aboutsummaryrefslogtreecommitdiff
path: root/src/hrs-scaling.c
blob: b33f4932846c5b09f3157bdb44fec24cb87ad808 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*
 * hrs-scaling.c
 *
 * Intensity scaling using generalised HRS target function
 *
 * (c) 2006-2011 Thomas White <taw@physics.org>
 *
 * Part of CrystFEL - crystallography with a FEL
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif


#include <stdlib.h>
#include <assert.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_eigen.h>
#include <gsl/gsl_blas.h>

#include "image.h"
#include "peaks.h"
#include "symmetry.h"
#include "geometry.h"
#include "cell.h"
#include "utils.h"
#include "reflist.h"


/* Maximum number of iterations of scaling per macrocycle. */
#define MAX_CYCLES (50)

/* ESD of restraint driving scale factors to unity */
#define SCALING_RESTRAINT (1.0)


struct queue_args
{
	RefList *reference;
	struct image *images;
	int n_started;
	int n_to_do;
	double max_shift;
};


struct worker_args
{
	struct image *image;
	double shift;
	RefList *reference;
};


static void *create_job(void *vqargs)
{
	struct worker_args *wargs;
	struct queue_args *qargs = vqargs;

	wargs = malloc(sizeof(struct worker_args));
	wargs->reference = qargs->reference;

	wargs->image = &qargs->images[qargs->n_started++];

	return wargs;
}


static void run_job(void *vwargs, int cookie)
{
	struct worker_args *wargs = vwargs;
	struct image *image = wargs->image;
	RefList *reference = wargs->reference;
	Reflection *refl;
	RefListIterator *iter;
	double num = 0.0;
	double den = 0.0;
	double corr;

	if ( image->pr_dud ) {
		wargs->shift = 0.0;
		return;
	}

	for ( refl = first_refl(image->reflections, &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) )
	{
		signed int h, k, l;
		double Ih, Ihl, esd;
		Reflection *r;

		if ( !get_scalable(refl) ) continue;

		/* Look up by asymmetric indices */
		get_indices(refl, &h, &k, &l);
		r = find_refl(reference, h, k, l);
		if ( r == NULL ) {
			ERROR("%3i %3i %3i isn't in the "
			      "reference list, so why is it "
			      "marked as scalable?\n", h, k, l);
			Ih = 0.0;
		} else {
			if ( get_redundancy(r) < 2 ) continue;
			Ih = get_intensity(r);
		}

		Ihl = get_intensity(refl) / get_partiality(refl);
		esd = get_esd_intensity(refl) / get_partiality(refl);

		num += Ih * (Ihl/image->osf) / pow(esd/image->osf, 2.0);
		den += pow(Ih, 2.0)/pow(esd/image->osf, 2.0);

	}

	//num += image->osf / pow(SCALING_RESTRAINT, 2.0);
	//den += pow(image->osf, 2.0)/pow(SCALING_RESTRAINT, 2.0);

	corr = num / den;
	if ( !isnan(corr) && !isinf(corr) ) {
		image->osf *= corr;
	}
	wargs->shift = fabs(corr-1.0);

}


static void finalise_job(void *vqargs, void *vwargs)
{
	struct queue_args *qargs = vqargs;
	struct worker_args *wargs = vwargs;

	if ( wargs->shift > qargs->max_shift ) qargs->max_shift = wargs->shift;
	free(wargs);
}


static double iterate_scale(struct image *images, int n, RefList *reference,
                            int n_threads)
{
	struct queue_args qargs;

	assert(reference != NULL);

	qargs.reference = reference;
	qargs.n_started = 0;
	qargs.n_to_do = n;
	qargs.images = images;
	qargs.max_shift = 0.0;

	run_threads(n_threads, run_job, create_job, finalise_job,
	            &qargs, n, 0, 0, 0);

	return qargs.max_shift;
}


struct merge_queue_args
{
	RefList *full;
	pthread_mutex_t full_lock;
	struct image *images;
	int n_started;
	int n_to_do;
};


struct merge_worker_args
{
	struct image *image;
	RefList *full;
	pthread_mutex_t *full_lock;
};


static void *create_merge_job(void *vqargs)
{
	struct merge_worker_args *wargs;
	struct merge_queue_args *qargs = vqargs;

	wargs = malloc(sizeof(struct merge_worker_args));
	wargs->full = qargs->full;
	wargs->full_lock = &qargs->full_lock;

	wargs->image = &qargs->images[qargs->n_started++];

	return wargs;
}


static void run_merge_job(void *vwargs, int cookie)
{
	struct merge_worker_args *wargs = vwargs;
	struct image *image = wargs->image;
	RefList *full = wargs->full;
	Reflection *refl;
	RefListIterator *iter;
	double G;

	if ( image->pr_dud ) return;

	G = image->osf;

	for ( refl = first_refl(image->reflections, &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) )
	{
		Reflection *f;
		signed int h, k, l;
		double num, den;
		int red;
		double Ihl, esd;

		if ( !get_scalable(refl) ) continue;

		get_indices(refl, &h, &k, &l);
		pthread_mutex_lock(wargs->full_lock);
		f = find_refl(full, h, k, l);
		if ( f == NULL ) {
			f = add_refl(full, h, k, l);
			lock_reflection(f);
			pthread_mutex_unlock(wargs->full_lock);
			num = 0.0;
			den = 0.0;
			red = 0;
		} else {
			lock_reflection(f);
			pthread_mutex_unlock(wargs->full_lock);
			num = get_temp1(f);
			den = get_temp2(f);
			red = get_redundancy(f);
		}

		Ihl = get_intensity(refl) / get_partiality(refl);
		esd = get_esd_intensity(refl) / get_partiality(refl);

		num += (Ihl/G) / pow(esd/G, 2.0);
		den += 1.0 / pow(esd/G, 2.0);
		red++;

		set_temp1(f, num);
		set_temp2(f, den);
		set_redundancy(f, red);
		unlock_reflection(f);
	}
}


static void finalise_merge_job(void *vqargs, void *vwargs)
{
	free(vwargs);
}


static RefList *lsq_intensities(struct image *images, int n, int n_threads)
{
	RefList *full;
	struct merge_queue_args qargs;
	Reflection *refl;
	RefListIterator *iter;

	full = reflist_new();

	qargs.full = full;
	qargs.n_started = 0;
	qargs.n_to_do = n;
	qargs.images = images;
	pthread_mutex_init(&qargs.full_lock, NULL);

	run_threads(n_threads, run_merge_job, create_merge_job,
	            finalise_merge_job, &qargs, n, 0, 0, 0);

	pthread_mutex_destroy(&qargs.full_lock);

	for ( refl = first_refl(full, &iter);
	      refl != NULL;
	      refl = next_refl(refl, iter) )
	{
		double Ih;
		Ih = get_temp1(refl) / get_temp2(refl);
		set_int(refl, Ih);
	}

	return full;
}


/* Scale the stack of images */
RefList *scale_intensities(struct image *images, int n, RefList *gref,
                           int n_threads)
{
	int i;
	double max_corr;
	RefList *full = NULL;

	/* No reference -> create an initial list to refine against */
	if ( gref == NULL ) {
		full = lsq_intensities(images, n, n_threads);
	}

	/* Iterate */
	i = 0;
	do {

		RefList *reference;

		/* Refine against reference or current "full" estimates */
		if ( gref != NULL ) {
			reference = gref;
		} else {
			reference = full;
		}

		max_corr = iterate_scale(images, n, reference, n_threads);
		STATUS("Scaling iteration %2i: max correction = %5.2f\n",
		       i+1, max_corr);

		/* No reference -> generate list for next iteration */
		if ( gref == NULL ) {
			reflist_free(full);
			full = lsq_intensities(images, n, n_threads);
		}

		//show_scale_factors(images, n);

		i++;

	} while ( (max_corr > 0.01) && (i < MAX_CYCLES) );

	if ( gref != NULL ) {
		full = lsq_intensities(images, n, n_threads);
	} /* else we already did it */

	return full;
}