1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
* geometry.c
*
* Geometry of diffraction
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <assert.h>
#include "utils.h"
#include "cell.h"
#include "image.h"
#include "peaks.h"
#include "beam-parameters.h"
#include "reflist.h"
#define MAX_CPEAKS (256 * 256)
static signed int locate_peak(double x, double y, double z, double k,
struct detector *det, double *xdap, double *ydap)
{
int p;
signed int found = -1;
const double den = k + z;
*xdap = -1; *ydap = -1;
for ( p=0; p<det->n_panels; p++ ) {
double xd, yd, cl;
double xda, yda;
/* Camera length for this panel */
cl = det->panels[p].clen;
/* Coordinates of peak relative to central beam, in m */
xd = cl * x / den;
yd = cl * y / den;
/* Convert to pixels */
xd *= det->panels[p].res;
yd *= det->panels[p].res;
/* Add the coordinates of the central beam */
xda = xd + det->panels[p].cx;
yda = yd + det->panels[p].cy;
/* Now, is this on this panel? */
if ( xda < det->panels[p].min_x ) continue;
if ( xda > det->panels[p].max_x ) continue;
if ( yda < det->panels[p].min_y ) continue;
if ( yda > det->panels[p].max_y ) continue;
/* If peak appears on multiple panels, reject it */
if ( found != -1 ) return -1;
/* Woohoo! */
found = p;
*xdap = xda;
*ydap = yda;
}
return found;
}
static double excitation_error(double xl, double yl, double zl,
double ds, double k, double divergence)
{
double tt, al;
double r;
double delta;
tt = angle_between(0.0, 0.0, 1.0, xl, yl, zl+k);
al = M_PI_2 - asin(-zl/ds);
r = ( ds * sin(al) / sin(tt) ) - k;
delta = sqrt(2.0 * pow(ds, 2.0) * (1-cos(divergence)));
if ( divergence > 0.0 ) {
r += delta;
} else {
r -= delta;
}
return r;
}
static double partiality(double r1, double r2, double r)
{
double q1, q2;
double p1, p2;
/* Calculate degrees of penetration */
q1 = (r1 + r)/(2.0*r);
q2 = (r2 + r)/(2.0*r);
/* Convert to partiality */
p1 = 3.0*pow(q1,2.0) - 2.0*pow(q1,3.0);
p2 = 3.0*pow(q2,2.0) - 2.0*pow(q2,3.0);
return p2 - p1;
}
static int check_reflection(struct image *image, double mres, int output,
RefList *reflections,
signed int h, signed int k, signed int l,
double asx, double asy, double asz,
double bsx, double bsy, double bsz,
double csx, double csy, double csz)
{
double xl, yl, zl;
double ds, ds_sq;
double rlow, rhigh; /* "Excitation error" */
signed int p; /* Panel number */
double xda, yda; /* Position on detector */
int close, inside;
double part; /* Partiality */
int clamp_low = 0;
int clamp_high = 0;
double bandwidth = image->bw;
double divergence = image->div;
double lambda = image->lambda;
double klow, kcen, khigh; /* Wavenumber */
Reflection *refl;
/* "low" gives the largest Ewald sphere,
* "high" gives the smallest Ewald sphere. */
klow = 1.0/(lambda - lambda*bandwidth/2.0);
kcen = 1.0/lambda;
khigh = 1.0/(lambda + lambda*bandwidth/2.0);
/* Get the coordinates of the reciprocal lattice point */
zl = h*asz + k*bsz + l*csz;
/* Throw out if it's "in front". A tiny bit "in front" is OK. */
if ( zl > image->profile_radius ) return 0;
xl = h*asx + k*bsx + l*csx;
yl = h*asy + k*bsy + l*csy;
/* Calculate reciprocal lattice point modulus (and square) */
ds_sq = modulus_squared(xl, yl, zl); /* d*^2 */
ds = sqrt(ds_sq);
if ( ds > mres ) return 0; /* Outside resolution range */
/* Calculate excitation errors */
rlow = excitation_error(xl, yl, zl, ds, klow, -divergence);
rhigh = excitation_error(xl, yl, zl, ds, khigh, +divergence);
/* Is the reciprocal lattice point close to either extreme of
* the sphere, maybe just outside the "Ewald volume"? */
close = (fabs(rlow) < image->profile_radius)
|| (fabs(rhigh) < image->profile_radius);
/* Is the reciprocal lattice point somewhere between the
* extremes of the sphere, i.e. inside the "Ewald volume"? */
inside = signbit(rlow) ^ signbit(rhigh);
/* Can't be both inside and close */
if ( inside ) close = 0;
/* Neither? Skip it. */
if ( !(close || inside) ) return 0;
/* If the "lower" Ewald sphere is a long way away, use the
* position at which the Ewald sphere would just touch the
* reflection. */
if ( rlow < -image->profile_radius ) {
rlow = -image->profile_radius;
clamp_low = -1;
}
if ( rlow > +image->profile_radius ) {
rlow = +image->profile_radius;
clamp_low = +1;
}
/* Likewise the "higher" Ewald sphere */
if ( rhigh < -image->profile_radius ) {
rhigh = -image->profile_radius;
clamp_high = -1;
}
if ( rhigh > +image->profile_radius ) {
rhigh = +image->profile_radius;
clamp_high = +1;
}
/* The six possible combinations of clamp_{low,high} (including
* zero) correspond to the six situations in Table 3 of Rossmann
* et al. (1979). */
/* Calculate partiality and reject if too small */
part = partiality(rlow, rhigh, image->profile_radius);
if ( part < 0.1 ) return 0;
/* Locate peak on detector. */
p = locate_peak(xl, yl, zl, kcen, image->det, &xda, &yda);
if ( p == -1 ) return 0;
/* Add peak to list */
refl = add_refl(reflections, h, k, l);
set_detector_pos(refl, 0.0, xda, yda);
set_partial(refl, rlow, rhigh, part, clamp_low, clamp_high);
if ( output ) {
printf("%3i %3i %3i %6f (at %5.2f,%5.2f) %5.2f\n",
h, k, l, 0.0, xda, yda, part);
}
return 1;
}
RefList *find_intersections(struct image *image, UnitCell *cell,
int output)
{
double asx, asy, asz;
double bsx, bsy, bsz;
double csx, csy, csz;
RefList *reflections;
int hmax, kmax, lmax;
double mres;
signed int h, k, l;
reflections = reflist_new();
cell_get_reciprocal(cell, &asx, &asy, &asz,
&bsx, &bsy, &bsz,
&csx, &csy, &csz);
/* FIXME: Get this from image */
mres = 1.0 / 8.0e-10; /* 8 Angstroms */
hmax = mres / modulus(asx, asy, asz);
kmax = mres / modulus(bsx, bsy, bsz);
lmax = mres / modulus(csx, csy, csz);
for ( h=-hmax; h<hmax; h++ ) {
for ( k=-kmax; k<kmax; k++ ) {
for ( l=-lmax; l<lmax; l++ ) {
check_reflection(image, mres, output, reflections, h, k, l,
asx,asy,asz,bsx,bsy,bsz,csx,csy,csz);
}
}
}
return reflections;
}
double integrate_all(struct image *image, RefList *reflections)
{
double itot = 0.0;
Reflection *refl;
RefListIterator *iter;
for ( refl = first_refl(reflections, &iter);
refl != NULL;
refl = next_refl(refl, iter) ) {
float x, y, intensity;
double xp, yp;
get_detector_pos(refl, &xp, &yp);
if ( integrate_peak(image, xp, yp, &x, &y,
&intensity, NULL, NULL, 0, 0) ) continue;
itot += intensity;
}
return itot;
}
|