1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
/*
* diffraction.c
*
* Calculate diffraction patterns by Fourier methods
*
* (c) 2007-2009 Thomas White <thomas.white@desy.de>
*
* pattern_sim - Simulate diffraction patterns from small crystals
*
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <complex.h>
#include "image.h"
#include "utils.h"
#include "cell.h"
#include "ewald.h"
#include "diffraction.h"
#include "sfac.h"
static double lattice_factor(struct threevec q, double ax, double ay, double az,
double bx, double by, double bz,
double cx, double cy, double cz)
{
struct threevec Udotq;
double f1, f2, f3;
int na = 8;
int nb = 8;
int nc = 8;
Udotq.u = (ax*q.u + ay*q.v + az*q.w)/2.0;
Udotq.v = (bx*q.u + by*q.v + bz*q.w)/2.0;
Udotq.w = (cx*q.u + cy*q.v + cz*q.w)/2.0;
if ( na > 1 ) {
f1 = sin(2.0*M_PI*(double)na*Udotq.u) / sin(2.0*M_PI*Udotq.u);
} else {
f1 = 1.0;
}
if ( nb > 1 ) {
f2 = sin(2.0*M_PI*(double)nb*Udotq.v) / sin(2.0*M_PI*Udotq.v);
} else {
f2 = 1.0;
}
if ( nc > 1 ) {
f3 = sin(2.0*M_PI*(double)nc*Udotq.w) / sin(2.0*M_PI*Udotq.w);
} else {
f3 = 1.0;
}
return f1 * f2 * f3;
}
/* Return structure factor for molecule 'mol' at energy 'en' (J/photon) at
* scattering vector 'q' */
static double complex molecule_factor(struct molecule *mol, struct threevec q,
double en)
{
int i;
double F = 0.0;
double s;
/* s = sin(theta)/lambda = 1/2d = (1/d)/2.0 */
s = modulus(q.u, q.v, q.w) / 2.0;
for ( i=0; i<mol->n_species; i++ ) {
double complex sfac;
double complex contrib = 0.0;
struct mol_species *spec;
int j;
spec = mol->species[i];
for ( j=0; j<spec->n_atoms; j++ ) {
double ph;
ph= q.u*spec->x[j] + q.v*spec->y[j] + q.w*spec->z[j];
/* Conversion from revolutions to radians is required */
contrib += cos(2.0*M_PI*ph) + I*sin(2.0*M_PI*ph);
}
sfac = get_sfac(spec->species, s, en);
F += sfac * contrib * exp(-2.0 * spec->B[j] * s);
}
return F;
}
void get_diffraction(struct image *image, UnitCell *cell)
{
int x, y;
double ax, ay, az;
double bx, by, bz;
double cx, cy, cz;
/* Generate the array of reciprocal space vectors in image->qvecs */
get_ewald(image);
image->molecule = load_molecule();
if ( image->molecule == NULL ) return;
cell_get_cartesian(cell, &ax, &ay, &az,
&bx, &by, &bz,
&cx, &cy, &cz);
image->sfacs = malloc(image->width * image->height
* sizeof(double complex));
for ( x=0; x<image->width; x++ ) {
for ( y=0; y<image->height; y++ ) {
double f_lattice;
double complex f_molecule;
struct threevec q;
q = image->qvecs[x + image->width*y];
f_lattice = lattice_factor(q, ax,ay,az,bx,by,bz,cx,cy,cz);
f_molecule = molecule_factor(image->molecule, q,
image->xray_energy);
image->sfacs[x + image->width*y] = f_lattice * f_molecule;
}
printf("x=%i\n", x);
}
}
|