1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
/*
* get_hkl.c
*
* Small program to write out a list of h,k,l,I values given a structure
*
* (c) 2006-2010 Thomas White <taw@physics.org>
*
* Part of CrystFEL - crystallography with a FEL
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include "utils.h"
#include "sfac.h"
#include "reflections.h"
#include "symmetry.h"
static void show_help(const char *s)
{
printf("Syntax: %s [options]\n\n", s);
printf(
"Create reflections lists.\n"
"\n"
" -h, --help Display this help message.\n"
"\n"
" -t, --template=<filename> Only include reflections mentioned in file.\n"
" --poisson Simulate Poisson samples.\n"
" --noise Add 10%% random noise.\n"
" -y, --symmetry=<sym> The symmetry of the input file (-i).\n"
" -w, --twin=<sym> Generate twinned data according to the given\n"
" point group.\n"
" -e, --expand=<sym> Expand reflections to this point group.\n"
" -o, --output=<filename> Output filename (default: stdout).\n"
" -i, --intensities=<file> Read intensities from file instead of\n"
" calculating them from scratch. You might use\n"
" this if you need to apply noise or twinning.\n"
" -p, --pdb=<file> PDB file from which to get the structure.\n"
" --no-phases Do not try to use phases in the input file.\n"
" --multiplicity Multiply intensities by the number of\n"
" equivalent reflections.\n"
);
}
/* Apply Poisson noise to all reflections */
static void poisson_reflections(double *ref, ReflItemList *items)
{
int i;
const int n = num_items(items);
for ( i=0; i<n; i++ ) {
struct refl_item *it;
double val;
int c;
it = get_item(items, i);
val = lookup_intensity(ref, it->h, it->k, it->l);
c = poisson_noise(val);
set_intensity(ref, it->h, it->k, it->l, c);
progress_bar(i, n-1, "Simulating noise");
}
}
/* Apply 10% uniform noise to all reflections */
static void noise_reflections(double *ref, ReflItemList *items)
{
int i;
const int n = num_items(items);
for ( i=0; i<n; i++ ) {
struct refl_item *it;
double val;
double r;
it = get_item(items, i);
val = lookup_intensity(ref, it->h, it->k, it->l);
r = (double)random()/RAND_MAX;
val += 0.1 * val * r;
set_intensity(ref, it->h, it->k, it->l, val);
progress_bar(i, n-1, "Simulating noise");
}
}
static ReflItemList *twin_reflections(double *ref, ReflItemList *items,
const char *holo, const char *mero)
{
int i;
ReflItemList *new;
new = new_items();
if ( num_general_equivs(holo) < num_general_equivs(mero) ) {
ERROR("%s is not a subgroup of %s!\n", mero, holo);
return NULL;
}
for ( i=0; i<num_items(items); i++ ) {
double mean;
struct refl_item *it;
signed int h, k, l;
int n, j;
int skip;
it = get_item(items, i);
/* There is a many-to-one correspondence between reflections
* in the merohedral and holohedral groups. Do the calculation
* only once for each reflection in the holohedral group, which
* contains fewer reflections.
*/
get_asymm(it->h, it->k, it->l, &h, &k, &l, holo);
if ( find_item(new, h, k, l) ) continue;
n = num_equivs(h, k, l, holo);
mean = 0.0;
skip = 0;
for ( j=0; j<n; j++ ) {
signed int he, ke, le;
signed int hu, ku, lu;
get_equiv(h, k, l, &he, &ke, &le, holo, j);
/* Do we have this reflection?
* We might not have the particular (merohedral)
* equivalent which belongs to our definition of the
* asymmetric unit cell, so check them all.
*/
if ( !find_unique_equiv(items, he, ke, le, mero,
&hu, &ku, &lu) ) {
/* Don't have this reflection, so bail out */
ERROR("Twinning %i %i %i requires the %i %i %i "
"reflection (or an equivalent in %s), "
"which I don't have. %i %i %i won't "
"appear in the output\n",
h, k, l, he, ke, le, mero, h, k, l);
skip = 1;
break;
}
mean += lookup_intensity(ref, hu, ku, lu);
}
if ( !skip ) {
mean /= (double)n;
set_intensity(ref, h, k, l, mean);
add_item(new, h, k, l);
}
}
return new;
}
static ReflItemList *expand_reflections(double *ref, ReflItemList *items,
const char *target, const char *initial)
{
int i;
ReflItemList *new;
new = new_items();
if ( num_general_equivs(target) > num_general_equivs(initial) ) {
ERROR("%s is not a subgroup of %s!\n", initial, target);
return NULL;
}
for ( i=0; i<num_items(items); i++ ) {
struct refl_item *it;
signed int h, k, l;
signed int hd, kd, ld;
int n, j;
double intensity;
it = get_item(items, i);
h = it->h; k = it->k; l = it->l;
/* Actually we don't really care what the equivalent is,
* we just want to be sure that there is nly be one version of
* this reflection. */
find_unique_equiv(items, h, k, l, initial, &hd, &kd, &ld);
/* Now find out how many reflections need to be filled in */
n = num_equivs(h, k, l, initial);
intensity = lookup_intensity(ref, h, k, l);
for ( j=0; j<n; j++ ) {
signed int he, ke, le;
/* Get the equivalent */
get_equiv(h, k, l, &he, &ke, &le, initial, j);
/* Put it into the asymmetric unit for the target */
get_asymm(he, ke, le, &he, &ke, &le, target);
/* Make sure the intensity is in the right place */
set_intensity(ref, he, ke, le, intensity);
/* Add the reflection, but only once */
if ( !find_item(new, he, ke, le) ) {
add_item(new, he, ke, le);
}
}
}
return new;
}
int main(int argc, char *argv[])
{
int c;
double *ideal_ref;
double *phases;
struct molecule *mol;
char *template = NULL;
int config_noise = 0;
int config_poisson = 0;
int config_nophase = 0;
int config_multi = 0;
char *holo = NULL;
char *mero = NULL;
char *expand = NULL;
char *output = NULL;
char *input = NULL;
char *filename = NULL;
ReflItemList *input_items;
ReflItemList *write_items;
UnitCell *cell = NULL;
/* Long options */
const struct option longopts[] = {
{"help", 0, NULL, 'h'},
{"template", 1, NULL, 't'},
{"poisson", 0, &config_poisson, 1},
{"noise", 0, &config_noise, 1},
{"output", 1, NULL, 'o'},
{"symmetry", 1, NULL, 'y'},
{"twin", 1, NULL, 'w'},
{"expand", 1, NULL, 'e'},
{"intensities", 1, NULL, 'i'},
{"pdb", 1, NULL, 'p'},
{"no-phases", 0, &config_nophase, 1},
{"multiplicity", 0, &config_multi, 1},
{0, 0, NULL, 0}
};
/* Short options */
while ((c = getopt_long(argc, argv, "ht:o:i:p:w:y:e:",
longopts, NULL)) != -1) {
switch (c) {
case 'h' :
show_help(argv[0]);
return 0;
case 't' :
template = strdup(optarg);
break;
case 'o' :
output = strdup(optarg);
break;
case 'i' :
input = strdup(optarg);
break;
case 'p' :
filename = strdup(optarg);
break;
case 'y' :
mero = strdup(optarg);
break;
case 'w' :
holo = strdup(optarg);
break;
case 'e' :
expand = strdup(optarg);
break;
case 0 :
break;
default :
return 1;
}
}
if ( filename == NULL ) {
filename = strdup("molecule.pdb");
}
if ( (holo != NULL) && (expand != NULL) ) {
ERROR("You cannot 'twin' and 'expand' at the same time.\n");
ERROR("Decide which one you want to do first.\n");
exit(1);
}
mol = load_molecule(filename);
cell = load_cell_from_pdb(filename);
if ( !config_nophase ) {
phases = new_list_phase();
} else {
phases = NULL;
}
if ( input == NULL ) {
input_items = new_items();
ideal_ref = get_reflections(mol, eV_to_J(1790.0), 1/(0.05e-9),
phases, input_items);
} else {
ideal_ref = new_list_intensity();
input_items = read_reflections(input, ideal_ref, phases,
NULL, NULL);
free(input);
}
if ( config_poisson ) poisson_reflections(ideal_ref, input_items);
if ( config_noise ) noise_reflections(ideal_ref, input_items);
if ( holo != NULL ) {
ReflItemList *new;
STATUS("Twinning from %s into %s\n", mero, holo);
new = twin_reflections(ideal_ref, input_items, holo, mero);
delete_items(input_items);
input_items = new;
}
if ( expand != NULL ) {
ReflItemList *new;
STATUS("Expanding from %s into %s\n", mero, expand);
new = expand_reflections(ideal_ref, input_items, expand, mero);
delete_items(input_items);
input_items = new;
}
if ( config_multi ) {
int i;
for ( i=0; i<num_items(input_items); i++ ) {
struct refl_item *it;
double inty;
it = get_item(input_items, i);
inty = lookup_intensity(ideal_ref, it->h, it->k, it->l);
inty *= num_equivs(it->h, it->k, it->l, mero);
set_intensity(ideal_ref, it->h, it->k, it->l, inty);
STATUS("%i %i %i %i\n", it->h, it->k, it->l,
num_equivs(it->h, it->k, it->l, mero));
}
}
if ( template ) {
/* Write out only reflections which are in the template
* (and which we have in the input) */
ReflItemList *template_items;
template_items = read_reflections(template,
NULL, NULL, NULL, NULL);
write_items = intersection_items(input_items, template_items);
delete_items(template_items);
} else {
/* Write out all reflections */
write_items = new_items();
/* (quick way of copying a list) */
union_items(write_items, input_items);
}
write_reflections(output, write_items, ideal_ref, phases, NULL, cell);
delete_items(input_items);
delete_items(write_items);
return 0;
}
|