structure with new geometry info */
	for ( pi=0; pi<image->det->n_panels; pi++ ) {

		struct panel *p;

		p = &image->det->panels[pi];

		xsh = 0;
		ysh = 0;

		if ( peaksFound[pi] >= minpeaks ) {

			/* Convert shifts from raw coords to lab frame */
			xsh = meanShiftFS[pi]*p->fsx + meanShiftSS[pi]*p->ssx;
			ysh = meanShiftFS[pi]*p->fsy + meanShiftSS[pi]*p->ssy;

			/* Add shifts to original panel corner locations */
			cnx = p->cnx + xsh;
			cny = p->cny + ysh;

		} else {

			/* Not refined? use original coordinates */
			cnx = p->cnx;
			cny = p->cny;

		}

		image->det->panels[pi].cnx = cnx;
		image->det->panels[pi].cny = cny;
		if ( peaksFound[pi] < minpeaks) {
			image->det->panels[pi].no_index = 1;
		}

		STATUS("Panel %s, # peaks: %10d, mean shifts: %f %f\n",
		       p->name, peaksFound[pi], xsh, ysh);

	}

	/* Write the new geometry file */
	write_detector_geometry(outfilename, image->det);
}


int main(int argc, char *argv[])
{
	char c;
	struct image image;
	char *filename = NULL;
	char *geometry = NULL;
	char *method = NULL;
	char *outputfile = NULL;
	FILE *fh = NULL;
	FILE *outfh = NULL;
	int minpeaks = 0;

	/* Long options */
	const struct option longopts[] = {
		{"help",               0, NULL,               'h'},
		{"input",              1, NULL,               'i'},
		{"geometry",           1, NULL,               'g'},
		{"method",             1, NULL,               'm'},
		{"output",             1, NULL,               'o'},
		{"npeaks",             1, NULL,               'n'},
		{0, 0, NULL, 0}
	};

	/* Short options */
	while ((c = getopt_long(argc, argv, "hi:g:m:o:n:",
	                        longopts, NULL)) != -1) {

		switch (c) {
		case 'h' :
			show_help(argv[0]);
			return 0;
		case 'i' :
			filename = strdup(optarg);
			break;
		case 'g' :
			geometry = strdup(optarg);
			break;
		case 'm' :
			method = strdup(optarg);
			break;
		case 'o' :
			outputfile = strdup(optarg);
			break;
		case 'n' :
			minpeaks = atoi(optarg);
			break;
		case 0 :
			break;
		default :
			return 1;
		}

	}

	if ( filename == NULL ) {
		ERROR("You must specify the input filename with -i\n");
		return 1;
	}

	fh = fopen(filename,"r");
	if ( fh == NULL ) {
		ERROR("Couldn't open file '%s'\n", filename);
		return 1;
	}

	if ( geometry == NULL ) {
		ERROR("You need to specify a geometry file with --geometry\n");
		return 1;
	}

	image.det = get_detector_geometry(geometry);
	if ( image.det == NULL ) {
		ERROR("Failed to read detector geometry from %s\n", geometry);
		return 1;
	}
	free(geometry);

	image.width = image.det->max_fs;
	image.height = image.det->max_ss;

	if ( outputfile != NULL ) {
		STATUS("Writing result to '%s'\n", outputfile);
		outfh = fopen(outputfile, "w");
	} else {
		ERROR("You need to specify an output file.\n");
		return 1;
	}

	if ( minpeaks == 0 ) {
		minpeaks = 1;
		STATUS("You did not specify minimum number of peaks.\n");
		STATUS("Using default value of %d\n", minpeaks);
	}

	if ( method == NULL ) {
		STATUS("You did not specify a refinement method "
		       "- using default.\n");
		method = strdup("xy");
	}

	if ( strcmp(method,"xy") == 0 ) {

		STATUS("Using refinement method %s\n", method);

		refine_xy(fh, &image, minpeaks, outputfile);

	} else {

		printf("Refinement method %s not recognized\n",method);
   		return 1;

	}

	fclose(outfh);

	return 0;
}